
Expressing Quality of Service in Agent
Communication

Lisa Cingiser DiPippo and Lekshmi Nair
Department of Computer Science
The University of Rhode Island

Kingston, RI USA 02881

 This work is partially supported by the U.S. Office of Naval Research grant N000140010060

Abstract
This paper presents extensions to a well-known

agent communication language for the expression of
quality of service. It describes the semantics of the
extensions, while allowing quality of service to be
interpreted as broadly as possible. The paper then
describes the specific extensions to KQML through
added performative parameters. A prototype
implementation of the extended language is also
discussed.

Keywords: agent, communication, quality of service,
semantics

1. Introduction

An agent communication language (ACL)
provides a mechanism for agents to express their
desires and intentions to other agents in a
content language independent manner. Agents
can converse about what they know and what
they want to know from other agents. This
sharing of information allows multiple agents to
work together to meet common goals, as well as
individual goals. However, in some
applications, it is not enough for one agent to let
another agent know that it wants some
information. A requesting agent must also be
able to express something about how it wants
the information to be delivered. For example,
consider a system in which multiple agents
communicate to provide stock market
information to an end user. It is not enough for
a UserAgent to request the price of Intel stock
from a QuotingAgent because the price of stocks
changes so rapidly. There must be a way for the
UserAgent to express that it needs the price

information within a certain amount of time, or
with a specified degree of accuracy.

In general, in many applications, it is
important for an agent to be able to express a
desired quality of service (QoS) as part of a
communication with another agent. Further, it is
also necessary for agents to be able to express
the level of quality that it can provide to other
agents in the services that it can offer.

In this paper we present a methodology for
expressing QoS in the capabilities of agents and
in the requirements of agents. Section 2 defines
the semantics of QoS in agent communication
by extending the semantics of a well-known
communication language (KQML). Section 3
presents extensions to KQML that allow for the
expression of QoS in the language. Section 4
briefly describes a prototype that we have
implemented to demonstrate the use of these
language extensions. And Section 5 concludes
with a summary and discussion of the
applicability of our work.

2. Semantics of Quality of Service
The QoS provided or required by an agent

should be an integral part of the communications
among agents. This allows communicating
agents to “know what they are getting”. In this
section, we describe the semantics of the
Knowledge Query Manipulation Language
(KQML) [1], a well-known ACL. We then
describe what is meant by QoS in the context of
agent communication. Finally, we present an
extended semantics of KQML to allow for the
expression of QoS capabilities and requirements.

2.1. KQML Semantics

KQML is an agent communication language
in which agents communicate through the
expression of performatives [1]. Each
performative specifies the kind of
communication the speaking agent wants to
have with the receiving agent. For instance, the
tell performative allows one agent to inform
another agent about something it knows about.

The semantics of KQML is based on speech
act theory [2]. Cognitive states of KQML-
speaking agents are expressed using a meta-
language of operators that specify propositional
attitudes [2]. These operators express the
beliefs, knowledge, desires and intentions of an
agent.

The meta-language operators are used to
describe the semantics of the performatives
through preconditions, postconditions and
completion conditions. For further details on the
specifics of KQML semantics, see [2]. We more
fully discuss the semantics in Section 2.3
through our extension of KQML.

2.2. Quality of Service

Quality of service is a broad term that can
encompass many criteria within a multi-agent
system. It can be used to express timing
capabilties of an agent, or the accuracy of a
response that an agent can provide. For
example, if an agent can find the price of a
requested stock within 10 seconds, this can be
expressed as a QoS capability. Furthermore, if
the same agent can find the price of the same
stock more quickly, with slightly lower
accuracy, this can be expressed through QoS as
well. QoS can also express other criteria such as
level of security and network bandwidth.

For the purpose of expressing agent
communications with QoS, we do not
distinguish among the different criteria that can
be expressed. Rather, we use a general QoS
parameter in the specification of agent
communication semantics. Quality of service is
treated as a general concept, and can be
interpreted in any semantic context as “level of
quality” provided by or required by an agent.

2.3. Extended Semantics

To express QoS as an integral part of agent
communication, we have extended the semantics
of KQML to include a “level of quality”
parameter in the meta-language for expressing
agents’ states, and in the expression of pre-,
post- and completion conditions for KQML
performatives.

2.3.1. QoS in Agent State

The cognitive state of an agent is expressed
through beliefs, knowledge, desires and
intentions. The following operators are
extended from [2] to express QoS as a part of
the agent’s state.

• BEL(A,P) – Agent A believes P to be true.

• KNOW(A,S) – A has some knowledge about
S, where S is a state description.

• WANT(A,S,Q) – A desires state (or action)
S to occur in the future, with a level of
quality Q.

• INT(A,S,Q) – A intends on doing S with a
level of quality Q.

The belief (BEL) and knowledge (KNOW)
operators refer to the current state of the agent’s
knowledge. They do not require any extension
for expression of QoS. On the other hand, it is
necessary for desires (WANT) and intentions
(INT) to be able to express QoS. In the context
of QoS expression, it is not enough to say that
agent A wants to know something about S, or
wants action S to occur. We must be able to
express when or how A wants to know about S.
Similarly, when expressing intentions, we must
be able to express that agent A intends to do S
within a specified level of quality.

2.3.2. QoS in Agent Performatives.

We now use the agent state operators
described above to express the semantics of
KQML performatives that can express QoS
capabilities and requirements. In [2], the
semantics of a performative are described with
(1) a natural language description, (2) a
fomalization of the description, (3) a set of
preconditions, (4) a set of postconditions, and

(5) a completion condition. We use these same
descriptors to characterize the extensions that we
have made to the performative semantics. We
present the semantics for three performatives:
ask-if, tell and advertise. These
semantics are representative of the extensions
that we have made to all of the performatives in
KQML for the expression of QoS.

We begin by presenting the semantics for
ask-if, followed by an explanation of the
specified conditions.

ask-if(A,B,X,Q)

1. A wants to know, with level of quality Q,
what B believes about the truthfulness of X.

2. WANT(A,KNOW(A,Y),Q)

Where Y=(BEL(B,X)) or
Y=(~BEL(B,X))

3. Pre(A): WANT(A,KNOW(A,Y),Q) ^
KNOW(A,INT(B,PROC(B,M),Q))

Where M = ask-if(A,B,X)

Pre(B): INT(B,PROC(B,M),Q)

4. Post(A): INT(A,KNOW(A,Y),Q)

Post(B):
KNOW(B,WANT(A,KNOW(A,Y),Q)

5. Completion: KNOW(A,Y)

The above preconditions imply that before
agent A sends an ask-if message, it wants to
know something about X within a certain level
of quality, and it knows that B can process the
request within this level of quality. Also, B
intends to process an ask-if message from A
about X with level of quality Q. The
postconditions indicate that after the ask-if
message is sent, A intends to know something
about X with the specified level of quality, and B
knows that A wants to know something about
about X with that level of quality. The
completion condition, which specifies the result
of the conversation in which this message exists,
indicates that when the conversation is over, A
will know something about X.

For example, if agent A asked agent B for
the price if Intel’s stock within 15 seconds, the
above semantics imply that in A wants to know

what B knows about the stock price of Intel
within 15 seconds, and that B has expressed its
intention to provide this stock price, perhaps
through an advertisement.

The extended semantics for the tell and
advertise performatives are shown below.
The interpretation of the pre-, post- and
completion conditions are similar to those for
ask-if, so we do not explain the semantics
further.

tell(A,B,X,Q)

1. A states to B, with a level of quality Q, that
X is true.

2. BEL(A,X)

3. Pre(A): BEL(A,X) ^
KNOW(A,WANT(B,KNOW(B,Y),Q))

Where Y=BEL(A,X) or Y=~BEL(A,X)

Pre(B): INT(B,KNOW(B,Y),Q)

4. Post(A): KNOW(A,KNOW(B,BEL(A,X)))

Post(B): KNOW(B,BEL(A,X))

5. Completion: KNOW(B,BEL(A,X))

To continue the example of above, if agent
B tells agent A the stock price of Intel, it is
expressing its belief about the stock price. The
semantics also imply that B knows that A wants
this information within 15 seconds.

advertise(A,B,M,Q)

1. A states to B that it can (and will) process
the message M from B with level of quality
Q.

2. INT(A,PROC(A,M),Q)

Where M is a performative

3. Pre(A): INT(A,PROC(A,M),Q)

Pre(B): none

4. Post(A): KNOW(A,KNOW(B,

INT(A,PROC(A,M),Q)))

Post(B): KNOW(B,INT(A,PROC(A,M),Q))

The advertise performative can be used to
allow an agent to inform another agent about its
capabilities. It can also be used to allow an

agent to register its capabilities with a facilitator
agent that helps match agent requests with
servicing agents.

3. Extending KQML to Express
QoS

The semantics expressed in the previous
section provide a foundation for extending
KQML performatives to express QoS
capabilities and requirements. In this section we
briefly describe the agent model on which our
work is based. We then explain how we have
extended KQML performatives with a QoS
parameter. We show examples of the the
extension for several specific performatives.

3.1. QoS Agent Model

Our QoS extensions to KQML are based
upon a model of a real-time multi-agent system
(RTMAS) that we have developed [3]. The
model is based on the assumption that agents
may be able to perform their tasks in multiple
ways. It is made up of a set of real-time agents
(RTAgent) and a set of communications among
the real-time agents (Message). Figure 1
displays the elements of the model.

RTAgent = {S1, S2, …, Sn}

Si = < O, ES>

ES = {es1, es2, …, esf}

esi = <ex, a, tv>

1

1 /)(

+

+

−
−

=
ii

iii
i exex

aaa
tv

Message = <A, V, Q>

Q = <I, D, H>

Figure 1 - RTMAS Model Elements

3.1.1. RTAgent

Each RTAgent is comprised of a set of
solvables, {S1, S2, …, Sn,} where a solvable is a
problem that the agent is designed to solve.
Each solvable within the agent is represented by
an optimal result (O) and a set of execution
strategies (ES). The optimal result is a system-
specific definition of what is considered to be
the best result for this problem. For instance, in

a system in which agents buy, sell and
recommend stocks, a BuySellAgent may have a
solvable, BuyStock, to purchase a specified
stock. The optimal solution in this scenario
might be to buy the stock at the current price
with no fee.

The ES component of a solvable is the set of
execution strategies that can be used to produce
a result for a solvable. For example, the
solvable BuyStock may have an execution
strategy, BS1, that uses a discount broker with a
low fee. This execution strategy may come
close to the no fee requirement of the optimal
result, but if the discount broker typically has a
longer turn around time, then the deadline of the
BuyStock request may be violated and the price
of the stock may have changed. On the other
hand, an execution strategy, BS2, that uses a
more expensive broker may be able to handle
the request more quickly.

Each execution strategy of a solvable is
comprised of three elements. This model uses
criteria for expressing real-time constraints.
However, it can easily be modified to handle
other measures of QoS. The execution time, ex,
represents the amount of time it takes a strategy
to run. The level of accuracy, a, is a rating of
the result of an execution strategy. Accuracy is
calculated as a percentage of the optimal result
(a = strategy result / optimal result). In the
example above, we quantify the optimal result of
the BuyStock solvable by specifying zero fee for
the transaction. While this optimal result may
be impossible to achieve, it provides a metric by
which to measure the results of the actual
execution strategies. The accuracy of a result of
a particular execution strategy may be known a
priori. In other cases the accuracy can be based
upon a statistical average of returned results.

The last component of an execution strategy
is the tradeoff value (tv). This parameter
provides a measure of how much value would be
lost by choosing one execution strategy of a
solvable over another one. That is, it measures
the percent change in accuracy per change in
execution strategy execution time.

3.1.2. Message

Communication among agents in this model
is performed through messages sent between
agents. The formal specification for a message
is displayed in Figure 1. A represents the name
of the real-time agent to which the message is
directed. V is the name of the solvable that the
requesting agent wants to be performed, and Q is
the QoS requirement of the message. While Q
can represent any number of QoS constraints,
we specifically represent three parameters that
model real-time agent behavior. I is the level of
importance of the request. This value is based
on some system-wide scale of importance
agreed-upon by all agents. D represents the
deadline by which the request must be
completed. H specifies the accuracy threshold
for the request. If the servicing agent cannot
provide at least this accuracy, then the
requesting agent may choose to abort the
request.

As an example of a real-time agent message,
consider a UserAgent in the stock trading
example that sends a message to a QuotingAgent
to find the price of Intel stock (GetPrice). The
deadline that the UserAgent specifies on this
message may be based on the amount of time
available before a decision must be made. The
UserAgent may specify an accuracy threshold
that allows for a quarter of a point difference
from the actual stock price in order to meet its
deadline. The importance of the request
depends upon the overall transaction that the
UserAgent is attempting to perform. If the
transaction involves spending a few hundred
dollars, then the importance may be low. But if
it involves thousands of dollars, the importance
may be higher.

3.2. QoS in Performatives

The expression of QoS in agent
communication is in the form of an agent
making known its capabilities, and of an agent
specifying its requirements to another agent.
We have extended KQML by adding two
optional parameters to each performative [4].
We refer to the extended language as KQML-Q.
The first parameter is QoS_requirement,
which allows an agent to specify the level of

quality that it requires from the other agent to
whom it is sending a message. This parameter is
meant to be used with performatives that specify
a request for information from another agent.
The other parameter that we have added is
QoS_capabilities. This parameter is
designed to be used with an advertise
performative to allow an agent to let other
agents know what levels of quality it can
provide for a particular request.

In our examples, and in our implementation,
we have considered timing information and
accuracy as our QoS measures. However, we
have designed the KQML extension in such a
way that other measures can be added easily.

3.2.1. Agent Message

In our RTMAS model, there are three kinds
of QoS constraints: deadline, importance, and
accuracy threshold. The QoS_requirement
parameter includes these constraint
specifications. Consider an example in the stock
trading system in which a UserAgent requests
information from another agent (TrendWatcher)
that keeps track of trends in a particular segment
of the stock market. The following example
shows how the UserAgent would ask the
TrendWatcher to report on current trends in
internet stocks within 15 seconds, providing at
least 75% accuracy.

(ask-one
:sender UserAgent
:receiver TrendWatcher
:content Watch(internet)
:QoS_requirement (dl 15,imp 4,acc 75))

Note that in our examples, we leave out
some performative parameters for brevity.

The TrendWatcher could respond to this
request with a the following message:

(tell
:sender TrendWatchingAgent
:receiver UserAgent
:content ReportTrend(35)
:QoS_requirement (dl 5,imp 4,acc 75))

This tell message expresses a QoS
parameter because agent communication is
asynchronous, and therefore all messages must
be sent explicitly. All KQML-Q performatives

may express QoS constraints in the form of the
QoS_requirement parameter, so that they
can be scheduled to meet their constraints.

3.2.2. Advertisement

Communication between agents, and from
agents to facilitators is extended to allow for
expression of QoS capabilities. Agents that
provide some services to other agents may
advertise to other agents, or to a facilitator. For
example, if an agent that can buy and sell stocks
(BuyerSeller) wants to advertise to a facilitator
that it can buy a stock with two explicit
execution strategies, one with execution time 5
seconds and 85% accuracy, the other with
execution time 2 seconds and 65% accuracy, the
advertise performative would be as follows:

(advertise
:sender BuyerSeller
:receiver Facilitator
:content BuyStock(A)
:QoS_capabilities(

(ex 5, acc 85)
(ex 2, acc 65)))

The facilitator can use this information to
match requests to buy a stock given specific
QoS specifications with this BuyerSeller agent.

4. Implementation

This section describes the implementation of
a prototype RTMAS that allows agents to
communicate through KQML-Q. The
implementation is based on the KCobalt system
[5] that maps KQML messages to CORBA
Interface Definition Language (IDL) [6].

All agents in our implementation are
represented as CORBA [6] objects whose
interface contains a method for each KQML-Q
performative. The IDL interface for an agent
object in our implementation extends the IDL of
KCobalt, and includes the following
specifications:

interface CoreS {
void askOne (in string sender,

in string receiver,
...
in string qos_Info);

... }

This segment of IDL code shows the ask-
one method of an agent object. Each other
KQML-Q performative is represented as a
method as well, with a string parameter for each
performative parameter. We have extended the
specification of each KCobalt performative
interface to provide a parameter for expression
of QoS constraints. Figure 2 displays the flow
of control in our implementation. When a real-
time agent object expresses a KQML-Q string
(1), a parser object parses the string, determines
what performative is being requested and
forwards the information to a dispatcher object
(2). Given the QoS specification in the KQML-
Q message, the dispatcher calls a scheduling
object (3) that provides real-time scheduling
parameters to the system. The scheduling object
also provides information that will be used by
the servicing agent to determine which
execution strategy will meet the QoS
specifications of the requesting agent (4).
Finally, the dispatcher calls the method
corresponding to the requested performative on
the servicing agent, with the QoS information
provided by the scheduler. Further details on
scheduling our real-time agents can be found in
[6,7].

ask-if ask-if

tell tell

schedule

Requesting
Agent
Object

Servicing
Agent
Object

Dispatcher

Scheduler

......

5

4

3

2

1

KQML-Q
string “ask…”

Parser
parse

dispatch

Figure 2 - Implementation

5. Conclusion

In this paper we have presented a way of
expressing quality of service in agent
communication. By making clear the semantics
of this expression, we were able to easily show
how the KQML language could be extended.
The semantics of QoS that we have presented
are independent of the kind of quality that is
being expressed. While we have specifically
focused on real-time characteristics to define
quality, the QoS extension to KQML is flexible

enough to be easily modified to handle any
expression of quality that is appropriate for a
particular application.

We have chosen to apply our QoS
extensions to KQML because it is a widely
accepted agent communication language that has
many current implementations. We are
confident that the spirit of this work would apply
equally well to the only other well-known agent
communication lanaguage, FIPA’s ACL [8].
While the semantics of FIPA-ACL are
somewhat different from KQML semantics, we
feel that the expression of QoS requirements and
capabilities is sufficiently straightforward to
apply to FIPA-ACL semantics as well.

References
[1] Y. Labrou, T. Finin, Y. Peng. Agent

Communication Languages: The Current
Landscape. IEEE Intelligent Systems.
March/April 1999, pp. 45-52.

[2] Y. Labrou T. Finin. Semantics for an
Agent Communication Language,
Proceedings of the Fourth International
Workshop on Agent Theories,
Architectures and Languages, Providence,
RI, July 1997.

[3] L.C. DiPippo, V. F.-Wolfe, L. Nair, E.
Hodys and O. Uvarov. A Real-Time
Multi-Agent System Architecture for E-
Commerce Applications, Proceedings of
the The Fifth International Symposium on
Autonomous Decentralized Systems,
March 2001.

[4] L. Nair, Extending ACL to Support
Communication in a Real-Time Multi-
Agent System. University of Rhode Island
Technical Report TR00-279, Dec. 2000.

[5] D. Benech, T. Desprats and Y. Raynaud.
A KQML-CORBA based Architecture for
Intelligent Agents Communication in
Cooperative Service and Network
Management. Proceedings of the
IFIP/IEEE MMNS’97, Montréal, Canada,
July 97.

[6] OMG. Common Object Request Broker
Architecture – Version 2.2. OMG, Inc.,
1998.

[7] E. Hodys. A Scheduling Algorithm for a
Real-Time Multi-Agent System.
University of Rhode Island Technical
Report TR00-275, Aug. 2000.

[8] FIPA. FIPA Agent Management
Specification [FIPA00023]. Foundation
for Intelligent Physical Agents, 2000.
http://www.fipa.org/specs/fipa00023/.

