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Abstract

This paper presents two concurrency control protocols for real-time object-oriented systems. One of
the protocols (A�ected Set Priority Ceiling Protocol) is designed for single-node systems, and the other
(Distributed A�ected Set Priorityt Ceiling Protocol) is designed for distributed systems. Both protocols
combine features of semantic concurrency control for added concurrency, with priority ceiling techniques
for deadlock prevention and bounding priority inversion. This paper demonstrates the properties of
increased concurrency, deadlock prevention, and bounded priority inversion of both protocols. It also
describes, for each of the new protocols, an implementation that demonstrates its usefulness in real-time
object-oriented systems.

1 Introduction

The advent of real-time object-oriented (RTOO) systems, such as Real-Time CORBA (RT CORBA) middle-

ware [11, 7] and RTOO databases [4], poses the need to control concurrent access to objects under real-time

requirements. In a real-time database, the concurrency control technique manages concurrent access by

transactions to data objects. In a CORBA system, the middleware must control concurrent access by

remote clients to CORBA objects.

Concurrency control techniques for RTOO systems must satisfy more requirements than traditional non-

real-time concurrency control techniques because they must also meet timing constraints. Among the most

important traditional non-real-time requirements are that the technique provides: high concurrency to max-

imize average throughput; deadlock treatment that either prevents, avoids, or breaks deadlocks; and logical

consistency, such as mutual exclusion or serializability, so that all constraints on the values of object at-

tributes are met. In real-time concurrency control, there are similar requirements, along with the requirement

that the technique should support predictable execution, such as bounded blocking times for locks. Provid-
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ing predictable blocking times involves, among other things, bounding priority inversion that occurs when

a lower priority task blocks a higher priority task [8].

In this paper we describe two new techniques for concurrency control in RTOO systems: one for single-

node RTOO systems, such as real-time databases; and one for distributed RTOO systems, such as RT

CORBA middleware. Both techniques are based on the priority ceiling (PCP) family of protocols [8]. Our

single-node RTOO concurrency control technique is called the A�ected Set Priority Ceiling Protocol (ASPCP)

[9, 10], and the multi-node technique is called the Distributed ASPCP (DASPCP).

Both protocols use PCP techniques while exploiting the semantics of the object-oriented paradigm. They

do this through method-level locking, where a transaction or client locks a particular method on an object.

Method locking is a �ner granularity of object lock than exclusive locking, where the transaction/client locks

the entire object exclusively; or read/write locking, in which the transaction/client locks the ability to read

or write the entire object. Our protocols are a form of semantic real-time object-based concurrency control

[4] that uses the semantics of the object to determine the compatibility of method locks. In particular, these

two protocols use the semantics of the a�ected sets of methods [2] to determine the compatibility of method

locks. The result is a pair of protocols that, like the other PCPs, prevent deadlock and bound priority

inversion [8], and do so while allowing more potential concurrency in RTOO systems than other PCPs.

We have designed implementations that use each of the ASPCP protocols. We have implemented a

prototype system designed to test the performance of the ASPCP against other single-node PCPs. The

prototype places real-time objected-oriented database objects in shared main memory for predictable access

of data by transactions. The results of the performance tests are presented in Section 3. We have developed a

technique for analyzing the schedulability of RT CORBA systems that use the DASPCP. We have extended

the implementation of the PERTS (Prototyping Environment for Real-Time Systems) [5] real-time analysis

tool to accept RT CORBA constructs as input, and to analyze the system using the DASPCP.

Section 2 presents the RTOO model that we assume. It also summarizes the original work on single-node

and distributed PCP techniques to establish the framework for our techniques. Section 3 presents our ASPCP

protocol for single-node RTOO systems, such as real-time object-oriented databases. Section 3 also shows how

the ASPCP can lower priority ceilings for objects and therefore increase potential concurrency compared to

the original PCP techniques. Furthermore, the section shows that ASPCP still prevents deadlock and tightly

bounds priority inversion. Section 3 also describes the prototype in which the ASPCP has been implemented,

and the performance tests that compare the ASPCP to other single-node PCP techniques. Section 4 presents

the DASPCP for distributed RTOO systems, such as RT CORBA middleware. Like Section 3, this section

demonstrates DASPCP's increased potential concurrency and maintenance of deadlock freedom and priority

inversion bounds. Section 4 also describes how we have modi�ed the PERTS real-time analysis tool to model

and analyze a RT CORBA system under the DASPCP. Section 5 summarizes.
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2 Background

Previous work in object-based semantic real-time concurrency control [4] and in priority ceiling protocols [8]

has led to our development of the A�ected Set Priority Ceiling Protocols. Our previous work in semantic

concurrency control [4] indicates that using object semantics to increase concurrency in a real-time database

can enhance real-time performance. However, in general, the semantic concurrency control techniques can be

complex and do not necessarily bound priority inversion nor prevent deadlock. Fortunately, priority ceiling

protocols have been proven to bound priority inversion and prevent deadlock [8] in certain systems. By

combining object semantics with priority ceiling techniques, we developed the ASPC protocols presented in

this paper.

This section �rst describes the model of RTOO systems that we assume and also indicates how the model

supports semantic real-time concurrency control for object-oriented systems. We then summarize previous

work by Rajkumar, Sha, et. al, in developing the priority ceiling protocol and the distributed priority ceiling

protocol - both of which provide the framework for our object-based ASPC protocols.

2.1 Real-Time Object-Oriented System Model

A RTOO system consists of objects, some of which manage shared resources. The model of a real-time object

that we use in this paper is derived from the RTSORAC model [4] for real-time object-oriented databases.

Our RTOO system object model extends the traditional object-oriented notion of an object to include

attributes that have a value, a timestamp and an amount of accumulated imprecision. The imprecision that

is recorded accumulates due to the potential relaxation of serializability by semantic concurrency control

[4]. Objects also include constraints and a compatibility function. The constraints can be placed on the

attributes to express logical and temporal correctness of the object.

The user-de�ned compatibility function determines how the methods of the object may interleave. It

is through this function that the object designer expresses the semantics of allowable concurrency. The

exibility of the compatibility function allows the object designer to specify di�erent levels of concurrency

for di�erent objects. For instance, one object may require serializability, while another object may tolerate

a less restrictive form of correctness. To enforce serializability the object designer may use a�ected set

semantics [2] to determine compatibility. A method's Read A�ected Set (RA) is the set of the object's

attributes that the method reads. A method's Write A�ected Set (WA) is the set of the object's attributes

that the method writes. Under a�ected set semantics, two methods m1 and m2 are compatible if and only

if:

(WA(m1) \WA(m2) = ;) ^ (WA(m1) \RA(m2) = ;)^

(RA(m1) \WA(m2) = ;)

Note that de�ning lock compatibility based on these a�ected set semantics has been proven to produce

serializable object schedules [2].
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A less restrictive form of correctness may be needed to express the trade-o� between temporal and

logical consistency. In such cases, the semantics of compatibility between methods are based on dynamic

information, including current temporal consistency and imprecision of data. For example, if a method m1

that reads an attribute a is currently executing, it would violate the logical consistency of m1's return value if

another method m2 that writes a were to execute. However, if the timing constraint on a has been violated,

i.e. it has become old, then allowing m2 to execute would restore the temporal consistency of a. When

determining each potential allowable interleaving of method executions, the compatibility function can also

examine the amount of imprecision that could be introduced by the possible interleaving.

We developed a semantic locking concurrency control technique [4] that utilizes the full semantics of the

compatibility function to express the trade-o� between temporal and logical consistency. It has been shown

to bound the imprecision that is accumulated due to non-serializable method interleavings [4]. While this

semantic locking concurrency control technique provides the potential for increased concurrency for meeting

more transaction deadlines, it su�ers from unbounded priority inversion and the possibility of deadlock, both

of which can a�ect the system's predictability and its ability to meet timing constraints.

2.2 Priority Ceiling Protocols

A priority ceiling protocol [8] uses information about the way in which transactions intend to use the

resources of the system to bound priority inversion and to prevent deadlock. It is based on the assumption

about the system that every object and every transaction in the system is known a priori. Thus, no dynamic

information may be used to determine the semantics of concurrency control.

There are three basic steps to any of the priority ceiling protocols:

1. Before running, the protocol de�nes a priority ceiling for each critical section that may be locked. The

granularity of these critical sections is the core di�erence among the various priority ceiling protocols.

2. At run-time, when a transaction T requests a lock, the lock can be granted only if T 's priority is strictly

higher than the ceiling of locks held by all other transactions.

3. If transaction T 's lock request is denied because Tlow (a lower priority transaction) holds a lock with

priority ceiling equal to or greater than T 's priority, Tlow inherits the priority of T until Tlow 's lock is

released.

Note that no checking of conict is necessary when granting a lock. This is because conict in a priority

ceiling protocol is captured in the de�nition of the priority ceiling.

Each of the protocols from Rajkumar, Sha et al. that we describe below follow these basic steps. The

di�erence among them arises in how conict is de�ned among locks and thus, how priority ceiling is de�ned.

We will describe how priority ceiling is de�ned in each protocol.
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The Basic Priority Ceiling Protocol. In the basic priority ceiling protocol (BPCP) [8], exclusive locks

are placed on entire objects. Thus, the critical section requires a lock on the entire object. The priority

ceiling of a lock is de�ned as the priority of the highest priority transaction that will ever use this lock. A

transaction T can lock a critical section only if it passes the test of Step 2 (above): The priority of transaction

T must be strictly higher than the priority ceiling of locks held by all other transactions.

The Read/Write Priority Ceiling Protocol. In a database that allows select, insert, and update

functionality, a division can be made between read and write operations. Instead of acquiring an exclusive

lock on an entire object, a transaction can request read and write locks. Bounding priority inversion and

preventing deadlock with read/write locking has been addressed by the read/write priority ceiling protocol

[8].

In the Read/Write priority ceiling protocol (R/W PCP), since each object can allow both readers and

writers, each object requires two static priority ceilings, and the system dynamically determines which of

these two priority ceilings to use as the overall read/write priority ceiling for the object as follows:

1. The write priority ceiling is set equal to the highest priority transaction that will ever write the object.

2. The absolute priority ceiling is set equal to the highest priority transaction that will ever read or write

the object.

3. The read/write priority ceiling is set at run-time. If a transaction is allowed to read an object, the

read/write priority ceiling is set equal to the write priority ceiling. If a transaction is allowed to write

an object, the read/write priority ceiling is set equal to the absolute priority ceiling.

In the R/W PCP, a critical section is a read/write lock. A transaction T can lock a critical section only

if it passes the following test:

The priority of transaction T must be strictly higher than the read/write priority ceiling of locks

held by all other transactions.

2.3 Distributed Priority Ceiling Protocol.

The Distributed Priority Ceiling Protocol (DPCP) [8] allows tasks to lock objects on remote nodes.

DPCP Terminolgy and Assumptions. An object lock that is accessed by tasks from remote processors

is referred to as a global lock. If the lock is accessed only by tasks on its node, it is referred to as a local lock.

A critical section guarded by a global lock is referred to as a global critical section (GCS). A critical section

guarded by a local lock is referred to as a local critical section (LCS). A task T executes its non-critical-

section code and LCS's on its host processor. A task's GCS's may be bound and executed on a processor(s)

di�erent than the task's host processor. All GCS's that are controlled by the same lock must be bound to
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the same processor. DPCP prohibits a mixed nesting of LCSs and GCSs, and GCSs at di�erent nodes within

a task.

DPCP Priority Ceiling. The base priority ceiling, PG, is a �xed priority, greater than or equal to the

priority assigned to the highest priority task in the system (in the examples of this paper we will make PG

equal to the highest priority of a task in the system). The priority ceiling of a local lock is the highest

priority of all tasks that access it. The priority ceiling of a global lock is the highest priority of all tasks that

access it plus PG.

DPCP Priority Assignment. A GCS that is generated by task T , is assigned a priority equal to the

sum of the base priority ceiling PG and the priority of T .

Priority Ceiling Protocol. Each processor runs the priority ceiling protocol on the LCSs and GCS's by

considering each thread of execution for executing a GCS as a \task". While executing a GCS on another

node, a task preempts itself on its own node, allowing other tasks to execute.

DPCP Example. The DPCP is a complicated protocol with many cases to consider. The following

example shows some of the cases. For a more detailed example of the application of DPCP, we refer reader

to Rajkumar's work [8].

Consider a distributed system with two nodes. The application consists of three tasks and two objects

(Otrack1 and Otrack2), guarded by 2 locks (L1 and L2). Task T3 is bound to Node 1, while tasks T1 and

T4 are bound to Node 2 (we have no task T2 in this example, we introduce a task T2 later in the example

in Section 3). Pi is the priority of task Ti. In our notation, the higher the Task's subscript, the higher its

priority so P1 < P3 < P4.

In the example, tasks T1, T3 and T4 execute the following sequence of steps.

T1 : ... O_track2->read_speed ...

T3 : ... O_track1->write_speed ...

T4 : ... O_track1->read_altitude...

O_track2->read_depth

Object Otrack1 and its lock L1 are bound to Node 1. Object Otrack2 and its lock L2 are bound to Node

2. The priority ceilings of each lock, and the normal execution priority of each critical section thread are

listed in the tables of Figure 1.

The following execution sequences demonstrate several aspects of the DPCP including priority inheritance

and several forms of blocking of higher priority tasks by lower priority tasks.

� At time t0, task T1 arrives on Node 2 and begins execution. Similarly, task T3 begins execution on

Node 1.
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Priority Ceilings of Locks

Lock PC

L1 (Global) 4 + 4 = 8

L2 (Local) 4

Normal Execution Priorities of CSs

Task CS Lock Priority

T1 L2 1

T3 L1 3 + 4 = 7

T4 L1 4 + 4 = 8

L2 4

Figure 1: Priority Ceilings and Execution Priorities In DPCP Example

� At time t1, task T1 gets local lock L2 on Node 2 and begins execution of LCS at its normal execution

priority of P1. Task T3 gets the global lock L1 on Node 1 and begins execution of its GCS at its normal

execution priority of P3 + PG.

� At time t2, task T4 arrives on Node 2 and preempts T1. Task T3 continues its execution of its GCS on

Node 1.

� At time t3, task T4 requests global lock L1. Since the priority of T4's GCS (4 + 4 = 8) is not greater

than the priority ceiling of the held lock L1 (8), T4 is blocked and T3 continues its GCS execution at

the inherited priority of 4 + 4 = 8. Task T1 resumes its execution of its LCS at Node 2.

� At time t4, task T3 completes the execution of its GCS, releases global lock L1, and resumes its own

priority. Task T4 gets global lock L1 on Node 1 and begins execution of its GCS at its normal execution

priority of 4 + 4 = 8. Task T3 is preempted by the higher priority T4's GCS. Task T1 continues the

execution of its LCS at Node 2.

� At time t5, task T4 completes the execution of its GCS and releases global lock L1. Task T3 resumes

its execution on Node 1. T4 attempts to get lock L2. However, the priority of T4 (4) is not greater

than the priority ceiling of the held lock L2 (4), so T4 is blocked and T1 continues its execution with

inherited priority of 4.

� At time t6, task T1 completes the execution of its LCS and releases the lock L2 and resumes its own

assigned priority of 1. Task T4 gets the local lock L2 on Node 2 and begins its execution.

� On completion of execution of task T4 at t9, task T1 resumes its execution; it and T3 complete later.

Note the blocking and priority inheritance that occurred at times t3 and t5. Although the DPCP intro-

duces new sources of blocking [8], for each source that was not present in the PCP protocols, Rajkumar has

shown that the blocking is �nite and that DPCP prevents deadlock [8].
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Object Otrack1

method read speed write speed read altitude write altitude

read speed YES NO YES YES

write speed NO NO YES YES

read altitude YES YES YES NO

write altitude YES YES NO NO

Object Otrack2

method read speed read depth write speed depth

read speed YES YES NO

read depth YES YES NO

write speed depth NO NO NO

Figure 2: A�ected Set Compatibilities in Example Objects

Summary of Previous PCPs. In this section we have summarized how the BPCP and the DPCP work

by placing a single ceiling on an entire object, thereby placing an exclusive lock on that object. The R/W

PCP places two ceilings on an object, thus allowing many readers to an object at any given time and limiting

access to only one writer. In the next section we describe how we have introduced a�ected set semantics

to improve concurrency in a single-node object-oriented system by placing multiple priority ceilings on each

object - one for each method. Section 4 then describes how we do the same in a distributed system.

3 A�ected Set Priority Ceiling Protocol.

This section describes the A�ected Set Priority Ceiling Protocol (ASPCP), which uses the a�ected sets [2]

of each method of an object to determine the compatibilities of the methods of the object, which in turn

establishes priority ceilings for each method.

Using a�ected set semantics, the critical section requires a method lock. Thus, the ASPCP assigns a

conict priority ceiling to each method of each object:

The conict priority ceiling of a method m is the priority of the highest priority transaction that

will ever lock a method that is not compatible with method m; where compatibility is de�ned by

a�ected set semantics.

In order to determine the priority ceilings used in the ASPCP, the following four sub-steps to Step 1 in

Section 2.2 must be performed:

1a Determine the read/write a�ected sets for each method.
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1b Determine the compatibilities of the methods using the a�ected sets.

1c Determine the highest priority transaction that will access each method.

1d Determine the conict priority ceiling for each method using the information from Steps 2 and 3.

At run-time, the priority ceilings are used the same way as in the BPCP and the R/W PCP: The ASPCP

allows a transaction T to receive a lock on a method if and only if the priority of transaction T is strictly

higher than the conict priority ceiling of locks held by all other transactions.

3.1 ASPCP Example

Consider how the ASPCP works in the following example of a tracking real-time object-oriented database

with two data objects Otrack1 and Otrack2:

Object Otrack1 :

Attribute speed;

Attribute altitude;

method read_speed(); /* RAS = speed */

method write_speed(); /* WAS = speed */

method read_altitude(); /* RAS = altitude */

method write_altitude(); /* WAS = altitude */

Object Otrack2 :

Attribute speed;

Attribute depth;

method read_speed(); /* RAS = speed */

method read_depth(); /* RAS = depth */

method write_speed_depth(); /* WAS = speed, depth */

PC Step 1a establishes the read a�ected sets (RAS) and write a�ected sets (WAS) of each method, which

are also shown with the objects above. For simplicity, these objects were de�ned to have distinct read and

write methods. However, methods are not restricted to this behavior. They can be any user-de�ned method

on the object. Notice that object Otrack1 has separate methods to write each attribute, while Otrack2 has a

method that writes to two attributes.

PC Step 1b establishes the method compatibilities using a�ected set semantics. These method compati-

bilities are expressed in the table of YES and NO values of Figure 2. Notice in the table that using a�ected

set semantics, two methods may interact concurrently if they are only reading attributes, or if they are

accessing di�erent attributes. Also notice that methods that write to the same attributes may not execute

concurrently.
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Object Otrack1

method ! read speed read altitude write speed write altitude

Highest Priority Transaction T1 T4 T3 T3

Conict Priority Ceiling 3 3 3 4

R/W Priority Ceiling Abs. PC = 4 Write PC = 3

Original Priority Ceiling 4

Object Otrack2

method ! read speed read depth write speed depth

Highest Priority Transaction T1 T4 T2

Conict Priority Ceiling 2 2 4

R/W Priority Ceiling Abs. PC = 4 Write PC = 2

Original Priority Ceiling 4

Figure 3: Priority Ceilings in Tracking Example

To establish the conict priority ceilings, the transactions must be examined. Consider four transactions,

T1, T2, T3, and T4, where the transaction's subscript indicates its priority (1 = lowest, 4 = highest). The

transactions share objects Otrack1 and Otrack2 as follows:

T1 : ... O_track2.read_speed ...

O_track1.read_speed ...

T2 : ...O_track1.write_speed ...

O_track2.write_speed_depth ...

T3 : ...O_track1.write_speed ...

O_track1.write_altitude ...

T4 : ... O_track1.read_altitude...

O_track2.read_depth ...

PC Step 1c establishes the highest priority transaction that will invoke each method. PC Step 1d uses

this information to determine the conict priority ceiling for each method. Figure 3 shows the results of PC

Steps 1c and 1d for our example. For comparison, it also displays the priority ceilings that would be used by

the previous priority ceiling protocols. The determination of the conict priority ceiling of object Otrack1's

method read altitude requires identifying all methods in the compatibility table that conict with it. From

Figure 2 we see that only the write altitude method conicts with read altitude. The conict priority ceiling

of read altitude is therefore set to the priority of the highest priority transaction that will use write altitude,

which is 3. The other conict priority ceilings are set in a similar way.

Figure 4 shows one possible concurrent execution of the transactions using each of the three PC protocols.

In all three executions, at time t0, T1 starts executing, and at time t1, is granted a lock, since no other

transactions currently hold locks. T2 enters the system at time t2 and preempts T1 from the CPU. At time

t3, T2 attempts to acquire a lock. In all three cases, T2 is denied the request since its priority is not greater

than the priority ceiling of the lock held by T1. Note that this prevents a possible deadlock from occurring
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Time

T1

T2

T3

T4

Time

T1

T2

T3

T4

Time

T1

T2

T3

T4

lock Otrack2
lock Otrack1

release locks

lock Otrack1

A: Original
PC

Protocol

B: Read/Write
PC

Protocol

C:  ASPC
Protocol

read lock Otrack2
write lock Otrack1

release lock

read lock Otrack1

lock Otrack2.read_speed
lock Otrack1.write_speed

lock Otrack1.read_altitude

0   1    2    3   4    5    6   7    8 

0   1    2    3   4    5    6   7    8 

0   1    2    3   4    5    6   7    8 

= executing
no locks

= executing
with locks

= blocked

Figure 4: Executions of the Example Transactions Under the Three Priority Ceiling Protocols

between T1 and T2. At this point, the three protocols begin to di�er in their executions, due to the di�erent

ceilings that they use. The BPCP (part A) continues to prevent higher priority transactions from acquiring

locks until T1 releases its locks at time 8. The R/W PCP (part B) and the ASPCP (part C) allow T3 to

acquire its lock at time 5, because T3's priority is greater than the ceiling of lock held by T1 (that lock's

priority ceiling is 2). When the highest priority transaction, T4, enters the system and tries to acquire a lock

at time 7, it is blocked in the BPCP and in the R/W PCP. On the other hand, the ASPCP allows T4 to

acquire the lock.

3.2 ASPCP Properties

As with the previous priority ceiling protocols, the ASPCP bounds priority inversion, prevents deadlock,

and produces serializable schedules of object operations. Here we present informal proofs of these claims,

which are based on the analogous proofs of the BPCP. Notice that the proofs do not rely on how the priority

ceilings are determined, and so the more formal proofs found in [8] apply to the ASPCP as well.

Deadlock Prevention.

Theorem 3.1 The ASPCP prevents deadlock.

Proof: Informally, our proof of deadlock prevention is based on the fact that the proofs of deadlock prevention

for PC protocols in [8] do not rely on how the priority ceilings are determined. Therefore, with minor

adjustments for terminology, a similar proof to those given in [8] proves that the ASPCP prevents deadlock.
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Basically, since the ASPCP orders the locks, and maintains this order using PC Step 2, a circular wait cannot

occur. Since a circular wait is one of the necessary conditions for deadlock in lock-based systems such as we

have described, deadlock cannot occur using the ASPCP. The complete proof for deadlock prevention in the

ASPCP is given in [9]. 2

Bounded Priority Inversion.

Theorem 3.2 Under the ASPCP, a transaction T can be blocked by at most a critical section of one lower

priority transaction.

Proof: The proofs of bounded priority inversion in the other PC protocols given in [8] rely on PC Step 2

and PC Step 3 (see Section 2.2), which are common to all priority ceiling protocols, including the ASPCP.

Again, since the proofs given in [8] do not rely on how the priority ceilings are determined, this proof is

similar to those proofs. The complete proof for priority inversion bound using the ASPCP is given in [9]. 2

Increased Potential Concurrency. The example of Figure 4 shows how the ASPCP lowers ceilings,

which reduces blocking and increases concurrency.

Theorem 3.3 The ASPCP never decreases concurrency compared to the basic PCP technique.

Proof: The priority ceiling used by the PCP is the maximum of the conict priority ceilings of the ASPCP.

Since lower priority ceilings can only mean less blocking time, concurrency can only increase when ASPCP

is used instead of PCP. 2

Serializable Execution.

Theorem 3.4 The ASPCP enforces serializable schedules of method operations for each object.

Proof: Under any PCP, a concurrent access is allowed only if the requesting transaction has a priority higher

than the priority ceiling of all held locks. In the ASPCP the priority ceiling of a lock is determined by the

priority of transactions accessing conicting locks. Thus, a lock will not be granted if a conicting lock is

currently held. Badrinath and Ramamritham showed that by de�ning conict using a�ected set semantics,

an object is ensured a serializable schedule of method operations [2]. Thus, since ASPCP de�nes conict with

a�ected set semantics and denies conicting locks, it produces a serialable schedule of method operations on

each object. 2

Note that the above theorem discusses serializability of method operations within an object, and not the

more global notion of transaction serializability. Two-phase locking of method locks can be used to ensure

transaction serializability.

3.3 Implementation

The Prototype System. The ASPCP was designed and implemented as part of a prototype real-time

data manager developed at MITRE [9]. This implementationwas used as a testbed for evaluating the ASPCP.

The data manager design includes a meta data manager, a transaction manager, and an object manager.

The data manager in this prototype is responsible for controlling the concurrent access of the objects in the
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database. The meta data manager stores and controls access to the meta data for all of the objects and

transactions in the database. The transaction manager, which was modeled after the ASSET [3] design, uses

the meta data manager to determine the concurrent interaction of transactions. The object manager stores

and retrieves objects from the database. The prototype was developed on 486DX2 66 computers running

the Lynx 2.3 operating system.

Objects and the meta data manager are implemented in shared memory. Since the ASPCP requires a

priori knowledge of the objects and transactions, the objects and object meta data structures are statically

instantiated in shared memory. In addition, all structures used by the meta data manager are placed in

shared memory at this time.

Objects in the system are C++ classes derived from a base class that contains �elds required for all

objects, such as the number of attributes and number of methods. The objects attributes and meta data are

stored in shared memory. Its methods are compiled into the transactions that accesses it.

Transactions in the prototype are C++ programs that execute as threads. Before executing a method, a

transaction must request a method lock. The request is either granted or denied based on the execution of

the ASPCP. If the request is granted, the transaction is given a shadow copy of the attributes in the shared

object that are speci�ed by the requested methods read/write a�ected sets. Once the method or methods

have �nished, the transaction releases the lock, but must commit any writes if the changes are to be reected

in the shared memory object. Each transaction has access to the transaction manager instantiated in the

process, and thus has access to the shared memory objects.

The meta data manager has as private members, a hash table for transaction descriptors (TDs), an array

of object descriptor (OD) pointers (one for each object in shared memory), a priority queue for granted

requested locks (GRL), and a last-in-�rst-out (LIFO) list for pending transactions (PTL). The meta data

manager also has a mutex and condition variable which are used to control access to the meta data.

The transaction manager, implemented as a C++ class, uses the priority ceiling protocol to control the

concurrent execution of the transactions. The class has a private meta data manager, which allows the

transaction manager access to the shared memory objects. The request lock and release lock methods of

the transaction manager execute the a�ected set priority ceiling protocol.

ASPCP Implementation. The a�ected set priority ceiling protocol was implemented as part of the data

manager. Each object sets a conict priority ceiling for each method. The constructor of the OD class

uses the read/write a�ected sets and an array of priorities of transactions that call the objects methods

to calculate the priority ceilings. The method conict priority ceilings are calculated by comparing both

the RAS and WAS of each method against the RAS and WAS of all methods in the object. The ceilings

are stored in a priority ceiling array in the object's meta data. The pseudocode for calculating the conict

priority ceilings is shown in Figure 5.

The request lock and release lock public member functions of the transaction manager class execute the
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while ( n < number of methods )

priority ceiling of method[n] = -1

while ( m < number of methods )

term1 = method[n].WAS intersect ( method[m].RAS union method[m].WAS )

term2 = method[n].RAS intersect method[m].WAS

if ((term1 OR term2) AND (PC of method[n] < hi_prio_txn_array[m]))

PC of method[n] = hi_prio_txn_array[m]

end inner while.

end outer while.

Figure 5: Pseudocode for Calculating the Conict Priority Ceiling

Lock the mutex.

if ((the running transaction's id == the GRL transaction's id) OR

(the running transaction's priority > the GRL priority ceiling ))

// grant the lock.

Enqueue the lock request descriptor (LRD) in the GRL queue.

else {

Place the running transaction's TD in the PTL.

Store blocking trans's current prio in this TD's blockers_prio field.

Raise the priority of the blocking transaction.

Wait on a condition variable. // implicit unlock of the mutex.

// suspend until awakened.

}

Unlock the mutex.

Figure 6: Pseudocode for Requesting a Lock

a�ected set priority ceiling protocol. When a lock is requested, it is either granted or blocked. If the lock

is granted, it is placed in the GRL priority queue. If the transaction is blocked by a priority ceiling, the

blocked transaction is placed in the PTL in LIFO order and the priority of the blocking transaction is raised

to the priority of the blocked transaction. The pseudocode for requesting a lock is shown in Figure 6.

When a lock is released, the lock is removed from the GRL priority queue. The running transaction then

checks to see if it is blocking the �rst PTL transaction. If it is blocking, it tests if the �rst PTL transaction's

priority is higher than the priority ceiling of the lock at the front of the GRL queue (PC Step 2). If the PTL

transaction can run, the currently running transaction lowers its priority, allowing the blocked transaction

to run (PC Step 3). If the PTL transaction cannot run, or there is no PTL transaction waiting, the current

transaction continues running. The pseudocode for releasing a lock is shown in Figure 7. Since any given

lock may block several higher priority transactions, the blocking transaction must stay in the while loop

until all blocked higher priority transactions that can run have been signaled.
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Lock mutex.

if (the lock is found in the transaction's TD lock list)

Dequeue the LRD from the GRL.

while ((running trans's id == first PTL trans's blockers_id) AND

(first PTL trans's prio > GRL prio ceiling))

Remove the first TD from the PTL.

Lower running trans's prio to prio in this TD's blockers_prio field.

Broadcast the condition variable // wake up the blocked transaction.

Wait on the condition variable // suspend until awakened.

end while

end if

Unlock mutex

Figure 7: Pseudocode for Releasing a Lock

Parameter Value(s)

Num Objects 10

Num Attribs 10

Num Methods 10-20

Method Exec Time 5 to 15 KWhetstones

Attribs/Method 1

Num Trans 20

Methods/Trans 1-4

Trans Deadline 1-20 sec

Trans Start Time 5-35 sec

Table 1: Priority Ceiling Performance Parameters

3.4 ASPCP Performance Testing

The ASPCP was compared with the BPCP and the R/W PCP using the prototype system described in

Section 3.3, slightly modi�ed to implement the BPCP and the R/W PCP. Each test involved generating a

set of synthetic system con�gurations and a set of synthetic workloads. On each system con�guration, the

corresponding workload was executed using each of the priority ceiling protocols.

3.4.1 Performance Parameters.

Table 1 lists the parameters and values used in the testing. Transactions that missed their deadlines were

aborted and not restarted. As is typical in real-time concurrency control performance evaluation, percentage

of missed deadlines was used to measure performance [6, 1]. Transactions were started in several di�erent

size start time intervals in order to illustrate how the protocols performed under varying system loads.
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Figure 8: A�ected Set Performance: E�ect of Deadline

3.4.2 Results.

The results of the tests produced an error of at most 1% with a 95% con�dence interval. We performed one

test suite to examine results when deadline was varied. Based on the results of these tests, we performed a

specialized test to indicate the performance of the protocols when priority inversion was likely to occur.

E�ect of Deadline. This test suite examined performance with long deadlines (4-20 sec) and with short

deadlines (1-10 sec). Figure 8 displays the results of the short deadline test. The long deadline test produced

similar results. We can see that the two previous priority ceiling protocols performed very similarly. The

ASPCP performed better than the other two, with the di�erence becoming more pronounced under heavier

system load. This result is due to the fact that under high system load, the added concurrency provided by

the ASPCP allows more deadlines to be met. When system load is lower, all three protocols are more likely

to meet more deadlines.

Priority Inversion. While performing the previous test suite, we found that priority inversion occurred

very rarely. However, in a real-time system, if priority inversion occurs at all a high priority transaction may

miss its deadline and cause a catastrophic failure in the system. Therefore, we performed the following test

suite in order to examine how performance was a�ected when priority inversion was likely to occur. Because

these tests were constructed for a particular purpose, some of the parameters are signi�cantly di�erent from

the values displayed in Table 1.

In this test suite, two tests were performed, both to represent high data contention in di�erent ways.

Table 2 displays the parameters that were used for this test. The transactions were started in pairs of

low and high priority transactions. The low priority transaction began execution before the high priority

transaction, and was guaranteed to meet its deadline. The di�erence in the start times within a pair of

transactions gave the low priority transaction enough time to acquire a lock and to provide the opportunity

for priority inversion to occur.
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Test 1 Test 2

Num Objects 5 5

Trans Deadline 100-600ms 100-600ms

Methods/Obj 10 5-10

Method Exec 1-2 KWh 4-8

Attribs/Method 1 2-3

Methods/Trans 4 1

Table 2: Priority Inversion Test Suite Parameter Values

The ASPCP allowed 19 transactions to meet their deadlines in both tests, where the other protocols only

allowed 17. This result is due to the lower occurrance of priority inversion with the ASPCP. The increased

concurrency provided by the ASPCP allowed it to avoid priority inversion in cases when the other priority

ceiling protocols could not.

Overall Results. The results of these tests indicate that on average, the ASPCP misses slightly fewer

deadlines than the other priority ceiling protocols. The results also show that the ASPCP avoids priority

inversion more than the other protocols. While these results may not seem highly signi�cant, it is important

to note that priority ceiling protocols are typically used in systems with hard real-time requirements where

performance must be guaranteed. If an a priori analysis is done on such a system, whenever priority inversion

can be avoided, the analysis will be simpler, and a guarantee of meeting timing constraints will be more

likely.

4 Distributed A�ected Set Priority Ceiling Protocol

For concurrency control in distributed real-time object-oriented systems, we have developed the DASPCP

that combines techniques from Rajkumar's DPCP, and our ASPCP. In particular, just as the ASPCP uses

the PCP mechanism but with the lock granularity at the object method level, the DASPCP uses the DPCP

mechanism with its lock granularity at the object method level.

A global critical section in the DASPCP is an object method that is accessed by one or more clients on

non-local nodes. We will refer to this method as a global method. The de�nition of priority ceiling for a

global method in the DASPCP is a combination of the PC de�nition in the ASPCP and in the DPCP. The

priority ceiling of a global method m is the sum of the base priority ceiling, PG, and the highest priority

of a transaction that will ever lock a method that is not compatible with method m; where compatibility

is de�ned by a�ected set semantics. The DASPCP also uses the DPCP priority assignment so that global

methods execute at the priority of the requesting task plus PG. Note that these priority ceilings cause the

reduced blocking found in the DASPCP compared to the DPCP. The DASPCP also follows the basic steps
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Object Otrack1

method ! read speed read altitude write speed write altitude

Highest Priority Transaction T1 T4 T3 T3

DASPCP Priority Ceiling 3 + 4 = 7 3 3 + 4 = 7 4 + 4 = 8

DPCP Priority Ceiling 4 + 4 =8

Object Otrack2

method ! read speed read depth write speed depth

Highest Priority Transaction T1 T4 T2

DASPCP Priority Ceiling 2 2 4

DPCP Priority Ceiling 4

Normal Execution Priorities of Methods

Task Method Priority

T1 Otrack1! read speed 1 + 4 = 5

Otrack2! read speed 1

T3 Otrack1! write speed 3 + 4 = 7

Otrack1! write altitude 3

T4 Otrack1! read altitude 4 + 4 = 8

Otrack2! read depth 4

Figure 9: Priority Ceilings and Execution Priorities in Distributed Tracking Example

of all priority ceiling protocols (see Section 2.2).

4.1 DASPCP Example

To illustrate the DASPCP, consider the example that was introduced in Section 2.3 then augmented in

Section 3.1. The DASPCP priority ceilings are shown in Figure 9. In this �gure, the priority ceilings of

object Otrack1, which is a globally accessed since it resides on Node 1 and is accessed by T1 and T4 on Node

2, are shown as the sum of the highest priority of a task that accesses a conicting method plus the base

priority ceiling, PG (we have chosen PG=4, the highest priority of any task in the system).

Consider the following execution sequence.

� At time t0, task T1 arrives on Node 2 and begins its execution. Similarly, task T3 begins execution on

Node 1.

� At time t1, task T1 gets local lock on Otrack2! read speed on Node 2 and begins execution of its LCS

at its normal execution priority of 1. Task T3 gets the global lock on Otrack1 ! write speed on Node

1 and begins execution of its GCS at its normal execution priority of 3 + 4 = 7.

� At time t2, task T4 arrives on Node 2 and preempts T1. Task T3 continues execution of its GCS.
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� At time t3, task T4 requests the global lock on Otrack1 ! read altitude. Since T4's GCS priority

(4+ 4 = 8), is higher than the priority ceiling of Otrack1! write speed (3+ 4 = 7), it gets the lock on

Otrack1! read altitude and preempts T3's GCS. Task T1 continues the execution of its LCS at Node

2.

� At time t4, task T4 completes the execution of its GCS and releases the global lock on Otrack1 !

read altitude. Task T3 resumes the execution of its GCS with Otrack1 ! write speed. Task T4

requests a local lock on Otrack2 ! read depth. Since T4's priority (priority = 4) is higher than the

priority ceiling of Otrack2! read speed (PC = 2), T4 gets lock on Otrack2! read depth and preempts

task T1.

� At time t5, task T3 completes the execution of its GCS. Execution on Node 2 remains unchanged.

� At time t7, task T4 completes its execution including execution of its LCS with Otrack2! read depth

and releases that lock. Task T1 resumes execution of its LCS on Otrack2 ! read speed on Node 2.

Tasks T1 and T3 complete their executions at some later times.

Notice that two blockings of high priority task T4 that occurred in the DPCP example of Section 2.3 (the

blocking on the global lock at time t3 and the blocking on the local lock at time t5) are alleviated under the

DASPCP.

4.2 DASPCP Properties

As we did with the ASPCP, we present informal proofs that the DASPCP bounds priority inversion, pre-

vents deadlock, and never decreases concurrency compared to the DPCP. Again, the �rst two proofs follow

Rajkumar's proofs in [8].

Deadlock Prevention.

Theorem 4.1 The DASPCP prevents deadlock.

Proof: Informally, our proof of deadlock prevention is based on Rajkumar's results [8]. Since a job can not

deadlock with itself, it can deadlock with other jobs. Since the nesting of GCSs and LCSs is prohibited, access

to gcs's and lcs's cannot occur within the same critical section. Since each global and local semaphore is

accessed only by a single processor, deadlocks can't occur across processor boundaries. The only possibility,

we have not considered yet, is a deadlock within a processor. We showed in Section 3.2 that the ASPCP

used on each processor excludes deadlock on that node. 2

Bounded Priority Inversion.

Theorem 4.2 Under the DASPCP, the blocking experienced by a task T is �nite.

Proof: We partition blocking into three types and show that each type is �nite.

1. A Task's Execution on its Local Node. Task T can be blocked for the duration of at most (nG+1) local

critical sections of lower priority jobs bound to the same processor as T . Here nG is the number of
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GCS's executed by T at remote processors during its period. To see this, realize that task T suspends

itself nG times during one period as its execution is transferred to the GCS at the remote node. Task

T may be blocked every time it attempts to resume its execution after returning from the GCS. Under

the ASPCP, the blocking time of each resumption is limited by a longest critical section of one low

priority task. Thus, T 's execution on its local node has bounded priority inversion.

2. Task T 's GCSs. For every outermost GCS that task T enters at a remote processor, T can be blocked

for the duration of one longest GCS of a lower priority priority job executing its GCS at the same

node. This follows from the fact that under ASPCP on that node, the GCSs as tasks on that node are

limited to blocking by at most one lower priority GCS. Thus, each GCS of T has bounded blocking

time.

3. Blocking by Remote Tasks. Task T can be preempted by any task Ti residing at a remote node and

accessing GCSs on T 's host node, as well as by higher priority tasks executing their GCS at the same

remote node used by T 's GCSs. The execution times of GCSs are �nite; the number of tasks is �nite;

the periods are �nite; therefore there may not be an in�nite repetition of a task Ti during one period

of T . Thus, the blocking due to remote tasks is �nite.

Since all types of blocking are �nite, the overall blocking for task T is �nite. 2

Increased Potential Concurrency. The example of Section 4.1 shows how the DASPCP lowers ceilings,

which reduces blocking, thereby increasing concurrency.

Theorem 4.3 The DASPCP never decreases concurrency compared to the basic DPCP technique.

Proof: The priority ceiling used by the DPCP is the maximumof the conict priority ceilings of the DASPCP.

Since lower priority ceilings can only mean less blocking time, concurrency can only increase when DASPCP

is used instead of DPCP. 2

Serializable Execution.

Theorem 4.4 The DASPCP enforces a serializable schedule of method operations for each object.

Proof: The proof is similar to that of Theorem 3.4 - since the DASPCP also de�nes priority ceilings based

on conict, and conict is still de�ned by a�ected set semantics.

4.3 DASPCP in a RT CORBA System

As we stated in Section 1, the DASPCP can provide concurrency control in a static RT CORBA system. A

static RT CORBA system provides for seamless interaction among clients and servers in a distributed, hard

real-time environment in which timing constraints must be guaranteed to be met. It allows for the passing

of priority information across the distributed system to enable the enforcement of timing constraints. In

this section we briey describe how a RT CORBA middleware model maps to the more general distributed

model used by the DASPCP. We also provide an example to illustrate this mapping. We then describe an
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implementation in which we have extended the PERTS (Prototyping Environment for Real-Time Systems)

[5] real-time analysis tool to accept RT CORBA constructs as input, and to analyze the system under

DASPCP for concurrency control.

Mapping RT CORBA. A RT CORBA system consists of periodic clients, servers on which clients make

method invocations, and an Object Request Broker (ORB) through which client/server communication is

performed. A client may have multiple deadlines speci�ed within a single execution of its period.

Consider the example of Section 4.1, and assume that each object, Otrack1 and Otrack2 are servers in a

RT CORBA system. The clients are as follows:

Node 2 Node 1

Client 1: period = 6 Client 2: period = 4

. .

. local code . local code

. .

Otrack1->read_altitude Otrack1->write_speed

Otrack2->read_depth Otrack1->write_alt

. .

. . local code

deadline = 2 .

. end

. local code

.

Otrack1->read_speed

Otrack2->read_speed

.

.

.

end

Client1 has a period of 6, and it has an intermediate deadline of 2 after the �rst two method invocations

and some associated local code. Client2 has a period of 4, and makes two method invocations to the same

object.

In order to analyze and execute such a system under DASPCP, the RT CORBA constructs must be

mapped to the lower-level entities of the model used by DASPCP. A RT CORBA client with period p,

�nal deadline d, and m intermediate deadlines d1 to dm maps to m + 1 dependent tasks, t1 to tm+1, each

with period p. Tasks t1 to tm have deadlines d1 to dm, and task tm+1 has deadline d. The tasks depend

on each other in that for i < j, task ti must complete before task tj starts, for all i; j = 1:::m + 1. A

method invocation by a RT CORBA client on a server S maps to a critical section which represents the lock

granularity for the DASPCP.

Now we examine the example above, and map it to the level of the DASPCP model. Note that this

mapping results in a system that is identical to the example of Section 4.1. Client1 maps to two separate

tasks because of the intermediate deadline. These tasks are equivalent to tasks T4 and T1 in the previous

example. Client2 maps to a single task, equivalent to task T3 in the previous example. The execution of the

RT CORBA system above is equivalent to the execution described in the example of Section 4.1.
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Extended PERTS Implementation. PERTS is a real-time analysis tool originally developed at the

University of Illinois, Urbana-Champaign, and commercialized by Tri-Paci�c Software [5]. The tool analyzes

systems of real-time tasks, and produces schedulability analysis, based on given criteria. For concurrency

control in hard real-time systems, the original PERTS implementation was able to perform analysis based

on DPCP. We have modi�ed PERTS to enable it to also analyze a system using DASPCP schedualbility

criteria. We have also modi�ed the system to allow for input in the form of RT CORBA constructs.

The original PERTS design allowed users to enter a real-time system in terms of tasks with timing

constraints, and the resources that they require. The Graphical User Interface (GUI) for PERTS consists

of three parts: the Task Graph Editor which allows a user to specify the tasks in the system, how they are

related to each other, and which resources each task uses; the Resource Graph Editor which allows the user

to specify which resources exist on which nodes in the system, and the Schedulability Analyzer which allows

the user to specify the type of analysis to be performed on the system, and to perform the analysis. One of

the responsibilities of the Schedulability Analyzer is to compute the priority ceilings of every resource in the

system.

We have modi�ed the PERTS tool to allow a user to enter a RT CORBA system on which the DASPCP

can execute. This modi�cation includes changes to all three parts of the tool. Our Task Graph Editor

provides a mechanism for specifying intermediate deadlines on client execution. Because the DASPCP

represents methods as resources, our Resource Graph Editor allows the user to specify conicts between

methods. Figure 10 displays a resource graph in which there is a conict (represented by the dotted line,

double arrow) between resources read speed and write speed. These two resources are methods of the same

server object that both access the speed attribute. Based on a�ected set semantics, they conict.

The Schedulability Analyzer has been modi�ed in several ways. The �rst step that is performed by our

Schedulability Analyzer is to translate the RT CORBA constructs into PERTS constructs (as described

above). This translator generates additions to the task dependencies in the system's task graph based on the

dependencies among all tasks produced by the same client. The new Schedulability Analyzer also computes

the conict priority ceilings for each resource for the DASPCP. Recall that for the DASPCP, the conict

priority ceiling of a method is the sum of the PG and the priority of the highest priority task that will

access a conicting method. The Schedulability Analyzer uses the conict information in the resource graph

to compute these ceilings. Once the conict priority ceilings are computed, the schedulability analysis for

DASPCP is identical to that for DPCP (see [8] for more on schedulability analysis of DPCP).

5 Conclusion

This paper has presented the A�ected Set Priority Ceiling Protocols (ASPCP) for concurrency control in real-

time object-oriented systems. It showed that these protocols: enforce logical consistency by serializable access

to objects; prevent deadlock; bound priority inversion; and provide more potential concurrency in object-
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Figure 10: Example Resource Graph for PERTS with DASPCP
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oriented systems compared to other priority ceiling techniques. The paper also presented implementations

that demonstrate the usefulness of each of the protocols in real-time object-oriented systems.

The ASPCP is suitable for single node systems such as real-time object-oriented databases. We have

built the ASPCP into a shared main memory real-time object-oriented database prototoype [9]. The results

of performance tests executed on this prototype indicate that on average, the ASPCP misses fewer deadlines

than other single-node PCPs, and the the ASPCP reduces priority inversion better.

The DASPCP is suitable for controlling access to distributed objects. The modi�cations that we have im-

plemented in the PERTS analysis tool will enable users to analyze a RT CORBA system using the DASPCP.

The tool also produces task priorities for the system if it is found to be schedulable. We are currently imple-

menting the DASPCP in a static RT CORBA scheduling service with a global Deadline-Monotonic priority

assignment. This scheduling service will use the results of the PERTS analysis to automatically assign

priorities to the tasks in the system.

The drawbacks of the ASPCP protocols, like all PCP protocols, center on the strong requirement that

all task/transactions and their behavior be known a priori. For some real-time applications, this assumption

is reasonable, for others it is not. Also, PCP protocols potentially allow less concurrency than straight

read/write locking and many other traditional concurrency control techniques. However, this reduced con-

currency of the PCP protocols is due to the denials of locks that are allow for the deadlock prevention and

priority inversion bounds that they provide.

In real-time object-oriented systems where tasks are known a priori, a simple and e�cient implementation

of either ASPCP or DASPCP will yield logical consistency of objects while supporting real-time analysis

through deadlock prevention and priority inversion bounding.
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