
Real-time Method Invocations in Distributed Environments
�

Victor Fay Wolfe and John K Black Bhavani Thuraisingham and Peter Krupp

Computer Science Dept. The MITRE Corporation

University of Rhode Island Bedford, MA; USA

Kinston, RI 02881; USA fthura,pckg@mitre.org

fwolfe,blackg@cs.uri.edu

Abstract

Current distributed computing environments, such as

the Object Management Group's Common Object Request

Broker Architecture (CORBA), do not support real-time

requirements. This paper presents the syntax, seman-

tics and support for one necessary feature in a real-time

distributed computing environment: timed distributed

method invocations. It presents the general concept and

illustrates its application as an extension to CORBA.

1 Introduction

A major trend in distributed computing is inter-
est in distributed computing environments, such as
the Open Software Foundation's (OSF's) Distributed
Computing Environment (DCE) [1], the Object Man-
agement Group's (OMG's) Common Object Request
Broker Architecture (CORBA) [2], the Arjuna system
[3], and others. These environments provide a way
for heterogeneous components to interoperate in a
distributed system. Commercial distributed comput-
ing environments are adequate for applications such
as document management and �nancial record keep-
ing. However, current distributed computing environ-
ments are not well-suited for real-time applications. In
a real-time application there are timing constraints
that must be met for the application to be correct.
Automated factory control, avionic navigation, mili-
tary target tracking, and �nancial transactions are ex-
amples of such applications. These applications would
bene�t from heterogeneous component interoperabil-

�This work is partially supported by the U.S. National Sci-
ence Foundation, The U.S. O�ce of Naval Research, the U.S.
Naval Undersea Warfare Center, and The U.S. Naval Research
and Development Laboratories (NRaD). The views and conclu-
sions expressed in this paper are those of the authors and do
not reect the polciies of the MITRE Corporation.

ity provided by common distributed computing en-
vironments, if these environments could support the
real-time requirements of the applications.

Unfortunately, current commercial distributed
computing environments o�er little support for real-
time requirements. For example, the languages used
to describe interfaces to components in distributed en-
vironments, called interface design languages (IDLs),
describe the interface to the functional behavior of
distributed components, but do not explicitly describe
timing their behavior. Furthermore, system services
provided by the distributed environments o�er lit-
tle support for end-to-end real-time scheduling across
the environment. In fact, some environments do not
o�er such basic services as synchronized clocks and
bounded message latencies: these are essential in a
distributed real-time applications.

We have been studying which features must be
included in a distributed computing environment
to support real-time requirements [4]. Since most
distributed computing environments, like DCE and
CORBA, use a client/server model with a remote
procedure call (RPC) paradigm for connection, we
started by de�ning the semantics and system support
required for a timed RPC in a client/server model.
Other work has investigated the semantics of timed
synchronous communication [5, 6], but has not ad-
dressed the requirements of providing timed RPC
in distributed computing environments. This paper
presents our results including: expression of timing
constraints on RPCs, support for establishing end-
to-end timing constraints and scheduling parameters,
and a list of necessary distributed computing environ-
ment services. Although these results can be applica-
ble to general distributed computing environments,
for concreteness we chose to describe timed RPC ex-
tensions to CORBA. Since CORBA is based on an
object model, we call our timed RPC extensions timed
distributed method invocations.

2 CORBA

CORBA is designed to allow a programmer to
construct object-oriented programs without regard to
traditional object boundaries such as address spaces
or location of the object in a distributed system. That
is, a client program should be able to invoke a method
on a server object whether the object is in the client's
address space or located on a remote node in a dis-
tributed system.

Two major components of CORBA are its Ob-
ject Request Broker (ORB), and its Interface De�ni-
tion Language (IDL). The CORBA ORB essentially
enables communication between clients and remote
server object implementations. The server object's
source code implementation is the code and data that
actually implements the object. The ORB provides
all services that: locate a server object implementa-
tion for servicing a client's request; prepare the object
implementation to receive the request; and communi-
cate the data making up the request.

CORBA IDL is a declarative language that de-
scribes the interfaces to server object implementa-
tions, including the signatures of all server object
methods that are callable by clients. The IDL gram-
mar is a subset of ANSI C++ with additional con-
structs to support the method invocation mechanism.
IDL also speci�es C++-like exception raising and
handling. IDL does not provide syntax for implement-
ing methods: an IDL binding to the C language has
been speci�ed for that purpose. Other language bind-
ings are being developed.

Consider an object that acts as a shared table for
sensor data (represented as long integer values) for
clients in a distributed system. An example of simple
CORBA IDL for a sensor table object is:

interface sensor_table {

readonly attribute short max_length;

short put_data(in short index,in long data);

long get_data (in short index); }

The IDL keyword interface indicates a CORBA
object (similar to a C++ class declaration). A
readonly attribute is a data value in the object
that a client may read (the IDL compiler generates
a method for reading each attribute). The IDL exam-
ple also speci�es two methods: put data, which stores
a sensor value at a index into the table; and get data
which returns a sensor value given an index.

Client code to access a sensor table object in a
CORBA environment might look like:

server
object

IDL

header

Runtime
Libraries

Runtime
Libraries

client
stub

client
source
code

server
object

skeleton

server
source
code

client
stub

object
file

server
object
files

client
object
files

linker linker

client
binary

server
object
binary

C-compiler C-compilerC-compiler C-compiler

#include#i
nc

lu
de

IDL compiler

server
skeleton
object

file

Figure 1: CORBA IDL Compilation Process
|||||||||||||||||||||-

long retval;

sensor_table *p;

p = bind("my_sensor_table");

retval = p->get_data(500);

Here, the client declares a pointer, p to a sen-
sor table object called my sensor table. The client
then makes a call to an ORB service to locate and
bind the pointer to a reference to a remote server con-
taining the sensor table object. To retrieve a value
from the sensor table at index 500, the client issues
the method invocation: p->get_data(500) . The
sensor table server would have previously had to have
implemented and registered with the CORBA ORB.

The process of implementing a client and server ob-
ject is shown in Figure 1. The IDL speci�cation is pro-
cessed by an IDL compiler, which generates a header
�le for the CORBA object, stub code for linking into
the client, and skeleton code for the server object. The
client stub contains code that hides details of interac-
tion with the server from the client code. Client stubs
stand in for normal method calls by transparently di-
recting normal-appearing C++ method requests into
the ORB. Server skeleton code is used by the ORB in
forwarding method invocation requests to the server,
and in returning results to the client.

3 Timed Distributed Method Invoca-

tion

This section describes the basic syntax and se-
mantics of timed method invocations in a distributed
computing environment. We establish �ve forms of
client-side timing constraints: deadlines, earliest start
times, latest start times, periodic, and maximum ex-
ecution time constraints for method invocations. We
also establish server-side timing speci�cations on the
server's interface to indicate the expected execution
times of the server methods. These speci�cations can
include minimum, average, and maximum execution
time for each method. In addition, we describe an
exception mechanism to handle violations of the tim-
ing constraints. We also describe the support that
must be present in a distributed computing environ-
ment to realize these semantics. The presentation of
timed distributed method invocation is general, but
the examples are done using a CORBA environment.

3.1 Expressing Timing Constraints

To specify timing values, we take advantage of
CORBA IDL's ability to de�ne new types from ex-
isting types (typedef) to de�ne the timespec type. A
timespec is a structure with two long integer �elds:
tv_sec for seconds, and tv_nsec for nanoseconds
(it conforms to the POSIX 1003.1 standard speci�ca-
tion). The timespec type would be pre-de�ned using
a CORBA IDL typedef in the header �le produced by
the IDL compiler.

To express timing constraints for timed distributed
method invocation, we use the context declara-
tion that is native to CORBA's method declara-
tion [2]. A context is an object that the ORB at-
taches to each method invocation. The client may
add �elds and values to the context using the na-
tive CORBA set_one_value call to the ORB's
context interface. This call sets �elds in the con-
text to corresponding speci�ed values. Fields within
the context are available to the ORB and to the
server. For real-time, we establish four prede�ned
context �elds (using the CORBA naming convention):
CORBA::_after, CORBA::_before, CORBA::_by,
and CORBA::_execute. The client setting these
�elds in the context establishes timing constraints for
all subsequent method invocations. The client set-
ting the CORBA::_after context �eld expresses the
constraint that the start time of following distributed
method invocations (on the server measured by the
server's clock) must be after the time speci�ed by
the �eld. The client setting the CORBA::_before �eld

speci�es that if the distributed method invocation has
not started on the server by the time speci�ed by the
�eld (measured on the server's clock) an E START ex-
ception is raised in the client. The client setting the
CORBA::_by context �eld speci�es that if the client
has not received return values from the invocation by
the time speci�ed in the �eld (measured on the client's
clock), then an E DEADLINE exception is raised in
the client. The client setting the CORBA::_execute

context �eld speci�es that if a method invocation exe-
cutes on the server for longer than the speci�ed value,
then an E EXECUTE exception should be raised in
the client. Periodic behavior involves the client invok-
ing the same method at regular intervals. To do this,
the client can use a loop to establish a regular series
of �xed-duration time intervals called period frames,
where the beginning of period frame i is the end of
period frame i � 1. The client uses an earliest start
time to constrain the method invocation to start exe-
cuting after the beginning of its frame and a deadline
to constrain it to complete by the end of the frame.

Example Timing Constraint. Consider time-
constraining method invocations on a sensor table ob-
ject from Section 2. The IDL compiler would ensure
that the following extension is made the IDL declara-
tion:

long get_cell(...);

context (CORBA::_after, CORBA::_before

CORBA::_by, CORBA::_execute);

Note again that the context speci�cation is standard
CORBA IDL and uses the prede�ned real-time �elds.
To specify a deadline of 10 seconds from the time
the client executes the call, the client �rst executes
the standard CORBA call to set a value in the client
context:

context.set_one_value (CORBA::_by, NOW.tv_sec+10);

NOW() is a direct interface to the distributed com-
puting environment's Global Time Service which we
discuss in Section 3.2.1. NOW() returns a timespec
value representing the current time. In general, tim-
ing constraint values can be formed using arithmetic
operations, maximum functions, and minimum func-
tions involving timespec values and variables. The
client can set context values for earliest and latest
start times and worst case execution time similar to
its setting of the deadline in this example.

Server-Side Timing Speci�cations. The server
object's IDL contains server-side timing speci�cations
of execution times for its methods. In CORBA
IDL, these execution times would not require any ex-
tensions, only a programming convention that these
times be speci�ed as readonly attributes of the ob-
ject. For example, the CORBA IDL for the sen-
sor table object of Section 2 could include:

interface sensor_table
readonly timespec get_data_wc_etime;
long get_data(in short index);

which speci�es the worst case execution time for
method get data. An attribute whose name has
\wc etime" appended to an existing method name
indicates to the IDL compiler that the attribute
represents a worst case execution time for that
method. Such a name carries the semantics that
an E EXECUTE exception should be raised in the
server if the named method executes for longer than
the speci�ed time. These semantics support real-time
analysis that depends on execution times of methods.
The speci�cation of execution times as attributes also
allows the client to ascertain the timing properties
of methods before executing them. For example, the
client might want to test if there is enough time before
its deadline to execute a distributed method before it
actually calls the method. The execution time values
can be inserted by the object implementor or it may
be possible to use automated techniques to generate
them [7].

3.2 Implementing Timing Constraints

Implementing the semantics of timed distributed
method invocations imposes several requirements on
the distributed computing environment. In partic-
ular, client-side timing constraints require support
for end-to-end real-time scheduling. This support in-
volves the automatic generation of intermediate tim-
ing constraints and the use of real-time scheduling at
each step in the computing environment's distributed
method invocation sequence shown in Figure 2.

3.2.1 Required Distributed Computing Envi-

ronment Services

Distributed computing environment services are im-
plemented by cooperation among the distributed
nodes in the environment. Typical environments such
as those conforming to the current CORBA and DCE
speci�cation provide at least distributed name service

and remote procedure or method invocation. To sup-
port timed distributed method invocations, the fol-
lowing additional services are required.
Global Time Service. The computing environ-

ment must ensure that all clocks in the system are
synchronized to within an � skew of each other. This
service is provided in the DCE environment [1] and
has been proposed by the OMG for the CORBA spec-
i�cation. Clients and servers must be able to call this
service to get the \current global time".
Real-Time Scheduling of Services. It is impor-

tant that in each step of the distributed method invo-
cation real-time scheduling is used. We do not specify
this scheduling, only that it be based on a priority as-
sociated with the method invocation. A priority is an
ordinal value specifying the relative scheduling posi-
tion of a task. Most real-time scheduling algorithms
are based on priority and di�er in how that priority
is assigned. For instance, rate monotonic scheduling
assigns higher priorities to tasks with shorter peri-
ods. Earliest-deadline-�rst (EDF) scheduling assigns
higher priorities to tighter deadlines [8]. Real-time
requires that execution at each step in a distributed
method invocation have an associated priority and
that scheduling decisions, such as all queueing of ser-
vice requests, enforce priority ordering.
Global Priority Service. In order for prior-

ities to be consistent relative to all other requests
in the distributed environment, the priority must
be assigned globally. That is, a priority must be
relative to all other tasks in the distributed envi-
ronment. To establish such priorities, the environ-
ment must provide a Global Priority Service that ac-
cepts implementation-de�ned parameters for a task
and returns a globally-relative priority value. For in-
stance, an environment may implement EDF schedul-
ing across its distributed system. In this case, the
Global Priority Service would accept a task's dead-
line and return a priority that ensures that the task
will receive all services before other tasks with looser
deadlines.
Bounded Message Latency. The remote

method invocation service of the environment must
ensure a worst case bound of � for the time it takes
from sending of a message to the time the message
arrives in the receiver's message bu�er. This bound
is necessary for establishing intermediate timing con-
straints, as discussed later.

3.2.2 Client Compilation

Let us examine what a CORBA IDL compiler for a C
or C++ language client on POSIX-compliant operat-

stub stub stub skeleton skeleton

client server

tim
e

se
rv

ice

pr
ior

ity
 se

rv
ice

na
m

e
se

rv
ice

method invocation up-call

send return valuesreceive return values

CORBA ORB pr
ior

ity
 se

rv
ice

Figure 2: Typical Method Invocation Steps
||||||||||||||||||||{

ing system could produce for a the method get data
in our example. First, the IDL compiler would insert
into the stub a call to the distributed environment's
Global Priority Service to establish the priority of
the client's method invocation request. Most likely,
the input parameters to this Global Priority Service
request would involve parameters from the real-time
part of the client's context.

If the CORBA::_AFTER context �eld is set with
time ta, then the ORB communicates this context
�eld to the server. The server then must delay (e.g.
sleep) until its interpretation of ta. The IDL com-
piler inserts client code into the stub that recognizes
a CORBA::_BEFORE �eld set to value tbef . This stub
code requests a POSIX alarm at time tbef + �. The
IDL compiler also inserts stub code, after the code
that sends a request message to the server, to wait for
an acknowledgement from the server that the method
invocation was started. The � term allows for the mes-
sage latency of the acknowledgement from the server
to the client. Upon receiving the acknowledgement,
the code inserted into the stub cancels the alarm. If
the alarm is triggered before the acknowledgement ar-
rives, the alarm sends a signal causing the client to
raise the E START exception. The IDL compiler in-
serts stub code that recognizes that the CORBA::_BY

ag is set to time tby. This stub code sets an alarm
at time tby. The IDL compiler also inserts stub code
such that if the return message from the method in-
vocation is received before t, the alarm is cancelled.
Otherwise, the alarm sends a signal that raises an
E DEADLINE exception in the client. The ORB
passes the CORBA::_execute value to the server.
The server sets a virtual timer (a POSIX capabil-
ity that measures time on the CPU) that expires at
the maximum speci�ed execution time and sends an
E EXECUTE exception to the client.

3.2.3 Server Compilation

Timed distributed method invocation requires that
skeleton methods produced for the server by the IDL
compiler also support acceptance of the client's timing
constraints. For a client's latest start time constraint
sclient, recall that the client needs an acknowledge-
ment that the method has started by sclient + � on
the client's clock. The server uses the latest start
time constraint: sserver = sclient � � to pessimisti-
cally allow for an � clock skew between itself and the
client. For a deadline constraint dclient, recall that
the return message must be received by the client at
dclient measured on the client's clock. The server uses
the deadline dserver = dclient���� to pessimistically
allow for � message delivery time and an � clock skew.

For worst case method execution times (speci�ed
in the IDL by appending \wc etime" to a method
declaration), the IDL compiler inserts code into the
skeletons to set a virtual timer which would raise the
E EXECUTE exception in the server if it executes too
long.

3.2.4 Example Timed Method Invocation

Consider the earlier example of making a call to re-
trieve data from the sensor table within a 10 second
deadline. After the sensor table object is processed by
the IDL compiler, the client is compiled in its host lan-
guage and linked with the IDL-produced stubs. The
server code is written and compiled for its skeletons.
The server is then executed, registered with the ORB,
and awaits requests.

Assume that the client's get data call is initiated
at time 10:00, the environment's clock skew � is
0.1sec, the environment's maximum message latency
is 0.2sec and the client for get data establishes the
deadline CORBA::_by as 10:00:10 in its context. The

stub code establishes the client's priority, based on
CORBA::_by, by making a call to the ORB's Global
Priority Service. The local operating system sched-
uler uses this priority to schedule the client's execu-
tion during the method invocation of get data. In
addition, all subsequent calls to the ORB, such as
locating the server by name, use the client's prior-
ity when handling requests. The ORB (actually the
stub code) places the context containing the deadline
along with the actual parameter value (500) into the
message that it sends to the server. The client's stub
code also sets an alarm for its deadline at 10:00:10.
The ORB uses the native network protocol (with the
client's priority, if priority is supported in the network
protocol) to transmit the message to the server's mes-
sage bu�er.

Assume that server receives the message at time
trecv = 10:00:00:2 (after the maximum message la-
tency � = 0:2). When the server receives the message,
it uses the time dserver = (CORBA::_by �� � �) =
10:00:10� 0:2� 0:1 = 10:00:09:7 to establish its local
deadline. The server uses dserver to call the Global
Priority Service to set its priority. This priority is
used both in scheduling the server on its local node
and for handling server requests for ORB services.
The server then executes the skeleton method for
get data, which in turn makes the up-call to execute
the actual get data method on the sensor table object.
Upon completion of the get data method invocation,
the skeleton code for get data sends a return message
to the client. When the return message arrives at
the client, the client disables the alarm it had set for
deadline 10:00:10. If the message does not arrive by
10:00:10, the alarm signal raises the E DEADLINE
exception in the client.

4 Conclusion

This paper has presented the syntax, semantics,
and system support required for timed distributed
method invocation { an important �rst step to realiz-
ing support for real-time requirements in distributed
computing environments. We used the CORBA dis-
tributed computing environment as an example.

The current CORBA speci�cation does not have to
be altered, just augemented. A CORBA implemen-
tation's IDL compiler must be capable of producing
stub and skeleton code that can handle timing block
semantics. A real-time extension to CORBA must
mandate a Global Time Service and Global Prior-
ity Service from its ORB. It further must mandate
priority-based scheduling for all resource contention

and bounded maximum message delays from its im-
plementations.

There are many further extensions to distributed
computing environments that would facilitate sup-
porting real-time requirements. These include real-
time concurrency control of method execution on
server objects, hard guarantees of service times across
the environment, guarantees of minimal inter-arrival
time for server requests, interface-level support for
multi-threading, and a global event service to pro-
vide a repository of times of occurrence for globally-
named events (to allow speci�cation of timing con-
straints relative to these events). We are currently
studying these issues. We have also initiated e�orts to
form a special interest sub-group of the OMG to study
incorporation of real-time features into the CORBA
speci�cation.

References

[1] Open Software Foundation, Introduction to OSF

DCE. Prentice Hall, 1992.

[2] Object Management Group, The Common Request

Broker Architecture. X/Open, 1992.

[3] S. K. Shrivistava, G. N. Dixon, and G. D. Parring-

ton, \An Overview of Arjuna: A Programming Envi-

ronment for Reliable Distributed Computing." IEEE

Software, vol. 8, no. 1, pp. 63-73, January 1991.

[4] P. Krupp, A. Schafer, B. Thuraisingham, and

V. F. Wolfe, \On real-time extensions to the com-

mon object request broker architecture," in Proceed-

ings of the Object Oriented Programming, Systems,

Languages, and Applications (OOPSLA) '94 Work-

shop on Experiences with the Common Object Request

Broker Architecture (CORBA), Sept. 1994.

[5] I. Lee and S. Davidson, \Adding Time to Syn-
chronous Process Communications," IEEE Transac-

tions on Computers, August 1987.

[6] T. Baker and O. Pazy, \Real-time features for Ada

9x," in IEEE Real-Time Systems Symposium, Dec.

1991.

[7] W. Pugh and T. M. (Editors), Proceedings of the

ACM SIGPLAN workshop on language, compiler and

tool support for real-time systems. ACM SIGPLAN,

1994.

[8] C. L. Liu and J. W. Layland, \Scheduling algorithms

for multiprogramming in a hard-real-time environ-

ment," Journal of the ACM, vol. 20, pp. 46{61, 1973.

