

A Replication Strategy for Distributed Real-Time Object-Oriented
Databases*

Praveen Peddi, Lisa Cingiser DiPippo
The University of Rhode Island

Kingston, RI USA 02881
dipippo@cs.uri.edu

ppeddi@hotmail.com

* This work is partially supported by the U.S. Office of Naval Research grant N00014-00-1-0060.

Abstract

This paper describes a replication algorithm for
distributed real-time object-oriented databases in a
static environment. All data requirements are specified
a priori, and the algorithm creates replication
transactions that copy remote data to a local site in
order to guarantee that every data request reads
temporally valid data. The algorithm conditions are
proven to be necessary and sufficient for providing this
guarantee. Test results indicate that under most
conditions, this replication strategy is better than total
replication, which is a typical strategy used in
distributed databases.

1. Introduction

Many time-critical applications require the sharing
of data that may be distributed among multiple sites. For
example, a critical planning collaboration among ships in
a fleet may need to share sonar and radar data that is
collected by the various vessels. In such applications, it
is imperative that the data be available to the requesting
transactions at the time it is needed. In a typical
distributed database, the transaction is required to access
the remote data directly, at the risk of missing its
deadline. Another problem can occur in such a scenario
when the requesting transaction accesses the data, but it
is not temporally valid. That is, its value is “out-of-date”
because the transaction did not read from the most recent
update.

In this paper, we present a replication algorithm,
called the Just-In-Time Real-Time Replication (JITRTR)
algorithm, that creates replication transactions based on
client’s data requirements in a distributed real-time

object-oriented database (DRTOODB). These
replication transactions copy data objects to the site on
which they are needed “just in time” for the read to
occur. The algorithm carefully computes the parameters
of the replication transactions so that we can guarantee
that any requests that read data, in fact, read temporally
valid data.

The JITRTR algorithm is designed to work in a
static environment in which all object locations, and
client data requirements are known a priori. Given these
static system specifications, the algorithm creates a set of
transactions that access the data objects. These
transactions are then mapped to a well-known
schedulability model so that the system can be analyzed
to determine if all specified deadlines can be met. If so,
then the system can be executed and all requests will
read temporally valid data. If the system is not
schedulable, then the system specification must be
reconsidered.

The rest of this paper is organized as follows.
Section 2 presents some background on the real-time
schedulability model on which we have based our
algorithm. It also provides a survey of related work to
indicate the novelty of our algorithm. Section 3 presents
the JITRTR algorithm, starting by describing the system
model, and then describing how the algorithm maps the
system specifications to transactions that access the data
objects. Section 4 provides an analysis of the algorithm.
It presents three theorems that demonstrate the goodness
of the algorithm. Section 5 provides a brief description
of a set of performance tests that we carried out to
illustrate how our algorithm compared to other related
techniques for data replication. Finally, Section 6
summarizes the results of this work, briefly describes an
extension of the work that provides finer granularity of

data access, and gives some insight into future work that
may result from this project.

2. Background and Related Work

This section presents foundational information for
the underlying concepts of the JITRTR algorithm
including concepts of DRTOODBs, scheduling protocols
and related replication control algorithms.

2.1. Distributed Real-Time Object-Oriented
Databases

A real-time database is one in which both the
transactions and the data have timing constraints [1].
For instance, deadlines can be imposed upon the
completion time of transactions and on the validity of a
data item. The temporal validity of a data item is the
amount of time that its value is considered valid. In a
real-time object-oriented database (RTOODB years [2,3,
4, 5]), temporal validity can be expressed as a part of the
object.

In a DRTOODB, real-time access to a remote object
can be obtained by having transactions directly access
the object, keeping copies of all objects on all sites, or
providing a mechanism for making copies such that they
are kept on sites where they are needed. Data replication
incurs complexity because not only must the original
data object be kept temporally consistent, but the copies
must be as well.

2.2. Scheduling Protocols

In a DRTOODB, transactions must be scheduled so
that they do not violate timing constraints. Additionally,
access to shared data must be controlled in such a way as
to prevent data inconsistency and to uphold the priority
assignment made by the scheduling algorithm. The
JITRTR algorithm creates transactions that execute in a
system running deadline monotonic scheduling (DM)
[6], and distributed priority ceiling protocol (DPCP) for
resource access control [7].

Deadline Monotonic Scheduling. DM scheduling
[6] assigns priorities to periodic tasks such that the task
with the shortest relative deadline is assigned the highest
priority. To determine the schedulability of a set of tasks
scheduled using DM priority assignment, we compute
the worst case response time for a task by considering
the amount of time the task will be preempted by higher
priority tasks, plus the execution time of the task itself,
plus any blocking by lower priority tasks that may occur
due to sharing of resources (priority inversion). If all
tasks can meet their deadlines, then the system is
schedulable.

Distributed Priority Ceiling Protocol. DPCP [7]
is a resource access control algorithm that does not
bounds priority inversion and prevents deadlock. The
protocol assumes that tasks and resources have been
assigned and statically bound to processors, and that
priorities of all tasks are assigned in advance making it
suitable for static hard real-time systems.

The DPCP scheduling model is made up of
resources, and tasks that access the resources. A
resource that resides on the local processor of a task is a
local resource. A global resource is a resource that is
accessed by at least one task that is on a different
processor. A task executes in a global critical section if
it is accessing a global resource and executes in local
critical section if it is accessing a local resource.

The various possible uses of resources within the
DPCP model define a set of blocking times that must be
taken into account when analyzing the schedulability of
a system. These blocking times (described fully in [7])
are added to the analysis described above for DM to
provide the proper analysis.

2.3. Replication Control Algorithms

Many real-time replication control algorithms have
been proposed based on concurrency control
mechanisms like majority consensus approach [8] and
distributed two-phase locking [9], distributed two-phase
locking, distributed optimistic concurrency control
(OCC) [10], distributed optimistic two-phase locking
(O2PL) [11]. MIRROR (Managing Isolation in
Replicated Real-Time Object Repositories) [12] is a
concurrency control algorithm designed for real-time
systems with replicated data. It augments O2PL to
provide state-conscious priority blocking. All of the
above mentioned concurrency control algorithms suffer
from the possibility of deadlock and unbounded
blocking. Thus, they are not suitable for a static real-
time database system.

3. JITRT Replication Algorithm

This section describes the Just In Time Real-Time
Replication (JITRTR) algorithm. It creates real time
replication transactions in a DRTOODB based on the
data requirements in a static system. Figure 1 depicts the
flow of the algorithm, which has two parts. In the first
part, the Replication Manager (RM) takes the parameters
from the system specifications and creates local and
replication transactions. In the second part, the
transactions are mapped to an analyzable model, based
on the DPCP model [7].

Figure 1 - JITRT Algorithm Methodology

We begin this section by defining assumptions we
have made about the system, followed a description of
the system model. We then explain how the RM does
the core work of the algorithm, i.e. taking the parameters
from the system specifications and creating the local and
replication transactions. Finally, we describe how the
transactions are mapped to the DPCP model.

3.1. Assumptions

The following is a list of assumptions we have made
regarding the system in which JITRTR algorithm works.
1) The system is static. That is, all distributed sites and

every object on each site are known a priori. All
read/write requests from clients are known a priori.

2) For each object there is one update transaction that
we call the “sensor update transaction”. There can be
more than one transaction that updates the object, but
only one is called the sensor update transaction.

3) Each object has a local site, where it originates. Any
other sites that require this object have a copy of it.

4) All the databases in the distributed system are
homogeneous. All the sites in the system contain the
same DBMS.

5) The period of the sensor update is always less than
the temporal validity of the objects. That is, the
object will be updated before it becomes temporally
inconsistent.

6) Copies of objects are not accessible to transactions on
other sites. That is, only the object on its origination
site is accessible to be replicated.

3.2. System Model

The model on which the JITRTR algorithm is based
is made up of M distributed sites, data objects, and
periodic requests and updates that access the data
objects.

Objects. Each object in the system is defined as
follows:

Object = < OID, Value, Time, OV >
OID is a unique identifier of the object within the

system. Value is the present value of the object. Time is
the time at which the object was last updated. OV is the

object validity, i.e. the time after which the value of the
object is no longer valid.

Requests and Updates. Application requirements
are specified as periodic Requests for data and Updates
of data with following parameters:

Request = <OID,per,rel,dl,LSiteID>
Update = <OID per,rel,dl,LSiteID>

Requests are read-only data accesses, and updates
are write-only. OID is the unique identifier of the
requested object. Per is the frequency (period) at which
the data is to be accessed. Rel is the release time at
which the request/update should be started, dl is the
relative deadline of the request/update within each
period and LSiteID specifies the site at which the
update/request was made.

3.3. Replication Manager

Given a system specified by the above model, the
JITRTR algorithm creates replication transactions to
ensure the availability of data. The algorithm produces a
model with two types of transactions, local transactions
and replication transactions. A transaction is a local
transaction if all of its operations execute on the same
site as the site on which the request was made, and it is a
replication transaction if at least one of its operations
executes on a remote site.

The following is the specification for the model of a
transaction created by the Replication Manager (RM):

Ttype <opers(OID),per, rel, dl, exec, LSiteID>
where type specifies the type of the transaction, local or
replication. opers is a set of operations on object OID,
such as read, and write. Per, rel, dl and LSiteID are as
defined above. Exec specifies the worst-case execution
time of the operations plus any other time incurred by
the transaction.

The following subsections describe how the JITRTR
algorithm maps systems specifications for requests and
updates respectively, to local and replication
transactions.

3.3.1. Requests. When mapping requests to
transactions, there are two cases to be considered. The
first case occurs when the site on which requested object
originated is the same as the site at which request is
made, and the second case is when the two sites are not
the same.
Case 1: RSiteID = LSiteID:

This is the simpler of the two cases, because no
copies of data need to be made. The request maps to a
local transaction specified as follows:

Tlocal (opers(OID), per, rel, dl, exec LSiteID)
where opers(OID) is a read(OID)on local site of OID,
and exec is the execution time of the read operation.
Case 2: RSiteID ≠ LSiteID

System Specification

Replication Manager

Transactions + Objects

Tasks, Critical Sections, Objects

Map to DPCP

In this case, the request is for data that resides on a
remote site. Thus, a copy of the data will be made on the
local site (by a replication transaction) so that the data
can be read within the specified deadline. The
replication transaction must finish before the start of the
local transaction so that the local transaction can read the
copy.

Replication transaction: The JITRTR algorithm
creates a single replication transaction for all requests
made on a particular site for an object, OID. This allows
for sharing of the local copy among all local
transactions. The parameters for the replication
transaction are:

Trep(opers(OID),per,rel,dl,execLSiteID)
where opers(OID) are read(OID) on RSiteID and
write(OID) on LsiteID. Per is equal to the period of
sensor update of the object so that the transactions will
read valid data (see Theorem 2). The release time (rel) is
the start of the period, and exec is the total execution
time of the replication transaction (exec time of read +
exec time of write + network delay). The deadline (dl) is
the crucial part of the transaction, because it must be
computed to ensure that the local copy is available and
valid when the data is needed.

Deadline Computation. Let d be the deadline that
we are computing for a replication transaction on
LSiteID created for a data request of object OID. Let N
be the least common multiple of the periods of all
requests for OID on LSiteID and the period of sensor
update. Let n be the number of replication periods that
should be considered for the analysis, where n is
computed as

n = N/per
We call N the superperiod of the replication

transaction because it represents a complete cycle of all
requests for the data being replicated on LSiteID. We
define OVi to be the point in time in the ith period of the
replication transaction that the value of the object (from
the most recent update) becomes temporally invalid. An
invalid interval is an interval of time during which the
object does not have a valid value associated with it, that
is, the object is temporarily inconsistent (See Figure 2).

Initially we set the deadline of the replication
transaction equal to its period. Then, for each of the n
periods in the superperiod, there are 3 cases to consider
in calculating the deadline.
1) If no requests are executing in the invalid interval, the

deadline is unchanged because no requests will be
reading invalid data.

2) If no request has started executing before the invalid
interval but a new transaction enters at xi, where OVi <
xi < Pi +d, then the deadline is changed to min(d, xi-
Pi).

3) If any request has started before or at OVi and
continues to execute in the invalid interval, then the

deadline is changed to OVi - Pi. This deadline
assignment ensures that the replication transaction
completes before the data becomes invalid, and thus
the requests read valid data.

Note that if the deadline is changed to OVi - Pi at
any point, the computation of deadline is complete as we
have reached the minimum possible deadline. Otherwise
we consider these three cases for each of the n
replication transaction periods in the superperiod.

Figure 2 – Invalid Interval

Local Transaction: After the above replication
transaction is created for a set of requests, a local
transaction is created for each request on OID with the
following parameters:

Tlocal (opers(OID), per,rel,dl,exec,LSiteID)
where opers(OID) is read(OID) on LSiteID and exec is
execution time of the read.

3.3.2. Updates. For an update, again, two cases must be
considered. If the data to be updated is on the same site
as the update, then it is a simple write to the object.
Otherwise, after the write, the updated object copy must
be written back to its originator site so that all other
transactions that access the object can see this new value.
Case 1: If RSiteID = LsiteID

In this case the update maps to a local transaction as
follows:

Tlocal (opers(OID), per, rel, dl, exec, LSiteID)
where opers(OID) is write(OID) on local site of OID
and exec is the execution time of write(OID).
Case 2: If RSiteID ≠ LSiteID

In this case, the update maps to a local transaction
that writes to the local copy of the object, and a
replication transaction that copies the updated object to
its originator site. Each update maps to a separate a
replication transaction, with one exception, described
later in this section.

Local Transaction. The local update transaction
writes to the local copy and is in the following form:

Tlocal (opers(OID), per, rel, dl, exec, LSiteID)
where opers(OID) is write(OID) on the LsiteID and exec
is the execution time of write(OID).

Replication Transaction. The replication
transaction is a copy back transaction. It reads the local
copy of the object and writes it to its originator site.
This replication transaction is defined as follows:

Trep (opers(OID), per, rel, dl, exec, LSiteID)
Here, opers(OID) are read(OID) on LSiteID and
write(OID) on the RSiteID. Per is same as the period of

|----------|-------|---|---|---|---|-------
Pi-1

|----------|-------|---| | |---|-------

Invalid interval

Pi Pi+1OVi

di
di-1

|

the local transaction, rel is equal to the deadline of the
local transaction to ensure that the local write is
complete before the read begins. Dl is the end of the
period to allow maximum time for the transaction. Exec
is the sum of the execution times of write(OID) and
read(OID) plus the network delay.

Although each local update transaction generally
requires a replication transaction to copy back the data
that it writes, some unnecessary replication transactions
can be eliminated. The possible cases for eliminating the
replication transactions are:
a) If more than one local transaction has the same release

time and deadline, then only one of these local
transactions needs to be copied back.

b) If more than one update has the same period and starts
at the same time, only the update with the shortest
deadline (highest priority) creates the replication
transaction.

3.4. Schedulability Model

In order to analyze and execute the transactions
created by the RM, we map the local and replication
transactions to the DPCP model. There are two types of
objects in the database on each site: a local object,
which is local to the particular site and not replicated on
any other site, and a replicated object, which has copies
on multiple sites in the database.

After the JITRTR algorithm translates the
requests/updates into the set of local and replication
transactions, it determines whether each request/update
is made on a local object or on a replicated object. It
then assigns priorities to all transactions based on the
deadline monotonic algorithm. Once the priorities are
assigned, the algorithm maps the transactions to the
DPCP model.

A local object is mapped to local resource and a
local transaction is mapped to local critical section.
Similarly, a replicated object is mapped to a global
resource. A replication transaction accesses both a local
resource (local copy of object) and a global resource
(original object on remote site). Therefore, the
replication transaction has both a local and a global
critical section. Given this mapping, the system can be
analyzed for schedulability, and executed using DPCP
for resource access control if found to be schedulable.

4. Theorems

This section provides analysis of the JITRTR
algorithm. We state and prove three theorems that
indicate the correctness and goodness of the algorithm.

Theorem 1: All requests will always access
temporally consistent data.

Proof: Consider a replication transaction TO that
copies object O. Let d be the deadline of TO as computed
by the JITRTR algorithm. Let OVi be the point in time
in the ith

 period after which the copy of the object O
becomes invalid and let P be the period of TO.

O is temporally inconsistent in the ith period in the
interval between OVi and d (see Figure 2). Thus if we
prove that no request executes in the invalid interval,
then we have proven that all requests access temporally
valid data.

Recall from the JITRTR algorithm that there are
three possible cases considered when the deadline of TO
is computed. We re-examine these cases to prove that
no request executes in the invalid interval.
Case 1) No requests execute in the invalid interval.
Clearly, in this case no requests read invalid data.
Case 2) Some request starts at time xi such that OVi < xi
≤ Pi +d. The JITRTR algorithm changes d to xi - Pi
reducing the size of the invalid interval and making the
replication transaction finish before any requests read the
data. Thus any such requests will read valid data in this
case.
Case 3) Some request executes throughout the invalid
interval starting before or at OVi and finishing at or after
the deadline expiration, Pi +d. Then the JITRTR
algorithm computes d to be OVi - Pi. Again, this
deadline assignment ensures that before the object
becomes invalid, a new valid value has been written.
Thus, the invalid interval is removed and the request
reads valid data.

In all the cases, we have proven that the requests
read valid data. □

Theorem 2: The period of the replication
transaction TO must be equal to the period of the
sensor update transaction for object O in order for all
requests to read valid data using our algorithm.

Proof: To prove that the period of the replication
transaction and the period of sensor update must equal,
let us consider a contradictory situation. Let us assume
they are not equal i.e. assume that the periods PTo for
replication transaction TO and for PSUo for sensor update
transaction SUO are equal.

Here we consider the two cases. The first case is
that PTo > PSuo and the second case is that PTo < PSuo.
We prove that it is not possible to construct a replication
transaction with the above two cases.
Case 1) PTo > PSuo

As discussed in the proof of Theorem 1, the object is
invalid only in the invalid interval. Consider the
calculations of deadline in each period of the replication
transaction.

Initially d is set to the length of the period of the
replication transaction. In each successive period,
deadline is calculated based on whether there are any
requests in the invalid interval. The minimum deadline

in any period i is OVi - Pi. So, once the deadline in any
period becomes OVi - Pi the calculation of deadline is
stopped and the final deadline is taken as OVi - Pi. It can
be observed from the Figure 3 that, since PTo > PSuo, as i
increases, d decreases and at some point (for some i), d
becomes 0 or less than 0.

 |--------|--------|--------|--------|--------|--------|--------|--------|--------| (SU O)

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

 OV2 OV3 OV4 OV5 OV6

 ----d1----> --d2-

d3- <d4> d5=?

 |-----------|-----------|----------|----------|-----------|-----------| (TO)

 P1 P2 P 3 P4 P5 P6 P7

Figure 3 - Deadline Assignment - PTo > PSuo

Thus we cannot guarantee that all the requests will
read the valid data all the time.
Case 2) PTo < PSuo

From Figure 4, it can be observed that, since the
periods are not equal, there may be a case (P4 in Figure
4) where we cannot choose a deadline that will satisfy all
requests reading valid data.

Figure 4 - Deadline Assignment - PTo < PSuo

In this second case again, we cannot guarantee that a
request will always read valid data.

 Now we show that if PTo = PSuo, we do not come
across the problem of deadline becoming 0. It can be
observed from Figure 5 that, between the start of every
period of TO and every period of OVi there is always
some constant time, which means they do not coincide.
So, deadline can never be 0 in this case and all the
requests read valid data .

Figure 5 - Deadline Assignment 3

Thus the period of TO must be equal to the period of
sensor update transaction for object O in order for all
requests to read valid data. □

Theorem 3: The deadline assignment for a
replication transaction from a request, made by the
JITRTR algorithm, is necessary and sufficient for
ensuring the temporal consistency of data.

Proof: We first prove the sufficient condition, and
then we prove the necessary condition.

Sufficient condition: Theorem 1 proves that requests
always read temporally consistent data, which means
that the deadline assignment is sufficient for ensuring the
temporal consistency of data.

Necessary Condition: Theorem 1 considers all the
three cases for computing the deadline and proves that
all the requests always read the valid data. To prove that
the deadline assignment of replication transaction, TO,
according to our algorithm is necessary, let us take the
contradictory situation. That is, let us assume that there
exists a deadline assignment d’ of a replication
transaction by some algorithm, other than JITRTR
algorithm, greater than the deadline assigned by the
JITRTR algorithm.

As discussed above, the object is invalid in ith period
only in the invalid interval. Again, we examine the three
cases described in Theorem 1.
Case 1) There are no requests in the invalid interval.
The JITRTR algorithm assigns the deadline to be d=Pi+1
– Pi. This is the maximum deadline in the period. So d’
cannot be greater than d.
Case 2) There is a request xi such that OVi<xi≤Pi+d.
The JITRTR algorithm assigns deadline as d=xi-Pi. If
d’>d, then a request reading the object in the interval
(xi,Pi+1] could read invalid data.
Case 3) There is a request at or before OVi, continuing
into the invalid interval. The JITRTR algorithm assigns
the deadline to be d=OVi-Pi. If d’>d, then a request in
the interval (OVi, Pi+1] could read invalid data.

This implies that the deadline assignment by our
algorithm is a necessary condition to ensure the temporal
consistency of data read by the transactions.□

5. Performance Results

We tested the JITRTR algorithm to determine how
it compares to two other techniques for accessing remote
data in a distributed database. We compared it to full
replication in which every object is fully replicated in the
database, and every update is propagated to every copy.
We also compared our algorithm to no replication in
which data is accessed directly on the remote site.

The performance measure that we chose was percent
schedulability. That is, given a random system
specification, how often does the JITRTR algorithm
produce a system that is schedulable, where all deadlines
can be met. We also measured percentage of task
schedulability to indicate how many tasks in a given
system are found to be schedulable. These measures

 (SUo)
P1

 OV2

 OV3 OV4 OV5 OV6

(TO)

d

P2 P3 P4 P5 P6 P7

P1 P2 P3 P4 P5

d d d d

 (SUo)
P1

 OV2

 OV3 OV4 OV5 OV6

d

(TO)

d

P2 P3 P4 P5 P6 P7

P1 P2 P3 P4 P5 P6

d d d=?

were chosen because we wanted to determine what kind
of effect the additional overhead incurred by the
replication transactions would have on the schedulability
of the system.

To implement the tests, we created a simulation
environment in which system specifications were
randomly generated. The system specifications provided
input to the JITRTR algorithm, and the resulting
transactions were tested for schedulability using the
RapidRMA [13] schedulability analysis tool. We also
simulated an algorithm for creating full replication
transactions and no replication transactions for
comparison. All tests were averaged over 15 trials.

We performed a baseline test, and three test suites,
examining the effects of the length of the period, the
number of database objects, and the percentage of
updates in the system. Due to lack of space, this paper
describes the baseline test and one of the test suites. The
results of the other test suites were very similar. For
complete description of these results see [15].

5.1. Baseline Testing

Table 3 shows the parameters, and ranges of values
used in the baseline test. These values were also used in
the other test suites, with all parameter ranges remaining
constant except for the parameter being tested.

Parameter Range
Period 150 – 400
No of Objects 7 – 12
No of sites 5 – 12
No of Reqs/Object 3 – 6
percentage of Updates 50

Table 3 - Baseline Parameters

The resulting schedulability of the system for the
three strategies is shown in Figure 6. It can be observed
that the schedulability percentage for the FullRep
algorithm is less than that for JITRTR. This is because
FullRep consists of more transactions in the system than
the other two replication strategies, for the same requests
and updates.

Figure 6 – System Schedulability for Baseline Testing
The schedulability percentage for NoRep is slightly

more than that for JITRTR replication. This is because

the NoRep algorithm has fewer transactions than the
JITRTR algorithm because JITRTR creates a replication
transaction for each remote data access. However the
JITRTR algorithm guarantees that the objects read by the
requests are always valid whereas NoRep does not make
this guarantee. That is, even if the data on the remote
site may be valid at the time it reads, it may become
invalid while transferring it to the local site.

The task schedulability results (Figure 7) were
similar to the system schedulability results. High
percentage schedulability for JITRTR and NoRep shows
that the system, even if it is not schedulable, is nearer to
schedulability.

Figure 7 – Task Schedulability for Baseline Testing

5.2. Effect of Period

This test suite was performed to show the effect of
the length of the period of a request or update on the
schedulability of transactions executed by our algorithm.
The three different ranges of period we chose are 100-
250, 250-350, and 400-600.

System schedulability (Figure 8a) for all three
strategies is found to be less than that for base case. As
we expected, the figure illustrates that increase in the
period increased the schedulability percentage of the
system. We again see that the schedulability for JITRTR
is just slightly lower than NoRep, indicating that the gain
we get in the guarantee of valid data incurs only a
minimal amount of extra overhead.

The task schedulability results (Figure 8b) were
found to be similar to the results obtained for system
schedulability percentage, but the percentage of
schedulability is found to be higher.

 a) System Schedulability b) Task Schedulability

Figure 8 –Results on Effect of Period

JI

T
R

T
R

N
oR

ep

F
ul

lR
ep

0%

20%

40%

60%

80%

100%

T
as

k
S

ch
ed

%

low

medium

high

0%

20%

40%

60%

80%

100%

low

medium

high
JI

T
R

T
R

N
oR

ep

F
ul

lR
ep

S
ys

te
m

 S
ch

ed
%

80%
87%

53%

0%

20%

40%

60%

80%

100%

JITRTR NoRep FullRep

S
ch

ed
 %

93% 99%

80%

0%

20%

40%

60%

80%

100%

JITRTR NoRep FullRep

Ta
sk

 S
ch

ed
 %

6. Conclusions and Future Work

In this paper we have presented an algorithm for
replication of data in a distributed real-time object-
oriented database. The algorithm works in a static
environment in which data requirements are known a
priori. It analyzes the requirements of clients that will
use the DRTOODB, and creates transactions that will
make the data available, and that guarantee that only
valid data will be read. We have proven that the
algorithm uses necessary and sufficient conditions for
providing valid data to all requests. The results of the
performance tests were as we expected. They indicate
that the benefit of guaranteed temporal validity
outweighs the slightly higher overhead that is incurred
over a no replication strategy.

We have also developed an extension of this
algorithm designed to provide finer granularity of data
access. The algorithm, called the Just-In-Time Real-
Time Replication Affected Set (JITRTR-AS) algorithm,
assumes that requests can access methods of objects as
opposed to entire objects. It relies on a method-based

extension of the DPCP (DASPCP) for schedulability
analysis [14]. Due to space limitations, we have not
presented this work here. For more information on this
extension, see [15].

Finally, it is important to note that while this
algorithm, and its method-based extension, show much
promise towards providing real-time data replication, the
assumptions upon which they are based can be quite
limiting. In future work, we plan to explore how some
or all of these assumptions can be relaxed or removed.
For example, we would like to extend these algorithms
to work in a dynamic system in which data requirements
may not be periodic, and may not all be known a priori.
In such a system, the algorithm would have to be
changed to adapt to a changing environment. That is,
something similar to the JITRTR algorithm could be
used based on an initial specification of system
requirements. Then, as these specifications change, an
on-line version of the algorithm would reset the
parameters of the replication transactions to reflect the
new requirements.

References

[1] V. F. Wolfe, L. C. DiPippo, Real-Time Databases; chapter
in Database Systems Handbook, P. Fortier and A. Rose, eds.;
Multiscience Press; 1997.

[2] V.F. Wolfe, J.J. Prichard L.C. DiPippo and J. Black, The
RTSORAC Real-Time Object-Oriented Database Model and
System, chapter in Real-Time Database Systems: Issues and
Applications, K.-J. Lin and S. Son eds., Kluwer Academic
Press, 1997.

[3] L. Zhou, E. A. Rundensteiner, K. G. Shin, Schema
Evolution of an Object-Oriented Real-Time Database System
for Manufacturing Automation, IEEE Transactions on
Knowledge and Data Engineering, Nov.-Dec. 1997 (Vol. 9,
No. 6) pp. 956-977.

[4] J. Taina, S. H. Son, Requirements for Real-Time Object-
Oriented Database Models -- How Much Is Too Much?
Proceedings of the 9th Euromicro Workshop on Real Time
Systems,1997.

[5] R. Ghaly and N. Prabhakaran: Modeling of a Real-Time
Object-Oriented Database Schema, Proceedings of the 2nd
Annual Conference on Productivity through Computer
Integrated Engineering & Manufacturing, Orlando, Florida,
Nov. 13-15, pp. 83-86, 1989.

[6] C. Liu and J. Layland. Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment.
Journal of the ACM, vol. 30, pp. 46-61, January 1973.

[7] J. W.-S. Liu. Real-Time Systems. Prentice-Hall, Fall
2000.

[8] R. Thomas, A Majority Consensus Approach to
Concurrency Control for Multiple Copy Databases. ACM
Transactions on Database Systems, 4(2):180-209 (1979).

[9] A. Burger, V. Kumar and M. Hines, Performance of
Multiversion and Distributed Two-Phase locking Concurrency
Control Mechanisms in Distributed Databases, Information
Sciences An International Journal. Volume 1-2,1996.

[10] A. Thomasian, Distributed Optimistic Concurrency
Control Methods for High-Performance Transaction Processing,
IEEE Transactions on Knowledge and Data Engineering,
January/February 1998 (Vol. 10, No. 1) pp. 173-189.

[11] M. Carey., and M. Livny, Conflict Detection Tradeoffs for
Replicated Data, ACM Transactions on Database Systems, Vol.
16, pp. 703-746, 1991.

[12] M. Xiong, K. Ramamritham, J. Haritsa, J. A. Stankovic,
MIRROR: A State-Conscious Concurrency Control Protocol for
Replicated Real-Time Databases, Workshop on Advanced Issues of E-
Commerce and Web/based Information Systems (1998).

[13] TriPacific Software, Inc. www.tripacific.com.

[14] M. Squadrito, L. Esibov, L.C. DiPippo, V. F. Wolfe, G. Cooper,
B.i Thurasingham, P. Krupp, M. Milligan, R. Johnston, R.
Bethmangalkar, The Affected Set Priority Ceiling Protocols for
Concurrency Control in Real-Time Object-Oriented Systems, The
International Journal of Computer Systems Science and Engineering;
vol. 14, no. 4., July 1999.

[15] P. Peddi, A Replication Strategy for Distributed Real-Time
Object-Oriented Databases, University of Rhode Island Technical
Report TR01-282, May 2001.

