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Abstract 

This paper describes a replication algorithm for 
distributed real-time object-oriented databases in a 
static environment.  All data requirements are specified 
a priori, and the algorithm creates replication 
transactions that copy remote data to a local site in 
order to guarantee that every data request reads 
temporally valid data.  The algorithm conditions are 
proven to be necessary and sufficient for providing this 
guarantee.  Test results indicate that under most 
conditions, this replication strategy is better than total 
replication, which is a typical strategy used in 
distributed databases. 

1. Introduction 

Many time-critical applications require the sharing 
of data that may be distributed among multiple sites.  For 
example, a critical planning collaboration among ships in 
a fleet may need to share sonar and radar data that is 
collected by the various vessels.  In such applications, it 
is imperative that the data be available to the requesting 
transactions at the time it is needed.  In a typical 
distributed database, the transaction is required to access 
the remote data directly, at the risk of missing its 
deadline.  Another problem can occur in such a scenario 
when the requesting transaction accesses the data, but it 
is not temporally valid.  That is, its value is “out-of-date” 
because the transaction did not read from the most recent 
update.   

In this paper, we present a replication algorithm, 
called the Just-In-Time Real-Time Replication (JITRTR) 
algorithm, that creates replication transactions based on 
client’s data requirements in a distributed real-time 

object-oriented database (DRTOODB).  These 
replication transactions copy data objects to the site on 
which they are needed “just in time” for the read to 
occur.  The algorithm carefully computes the parameters 
of the replication transactions so that we can guarantee 
that any requests that read data, in fact, read temporally 
valid data. 

The JITRTR algorithm is designed to work in a 
static environment in which all object locations, and 
client data requirements are known a priori.  Given these 
static system specifications, the algorithm creates a set of 
transactions that access the data objects.  These 
transactions are then mapped to a well-known 
schedulability model so that the system can be analyzed 
to determine if all specified deadlines can be met.  If so, 
then the system can be executed and all requests will 
read temporally valid data.  If the system is not 
schedulable, then the system specification must be 
reconsidered. 

The rest of this paper is organized as follows.  
Section 2 presents some background on the real-time 
schedulability model on which we have based our 
algorithm.  It also provides a survey of related work to 
indicate the novelty of our algorithm.  Section 3 presents 
the JITRTR algorithm, starting by describing the system 
model, and then describing how the algorithm maps the 
system specifications to transactions that access the data 
objects.  Section 4 provides an analysis of the algorithm.  
It presents three theorems that demonstrate the goodness 
of the algorithm.  Section 5 provides a brief description 
of a set of performance tests that we carried out to 
illustrate how our algorithm compared to other related 
techniques for data replication.  Finally, Section 6 
summarizes the results of this work, briefly describes an 
extension of the work that provides finer granularity of 



  

data access, and gives some insight into future work that 
may result from this project. 

2. Background and Related Work 

This section presents foundational information for 
the underlying concepts of the JITRTR algorithm 
including concepts of DRTOODBs, scheduling protocols 
and related replication control algorithms. 

2.1. Distributed Real-Time Object-Oriented 
Databases 

A real-time database is one in which both the 
transactions and the data have timing constraints [1].  
For instance, deadlines can be imposed upon the 
completion time of transactions and on the validity of a 
data item.  The temporal validity of a data item is the 
amount of time that its value is considered valid.  In a 
real-time object-oriented database (RTOODB years [2,3, 
4, 5]), temporal validity can be expressed as a part of the 
object.  

In a DRTOODB, real-time access to a remote object 
can be obtained by having transactions directly access 
the object, keeping copies of all objects on all sites, or 
providing a mechanism for making copies such that they 
are kept on sites where they are needed.  Data replication 
incurs complexity because not only must the original 
data object be kept temporally consistent, but the copies 
must be as well. 

2.2. Scheduling Protocols 

In a DRTOODB, transactions must be scheduled so 
that they do not violate timing constraints.  Additionally, 
access to shared data must be controlled in such a way as 
to prevent data inconsistency and to uphold the priority 
assignment made by the scheduling algorithm.  The 
JITRTR algorithm creates transactions that execute in a 
system running deadline monotonic scheduling (DM) 
[6], and distributed priority ceiling protocol (DPCP) for 
resource access control [7]. 

Deadline Monotonic Scheduling.  DM scheduling 
[6] assigns priorities to periodic tasks such that the task 
with the shortest relative deadline is assigned the highest 
priority.  To determine the schedulability of a set of tasks 
scheduled using DM priority assignment, we compute 
the worst case response time for a task by considering 
the amount of time the task will be preempted by higher 
priority tasks, plus the execution time of the task itself, 
plus any blocking by lower priority tasks that may occur 
due to sharing of resources (priority inversion).  If all 
tasks can meet their deadlines, then the system is 
schedulable. 

Distributed Priority Ceiling Protocol.  DPCP [7] 
is a resource access control algorithm that does not 
bounds priority inversion and prevents deadlock.  The 
protocol assumes that tasks and resources have been 
assigned and statically bound to processors, and that 
priorities of all tasks are assigned in advance making it 
suitable for static hard real-time systems.   

The DPCP scheduling model is made up of 
resources, and tasks that access the resources.  A 
resource that resides on the local processor of a task is a 
local resource.  A global resource is a resource that is 
accessed by at least one task that is on a different 
processor.  A task executes in a global critical section if 
it is accessing a global resource and executes in local 
critical section if it is accessing a local resource.   

The various possible uses of resources within the 
DPCP model define a set of blocking times that must be 
taken into account when analyzing the schedulability of 
a system.  These blocking times (described fully in [7]) 
are added to the analysis described above for DM to 
provide the proper analysis. 

2.3. Replication Control Algorithms 

Many real-time replication control algorithms have 
been proposed based on concurrency control 
mechanisms like majority consensus approach [8] and 
distributed two-phase locking [9], distributed two-phase 
locking, distributed optimistic concurrency control 
(OCC) [10], distributed optimistic two-phase locking 
(O2PL) [11].  MIRROR (Managing Isolation in 
Replicated Real-Time Object Repositories) [12] is a 
concurrency control algorithm designed for real-time 
systems with replicated data.  It augments O2PL to 
provide state-conscious priority blocking.  All of the 
above mentioned concurrency control algorithms suffer 
from the possibility of deadlock and unbounded 
blocking.  Thus, they are not suitable for a static real-
time database system.   

3. JITRT Replication Algorithm 

This section describes the Just In Time Real-Time 
Replication (JITRTR) algorithm.  It creates real time 
replication transactions in a DRTOODB based on the 
data requirements in a static system.  Figure 1 depicts the 
flow of the algorithm, which has two parts.  In the first 
part, the Replication Manager (RM) takes the parameters 
from the system specifications and creates local and 
replication transactions.  In the second part, the 
transactions are mapped to an analyzable model, based 
on the DPCP model [7]. 

 

 



  

 

Figure 1 - JITRT Algorithm Methodology 

We begin this section by defining assumptions we 
have made about the system, followed a description of 
the system model.  We then explain how the RM does 
the core work of the algorithm, i.e. taking the parameters 
from the system specifications and creating the local and 
replication transactions.  Finally, we describe how the 
transactions are mapped to the DPCP model.  

3.1. Assumptions 

The following is a list of assumptions we have made 
regarding the system in which JITRTR algorithm works. 
1) The system is static.  That is, all distributed sites and 

every object on each site are known a priori. All 
read/write requests from clients are known a priori.   

2) For each object there is one update transaction that 
we call the “sensor update transaction”.  There can be 
more than one transaction that updates the object, but 
only one is called the sensor update transaction. 

3) Each object has a local site, where it originates. Any 
other sites that require this object have a copy of it. 

4) All the databases in the distributed system are 
homogeneous.  All the sites in the system contain the 
same DBMS.   

5) The period of the sensor update is always less than 
the temporal validity of the objects.  That is, the 
object will be updated before it becomes temporally 
inconsistent.   

6) Copies of objects are not accessible to transactions on 
other sites.  That is, only the object on its origination 
site is accessible to be replicated. 

3.2. System Model 

The model on which the JITRTR algorithm is based 
is made up of M distributed sites, data objects, and 
periodic requests and updates that access the data 
objects. 

Objects.  Each object in the system is defined as 
follows: 

Object  =  < OID, Value, Time, OV >  
OID is a unique identifier of the object within the 

system.  Value is the present value of the object.  Time is 
the time at which the object was last updated.  OV is the 

object validity, i.e. the time after which the value of the 
object is no longer valid. 

Requests and Updates.  Application requirements 
are specified as periodic Requests for data and Updates 
of data with following parameters: 

Request = <OID,per,rel,dl,LSiteID> 
Update = <OID per,rel,dl,LSiteID> 

Requests are read-only data accesses, and updates 
are write-only.  OID is the unique identifier of the 
requested object.  Per is the frequency (period) at which 
the data is to be accessed.  Rel is the release time at 
which the request/update should be started, dl is the 
relative deadline of the request/update within each 
period and LSiteID specifies the site at which the 
update/request was made. 

3.3. Replication Manager 

Given a system specified by the above model, the 
JITRTR algorithm creates replication transactions to 
ensure the availability of data.  The algorithm produces a 
model with two types of transactions, local transactions 
and replication transactions.  A transaction is a local 
transaction if all of its operations execute on the same 
site as the site on which the request was made, and it is a 
replication transaction if at least one of its operations 
executes on a remote site. 

The following is the specification for the model of a 
transaction created by the Replication Manager (RM): 

Ttype <opers(OID),per, rel, dl, exec, LSiteID> 
where type specifies the type of the transaction, local or 
replication. opers is a set of operations on object OID, 
such as read, and write.  Per, rel, dl and LSiteID are as 
defined above.  Exec specifies the worst-case execution 
time of the operations plus any other time incurred by 
the transaction. 

The following subsections describe how the JITRTR 
algorithm maps systems specifications for requests and 
updates respectively, to local and replication 
transactions. 
 
3.3.1. Requests.  When mapping requests to 
transactions, there are two cases to be considered.  The 
first case occurs when the site on which requested object 
originated is the same as the site at which request is 
made, and the second case is when the two sites are not 
the same. 
Case 1: RSiteID = LSiteID: 

This is the simpler of the two cases, because no 
copies of data need to be made.  The request maps to a 
local transaction specified as follows: 

Tlocal ( opers(OID), per, rel, dl, exec LSiteID) 
where opers(OID) is a read(OID)on local site of OID, 
and exec is the execution time of the read operation. 
Case 2: RSiteID ≠ LSiteID 

System Specification

Replication Manager

Transactions + Objects

Tasks, Critical Sections, Objects

Map to DPCP 



  

In this case, the request is for data that resides on a 
remote site.  Thus, a copy of the data will be made on the 
local site (by a replication transaction) so that the data 
can be read within the specified deadline.  The 
replication transaction must finish before the start of the 
local transaction so that the local transaction can read the 
copy.   

Replication transaction:  The JITRTR algorithm 
creates a single replication transaction for all requests 
made on a particular site for an object, OID.  This allows 
for sharing of the local copy among all local 
transactions.  The parameters for the replication 
transaction are: 

Trep(opers(OID),per,rel,dl,execLSiteID) 
where opers(OID) are read(OID) on RSiteID and 
write(OID) on LsiteID.  Per is equal to the period of 
sensor update of the object so that the transactions will 
read valid data (see Theorem 2). The release time (rel) is 
the start of the period, and exec is the total execution 
time of the replication transaction (exec time of read + 
exec time of write + network delay).  The deadline (dl) is 
the crucial part of the transaction, because it must be 
computed to ensure that the local copy is available and 
valid when the data is needed.  

Deadline Computation.  Let d be the deadline that 
we are computing for a replication transaction on 
LSiteID created for a data request of object OID.  Let N 
be the least common multiple of the periods of all 
requests for OID on LSiteID and the period of sensor 
update.  Let n be the number of replication periods that 
should be considered for the analysis, where n is 
computed as  

n = N/per  
We call N the superperiod of the replication 

transaction because it represents a complete cycle of all 
requests for the data being replicated on LSiteID.  We 
define OVi to be the point in time in the ith period of the 
replication transaction that the value of the object (from 
the most recent update) becomes temporally invalid.  An 
invalid interval is an interval of time during which the 
object does not have a valid value associated with it, that 
is, the object is temporarily inconsistent (See Figure 2). 

Initially we set the deadline of the replication 
transaction equal to its period.  Then, for each of the n 
periods in the superperiod, there are 3 cases to consider 
in calculating the deadline.  
1) If no requests are executing in the invalid interval, the 

deadline is unchanged because no requests will be 
reading invalid data. 

2) If no request has started executing before the invalid 
interval but a new transaction enters at xi, where OVi < 
xi  < Pi +d, then the deadline is changed to min(d, xi-
Pi). 

3) If any request has started before or at OVi and 
continues to execute in the invalid interval, then the 

deadline is changed to OVi - Pi.  This deadline 
assignment ensures that the replication transaction 
completes before the data becomes invalid, and thus 
the requests read valid data.  

Note that if the deadline is changed to OVi - Pi at 
any point, the computation of deadline is complete as we 
have reached the minimum possible deadline.  Otherwise 
we consider these three cases for each of the n 
replication transaction periods in the superperiod. 
 

Figure 2 – Invalid Interval 

Local Transaction: After the above replication 
transaction is created for a set of requests, a local 
transaction is created for each request on OID with the 
following parameters: 

Tlocal (opers(OID), per,rel,dl,exec,LSiteID) 
where opers(OID) is read(OID) on LSiteID and exec is 
execution time of the read. 

 
3.3.2. Updates.  For an update, again, two cases must be 
considered.  If the data to be updated is on the same site 
as the update, then it is a simple write to the object.  
Otherwise, after the write, the updated object copy must 
be written back to its originator site so that all other 
transactions that access the object can see this new value.   
Case 1: If RSiteID = LsiteID  

In this case the update maps to a local transaction as 
follows: 

Tlocal (opers(OID), per, rel, dl, exec, LSiteID) 
where opers(OID) is write(OID) on  local site of OID 
and exec is the execution time of write(OID). 
Case 2: If RSiteID ≠ LSiteID  

In this case, the update maps to a local transaction 
that writes to the local copy of the object, and a 
replication transaction that copies the updated object to 
its originator site.  Each update maps to a separate a 
replication transaction, with one exception, described 
later in this section. 

Local Transaction.  The local update transaction 
writes to the local copy and is in the following form: 

Tlocal (opers(OID), per, rel, dl, exec, LSiteID) 
where opers(OID) is write(OID) on the LsiteID and exec 
is the execution time of write(OID). 

Replication Transaction.  The replication 
transaction is a copy back transaction.  It reads the local 
copy of the object and writes it to its originator site.  
This replication transaction is defined as follows: 

Trep (opers(OID), per, rel, dl, exec, LSiteID) 
Here, opers(OID) are read(OID) on LSiteID and 
write(OID) on the RSiteID.  Per is same as the period of 

|----------|-------|---|---|---|---|-------
Pi-1

|----------|-------|---| | |---|-------

Invalid interval

Pi Pi+1OVi

di
di-1

|



  

the local transaction, rel is equal to the deadline of the 
local transaction to ensure that the local write is 
complete before the read begins.  Dl is the end of the 
period to allow maximum time for the transaction.  Exec 
is the sum of the execution times of write(OID) and 
read(OID) plus the network delay. 

Although each local update transaction generally 
requires a replication transaction to copy back the data 
that it writes, some unnecessary replication transactions 
can be eliminated.  The possible cases for eliminating the 
replication transactions are: 
a) If more than one local transaction has the same release 

time and deadline, then only one of these local 
transactions needs to be copied back. 

b) If more than one update has the same period and starts 
at the same time, only the update with the shortest 
deadline (highest priority) creates the replication 
transaction. 

3.4. Schedulability Model 

In order to analyze and execute the transactions 
created by the RM, we map the local and replication 
transactions to the DPCP model.  There are two types of 
objects in the database on each site:  a local object, 
which is local to the particular site and not replicated on 
any other site, and a replicated object, which has copies 
on multiple sites in the database. 

After the JITRTR algorithm translates the 
requests/updates into the set of local and replication 
transactions, it determines whether each request/update 
is made on a local object or on a replicated object.  It 
then assigns priorities to all transactions based on the 
deadline monotonic algorithm.  Once the priorities are 
assigned, the algorithm maps the transactions to the 
DPCP model. 

A local object is mapped to local resource and a 
local transaction is mapped to local critical section.  
Similarly, a replicated object is mapped to a global 
resource.  A replication transaction accesses both a local 
resource (local copy of object) and a global resource 
(original object on remote site). Therefore, the 
replication transaction has both a local and a global 
critical section.  Given this mapping, the system can be 
analyzed for schedulability, and executed using DPCP 
for resource access control if found to be schedulable. 

4. Theorems 

This section provides analysis of the JITRTR 
algorithm.  We state and prove three theorems that 
indicate the correctness and goodness of the algorithm.   

Theorem 1: All requests will always access 
temporally consistent data. 

Proof: Consider a replication transaction TO that 
copies object O. Let d be the deadline of TO as computed 
by the JITRTR algorithm.  Let OVi be the point in time 
in the ith

 period after which the copy of the object O 
becomes invalid and let P be the period of TO. 

O is temporally inconsistent in the ith period in the 
interval between OVi and d (see Figure 2).  Thus if we 
prove that no request executes in the invalid interval, 
then we have proven that all requests access temporally 
valid data. 

Recall from the JITRTR algorithm that there are 
three possible cases considered when the deadline of TO 
is computed.  We re-examine these cases to prove that 
no request executes in the invalid interval. 
Case 1) No requests execute in the invalid interval. 
Clearly, in this case no requests read invalid data. 
Case 2) Some request starts at time xi such that OVi < xi 
≤ Pi +d. The JITRTR algorithm changes d to xi - Pi 
reducing the size of the invalid interval and making the 
replication transaction finish before any requests read the 
data. Thus any such requests will read valid data in this 
case. 
Case 3) Some request executes throughout the invalid 
interval starting before or at OVi and finishing at or after 
the deadline expiration, Pi +d.  Then the JITRTR 
algorithm computes d to be OVi - Pi.  Again, this 
deadline assignment ensures that before the object 
becomes invalid, a new valid value has been written.  
Thus, the invalid interval is removed and the request 
reads valid data. 

In all the cases, we have proven that the requests 
read valid data. □ 

Theorem 2: The period of the replication 
transaction TO must be equal to the period of the 
sensor update transaction for object O in order for all 
requests to read valid data using our algorithm. 

Proof:  To prove that the period of the replication 
transaction and the period of sensor update must equal, 
let us consider a contradictory situation.  Let us assume 
they are not equal  i.e. assume that the periods PTo for 
replication transaction TO and for PSUo for sensor update 
transaction SUO are equal.   

Here we consider the two cases.  The first case is 
that PTo > PSuo and the second case is that PTo < PSuo.  
We prove that it is not possible to construct a replication 
transaction with the above two cases.   
Case 1) PTo > PSuo  

As discussed in the proof of Theorem 1, the object is 
invalid only in the invalid interval.  Consider the 
calculations of deadline in each period of the replication 
transaction. 

Initially d is set to the length of the period of the 
replication transaction.  In each successive period, 
deadline is calculated based on whether there are any 
requests in the invalid interval.  The minimum deadline 



  

in any period i is OVi - Pi.  So, once the deadline in any 
period becomes OVi - Pi the calculation of deadline is 
stopped and the final deadline is taken as OVi - Pi.  It can 
be observed from the Figure 3 that, since PTo > PSuo, as i 
increases, d decreases and at some point (for some i), d 
becomes 0 or less than 0.  

       |--------|--------|--------|--------|--------|--------|--------|--------|--------| (SU  O )

           P1                 P2             P3              P4             P5              P6              P7              P8             P9             P10

 OV2  OV3     OV4   OV5     OV6

  ----d1---->    --d2-
      

d3- <d4>        d5=?

 |-----------|-----------|----------|----------|-----------|-----------| (TO)

 P1        P2 P 3                    P4                    P5                    P6                    P7  

Figure 3 - Deadline Assignment - PTo > PSuo 

Thus we cannot guarantee that all the requests will 
read the valid data all the time. 
Case 2)  PTo < PSuo 

From Figure 4, it can be observed that, since the 
periods are not equal, there may be a case (P4 in Figure 
4) where we cannot choose a deadline that will satisfy all 
requests reading valid data.  

Figure 4  - Deadline Assignment - PTo < PSuo 

In this second case again, we cannot guarantee that a 
request will always read valid data. 

 Now we show that if PTo = PSuo, we do not come 
across the problem of deadline becoming 0.  It can be 
observed from Figure 5 that, between the start of every 
period of TO and every period of OVi there is always 
some constant time, which means they do not coincide.  
So, deadline can never be 0 in this case and all the 
requests read valid data . 

Figure 5 - Deadline Assignment 3 

Thus the period of TO must be equal to the period of 
sensor update transaction for object O in order for all 
requests to read valid data. □ 

Theorem 3: The deadline assignment for a 
replication transaction from a request, made by the 
JITRTR algorithm, is necessary and sufficient for 
ensuring the temporal consistency of data. 

Proof:  We first prove the sufficient condition, and 
then we prove the necessary condition. 

Sufficient condition:  Theorem 1 proves that requests 
always read temporally consistent data, which means 
that the deadline assignment is sufficient for ensuring the 
temporal consistency of data. 

Necessary Condition:  Theorem 1 considers all the 
three cases for computing the deadline and proves that 
all the requests always read the valid data.  To prove that 
the deadline assignment of replication transaction, TO, 
according to our algorithm is necessary, let us take the 
contradictory situation.  That is, let us assume that there 
exists a deadline assignment d’ of a replication 
transaction by some algorithm, other than JITRTR 
algorithm, greater than the deadline assigned by the 
JITRTR algorithm. 

As discussed above, the object is invalid in ith period 
only in the invalid interval.  Again, we examine the three 
cases described in Theorem 1. 
Case 1)  There are no requests in the invalid interval.  
The JITRTR algorithm assigns the deadline to be d=Pi+1 
– Pi.  This is the maximum deadline in the period.  So d’ 
cannot be greater than d. 
Case 2)  There is a request xi such that OVi<xi≤Pi+d.  
The JITRTR algorithm assigns deadline as d=xi-Pi.  If 
d’>d, then a request reading the object in the interval 
(xi,Pi+1] could read invalid data. 
Case 3)  There is a request at or before OVi, continuing 
into the invalid interval.  The JITRTR algorithm assigns 
the deadline to be d=OVi-Pi.  If d’>d, then a request in 
the interval (OVi, Pi+1] could read invalid data. 

This implies that the deadline assignment by our 
algorithm is a necessary condition to ensure the temporal 
consistency of data read by the transactions.□ 

5. Performance Results 

We tested the JITRTR algorithm to determine how 
it compares to two other techniques for accessing remote 
data in a distributed database.  We compared it to full 
replication in which every object is fully replicated in the 
database, and every update is propagated to every copy.  
We also compared our algorithm to no replication in 
which data is accessed directly on the remote site. 

The performance measure that we chose was percent 
schedulability.   That is, given a random system 
specification, how often does the JITRTR algorithm 
produce a system that is schedulable, where all deadlines 
can be met.  We also measured percentage of task 
schedulability to indicate how many tasks in a given 
system are found to be schedulable.  These measures 
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were chosen because we wanted to determine what kind 
of effect the additional overhead incurred by the 
replication transactions would have on the schedulability 
of the system. 

To implement the tests, we created a simulation 
environment in which system specifications were 
randomly generated.  The system specifications provided 
input to the JITRTR algorithm, and the resulting 
transactions were tested for schedulability using the 
RapidRMA [13] schedulability analysis tool.  We also 
simulated an algorithm for creating full replication 
transactions and no replication transactions for 
comparison.   All tests were averaged over 15 trials. 

We performed a baseline test, and three test suites, 
examining the effects of the length of the period, the 
number of database objects, and the percentage of 
updates in the system.  Due to lack of space, this paper 
describes the baseline test and one of the test suites.  The 
results of the other test suites were very similar.  For 
complete description of these results see [15]. 

5.1. Baseline Testing 

Table 3 shows the parameters, and ranges of values 
used in the baseline test.   These values were also used in 
the other test suites, with all parameter ranges remaining 
constant except for the parameter being tested. 

 
Parameter Range 
Period 150 – 400 
No of Objects 7 – 12 
No of sites 5 – 12 
No of Reqs/Object 3 – 6 
percentage of Updates 50 

Table 3 - Baseline Parameters 

The resulting schedulability of the system for the 
three strategies is shown in Figure 6.  It can be observed 
that the schedulability percentage for the FullRep 
algorithm is less than that for JITRTR.  This is because 
FullRep consists of more transactions in the system than 
the other two replication strategies, for the same requests 
and updates. 

Figure 6 – System Schedulability for Baseline Testing 
The schedulability percentage for NoRep is slightly 

more than that for JITRTR replication. This is because 

the NoRep algorithm has fewer transactions than the 
JITRTR algorithm because JITRTR creates a replication 
transaction for each remote data access.  However the 
JITRTR algorithm guarantees that the objects read by the 
requests are always valid whereas NoRep does not make 
this guarantee.  That is, even if the data on the remote 
site may be valid at the time it reads, it may become 
invalid while transferring it to the local site. 

The task schedulability results (Figure 7) were 
similar to the system schedulability results.  High 
percentage schedulability for JITRTR and NoRep shows 
that the system, even if it is not schedulable, is nearer to 
schedulability.  

Figure 7 – Task Schedulability for Baseline Testing 

5.2. Effect of Period 

This test suite was performed to show the effect of 
the length of the period of a request or update on the 
schedulability of transactions executed by our algorithm.  
The three different ranges of period we chose are 100-
250, 250-350, and 400-600. 

System schedulability (Figure 8a) for all three 
strategies is found to be less than that for base case.  As 
we expected, the figure illustrates that increase in the 
period increased the schedulability percentage of the 
system.  We again see that the schedulability for JITRTR 
is just slightly lower than NoRep, indicating that the gain 
we get in the guarantee of valid data incurs only a 
minimal amount of extra overhead. 

The task schedulability results (Figure 8b) were 
found to be similar to the results obtained for system 
schedulability percentage, but the percentage of 
schedulability is found to be higher. 

 a) System Schedulability  b) Task Schedulability 

Figure 8 –Results on Effect of Period 
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6. Conclusions and Future Work 

In this paper we have presented an algorithm for 
replication of data in a distributed real-time object-
oriented database.  The algorithm works in a static 
environment in which data requirements are known a 
priori.  It analyzes the requirements of clients that will 
use the DRTOODB, and creates transactions that will 
make the data available, and that guarantee that only 
valid data will be read.  We have proven that the 
algorithm uses necessary and sufficient conditions for 
providing valid data to all requests.  The results of the 
performance tests were as we expected.  They indicate 
that the benefit of guaranteed temporal validity 
outweighs the slightly higher overhead that is incurred 
over a no replication strategy. 

We have also developed an extension of this 
algorithm designed to provide finer granularity of data 
access.  The algorithm, called the Just-In-Time Real-
Time Replication Affected Set (JITRTR-AS) algorithm, 
assumes that requests can access methods of objects as 
opposed to entire objects.  It relies on a method-based 

extension of the DPCP (DASPCP) for schedulability 
analysis [14].  Due to space limitations, we have not 
presented this work here.  For more information on this 
extension, see [15]. 

Finally, it is important to note that while this 
algorithm, and its method-based extension, show much 
promise towards providing real-time data replication, the 
assumptions upon which they are based can be quite 
limiting.  In future work, we plan to explore how some 
or all of these assumptions can be relaxed or removed.  
For example, we would like to extend these algorithms 
to work in a dynamic system in which data requirements 
may not be periodic, and may not all be known a priori.  
In such a system, the algorithm would have to be 
changed to adapt to a changing environment.  That is, 
something similar to the JITRTR algorithm  could be 
used based on an initial specification of system 
requirements.  Then, as these specifications change, an 
on-line version of the algorithm would reset the 
parameters of the replication transactions to reflect the 
new requirements. 

 

 
References 
                                                           
[1]  V. F. Wolfe, L. C. DiPippo, Real-Time Databases; chapter 
in Database Systems Handbook, P. Fortier and A. Rose, eds.;  
Multiscience Press;  1997. 

[2]  V.F. Wolfe, J.J. Prichard L.C. DiPippo and J. Black, The 
RTSORAC Real-Time Object-Oriented Database Model and 
System, chapter in Real-Time Database Systems:  Issues and 
Applications, K.-J. Lin and S. Son eds., Kluwer Academic 
Press, 1997. 

[3]  L. Zhou, E. A. Rundensteiner, K. G. Shin, Schema 
Evolution of an Object-Oriented Real-Time Database System 
for Manufacturing Automation, IEEE Transactions on 
Knowledge and Data Engineering, Nov.-Dec. 1997 (Vol. 9, 
No. 6) pp. 956-977. 

[4] J. Taina, S. H. Son, Requirements for Real-Time Object-
Oriented Database Models -- How Much Is Too Much? 
Proceedings of the 9th Euromicro Workshop on Real Time 
Systems,1997. 

[5] R. Ghaly and N. Prabhakaran: Modeling of a Real-Time 
Object-Oriented Database Schema, Proceedings of the 2nd 
Annual Conference on Productivity through Computer 
Integrated Engineering & Manufacturing, Orlando, Florida, 
Nov. 13-15, pp. 83-86, 1989. 

[6]  C. Liu and J. Layland.  Scheduling Algorithms for 
Multiprogramming in a Hard Real-Time Environment.  
Journal of the ACM, vol. 30, pp. 46-61, January 1973. 

[7]  J. W.-S. Liu.  Real-Time Systems.  Prentice-Hall, Fall 
2000. 

                                                                                            
[8]  R. Thomas, A Majority Consensus Approach to 
Concurrency Control for Multiple Copy Databases. ACM 
Transactions on Database Systems, 4(2):180-209 (1979). 

[9]  A. Burger, V. Kumar and M. Hines, Performance of 
Multiversion and Distributed Two-Phase locking Concurrency 
Control Mechanisms in Distributed Databases, Information 
Sciences An International Journal. Volume 1-2,1996.   

[10]  A. Thomasian, Distributed Optimistic Concurrency 
Control Methods for High-Performance Transaction Processing, 
IEEE Transactions on Knowledge and Data Engineering, 
January/February 1998 (Vol. 10, No. 1) pp. 173-189. 

[11]  M. Carey., and M. Livny, Conflict Detection Tradeoffs for 
Replicated Data, ACM Transactions on Database Systems, Vol. 
16, pp. 703-746, 1991. 

[12]  M. Xiong, K. Ramamritham, J. Haritsa, J. A. Stankovic, 
MIRROR: A State-Conscious Concurrency Control Protocol for 
Replicated Real-Time Databases, Workshop on Advanced Issues of E-
Commerce and Web/based Information Systems (1998).  

[13]  TriPacific Software, Inc.  www.tripacific.com. 

[14]  M. Squadrito, L. Esibov, L.C. DiPippo, V. F. Wolfe, G. Cooper, 
B.i Thurasingham, P. Krupp, M. Milligan, R. Johnston, R. 
Bethmangalkar, The Affected Set Priority Ceiling Protocols for 
Concurrency Control in Real-Time Object-Oriented Systems, The 
International Journal of Computer Systems Science and Engineering;  
vol. 14, no. 4., July 1999. 

[15]  P. Peddi, A Replication Strategy for Distributed Real-Time 
Object-Oriented Databases, University of Rhode Island Technical 
Report TR01-282, May 2001. 


