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Abstract

This paper presents the A�ected Set Priority Ceil-
ing Protocols (ASPCP) for concurrency control in
real-time object-oriented systems. These protocols are
based on a combination of semantic locking and pri-
ority ceiling techniques. This paper shows that the
ASPCP protocols provide higher potential concurrency
for object-oriented systems than existing Priority Ceil-
ing protocols, while still bounding priority inversion
and preventing deadlock.

1 Introduction
The advent of real-time object-oriented (RTOO)

systems, such as Real-Time CORBA middleware [6, 3]
and RTOO databases [2], poses the need to control
concurrent access to objects under real-time require-
ments. In a real-time database, the concurrency con-
trol technique manages concurrent access by trans-
actions to data objects. In a CORBA system, the
middleware must control concurrent access by remote
clients to CORBA objects.

Concurrency control techniques for RTOO systems
must satisfy more requirements than traditional non-
real-time concurrency control techniques because they
must also meet timing constraints. Among the most
important traditional non-real-time requirements are
that the technique provides: high concurrency to max-
imize average throughput; deadlock treatment that ei-
ther prevents, avoids, or breaks deadlocks; and logi-
cal consistency, such as mutual exclusion or serializ-
ability, so that all constraints on the values of object
attributes are met. In real-time concurrency control,
there are similar requirements, along with the require-
ment that the technique should support predictable
execution, such as bounded blocking times for locks.
Providing predictable blocking times involves, among
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other things, bounding priority inversion that occurs
when a lower priority task blocks a higher priority task
[4].

In this paper we describe two new techniques for
concurrency control in RTOO systems: one for single-
node RTOO systems, such as real-time databases;
and one for distributed RTOO systems, such as RT
CORBA middleware. Both techniques are based on
the priority ceiling (PCP) family of protocols [4]. Our
single-node RTOO concurrency control technique is
called the A�ected Set Priority Ceiling Protocol (AS-
PCP), and the multi-node technique is called the Dis-
tributed ASPCP (DASPCP).

Both protocols use PCP techniques while exploiting
the semantics of the object-oriented paradigm. They
do this through method-level locking, where a transac-
tion or client locks a particular method on an object.
Method locking is a �ner granularity of object lock
than exclusive locking, where the transaction/client
locks the entire object exclusively; or read/write lock-
ing, in which the transaction/client locks the ability
to read or write the entire object. Our protocols are
a form of semantic real-time object-based concurrency
control [2] that uses the semantics of the object to
determine the compatibility of method locks. In par-
ticular, these two protocols use the semantics of the
a�ected sets of methods [1] to determine the compati-
bility of method locks. The result is a pair of protocols
that, like the other PCPs, prevent deadlock and bound
priority inversion [4], and do so while allowing more
potential concurrency in RTOO systems than other
PCPs.

Section 2 presents the RTOO model that we as-
sume. It also summarizes the original work on single-
node and distributed PCP techniques to establish the
framework for our techniques. Section 3 presents
our ASPCP protocol for single-node RTOO systems,
such as real-time object-oriented databases. Sec-



tion 3 also shows how the ASPCP can lower prior-
ity ceilings for objects and therefore increase poten-
tial concurrency compared to the original PCP tech-
niques. Furthermore, the section shows that ASPCP
still prevents deadlock and tightly bounds priority
inversion. Section 4 presents the DASPCP for dis-
tributed RTOO systems, such as Real-Time CORBA
middleware. Like Section 3, this section demonstrates
DASPCP's increased potential concurrency while still
maintaining deadlock freedom and priority inversion
bounds. Section 5 summarizes.

2 Background
Previous work in object-based semantic real-time

concurrency control [2] and in priority ceiling proto-
cols [4] has led to our development of the A�ected Set
Priority Ceiling Protocols. Our previous work in se-
mantic concurrency control [2] indicates that using ob-
ject semantics to increase concurrency in a real-time
database can enhance real-time performance. How-
ever, in general, the semantic concurrency control
techniques can be complex and do not necessarily
bound priority inversion nor prevent deadlock. Fortu-
nately, priority ceiling protocols have been proven to
bound priority inversion and prevent deadlock [4] in
certain systems. By combining object semantics with
priority ceiling techniques, we developed the ASPCP
protocols presented in this paper.

This section �rst describes the model of RTOO sys-
tems that we assume and also indicates how the model
supports semantic real-time concurrency control for
object-oriented systems. We then summarizes previ-
ous work by Rajkumar, Sha, et. al, in developing the
priority ceiling protocol and the distributed priority
ceiling protocol - both of which provide the framework
for our object-based ASPCP protocols.

2.1 Real-Time Object-Oriented System
Model

A RTOO system consists of objects, some of which
manage shared resources. The model of a real-time
object that we use in this paper is derived from
the RTSORAC model [2] for real-time object-oriented
databases.

Our RTOO system object model extends the tradi-
tional object-oriented notion of an object to include
attributes that have a value, a timestamp and an
amount of accumulated imprecision. The impreci-
sion that is recorded accumulates due to the potential
relaxation of serializability by semantic concurrency
control [2]. Objects also include constraints and a
compatibility function. The constraints can be placed
on the attributes to express logical and temporal cor-
rectness of the object.

The user-de�ned compatibility function determines
how the methods of the object may interleave. It
is through this function that the object designer ex-
presses the semantics of allowable concurrency. The
exibility of the compatibility function allows the ob-
ject designer to specify di�erent levels of concurrency
for di�erent objects. For instance, one object may re-
quire serializability, while another object may tolerate
a less restrictive form of correctness. To enforce se-
rializability the object designer may use a�ected set
semantics [1] to determine compatibility. A method's
Read A�ected Set (RA) is the set of the object's at-
tributes that the method reads. A method's Write
A�ected Set (WA) is the set of the object's attributes
that the method writes. Under a�ected set semantics,
two methods m1 and m2 are compatible if and only if:

(WA(m1) \WA(m2) = ;) ^ (WA(m1) \ RA(m2) = ;)^

(RA(m1) \WA(m2) = ;)

Note that de�ning lock compatibility based on these
a�ected set semantics has been proven to produce se-
rializable object schedules [1].

A less restrictive form of correctness may be needed
to express the trade-o� between temporal and logical
consistency. In such cases, the semantics of compat-
ibility between methods are based on dynamic infor-
mation, including current temporal consistency and
imprecision of data. For example, if a method m1

that reads an attribute a is currently executing, it
would violate the logical consistency of m1's return
value if another method m2 that writes a were to exe-
cute. However, if the timing constraint on a has been
violated, i.e. it has become old, then allowing m2 to
execute would restore the temporal consistency of a.
When determining each potential allowable interleav-
ing of method executions, the compatibility function
can also examine the amount of imprecision that could
be introduced by the possible interleaving.

We developed a semantic locking concurrency con-
trol technique [2] that utilizes the full semantics of the
compatibility function to express the trade-o� between
temporal and logical consistency. It has been shown to
bound the imprecision that is accumulated due to non-
serializable method interleavings [2]. While this se-
mantic locking concurrency control technique provides
the potential for increased concurrency for meeting
more transaction deadlines, it su�ers from unbounded
priority inversion and the possibility of deadlock, both
of which can a�ect the system's predictability and its
ability to meet timing constraints.

2.2 Priority Ceiling Protocols
A priority ceiling protocol [4] uses information

about the way in which transactions intend to use the



resources of the system to bound priority inversion
and to prevent deadlock. It is based on the assump-
tion about the system that every object and every
transaction in the system is known a priori. Thus, no
dynamic information may be used to determine the
semantics of concurrency control.

There are three basic steps to any of the priority
ceiling protocols:

1. Before running, the protocol de�nes a prior-
ity ceiling for each critical section that may be
locked. The granularity of these critical sections
is the core di�erence among the various priority
ceiling protocols.

2. At run-time, when a transaction T requests a
lock, the lock can be granted only if T 's prior-
ity is strictly higher than the ceiling of locks held
by all other transactions.

3. If transaction T 's lock request is denied because
Tlow (a lower priority transaction) holds a lock
with priority ceiling equal to or greater than T 's
priority, Tlow inherits the priority of T until Tlow 's
lock is released.

Note that no checking of conict is necessary when
granting a lock. This is because conict in a priority
ceiling protocol is captured in the de�nition of the
priority ceiling.

Each of the protocols from Rajkumar, Sha et al.
that we describe below follow these basic steps. The
di�erence among them arises in how conict is de�ned
among locks and thus, how priority ceiling is de�ned.
We will describe how priority ceiling is de�ned in each
protocol.

The Basic Priority Ceiling Protocol. In the ba-
sic priority ceiling protocol [4], exclusive locks are
placed on entire objects. Thus, the critical section re-
quires a lock on the entire object. The priority ceiling
of a lock is de�ned as the priority of the highest pri-
ority transaction that will ever use this lock. A trans-
action T can lock a critical section only if it passes
the test of Step 2 (above): The priority of transaction
T must be strictly higher than the priority ceiling of
locks held by all other transactions.

The Read/Write Priority Ceiling Protocol. In
a database that allows select, insert, and update func-
tionality, a division can be made between read and
write operations. Instead of acquiring an exclusive
lock on an entire object, a transaction can request
read and write locks. Bounding priority inversion and

preventing deadlock with read/write locking has been
addressed by the read/write priority ceiling protocol
[4].

In the Read/Write priority ceiling protocol, since
each object can allow both readers and writers, each
object requires two static priority ceilings, and the sys-
tem dynamically determines which of these two prior-
ity ceilings to use as the overall read/write priority
ceiling for the object as follows:

1. The write priority ceiling is set equal to the high-
est priority transaction that will ever write the
object.

2. The absolute priority ceiling is set equal to the
highest priority transaction that will ever read or
write the object.

3. The read/write priority ceiling is set at run-time.
If a transaction is allowed to read an object, the
read/write priority ceiling is set equal to the write
priority ceiling. If a transaction is allowed to
write an object, the read/write priority ceiling is
set equal to the absolute priority ceiling.

In the read/write priority ceiling protocol, a critical
section is a read/write lock. A transaction T can lock
a critical section only if it passes the following test:

The priority of transaction T must be strictly
higher than the read/write priority ceiling of
locks held by all other transactions.

2.3 Distributed Priority Ceiling Protocol.

The Distributed Priority Ceiling Protocol (DPCP)
[4] allows tasks to lock objects on remote nodes.

DPCP Terminolgy and Assumptions. An ob-
ject lock that is accessed by tasks from remote pro-
cessors is referred to as a global lock. If the lock is
accessed only by tasks on its node, it is referred to
as a local lock. A critical section guarded by a global
lock is referred to as a global critical section (GCS). A
critical section guarded by a local lock is referred to
as a local critical section (LCS). A task T executes its
non-critical-section code and LCS's on its host proces-
sor. A task's GCS's may be bound and executed on
a processor(s) di�erent than the task's host processor.
All GCS's that are controlled by the same lock must
be bound to the same processor. DPCP prohibits a
mixed nesting of LCSs and GCSs, and GCSs at di�er-
ent nodes within a task.



DPCP Priority Ceiling. The base priority ceiling,
PG, is a �xed priority, greater than or equal to the
priority assigned to the highest priority task in the
system (in the examples of this paper we will make
PG equal to the highest priority of a task in the sys-
tem). The priority ceiling of a local lock is the highest
priority of all tasks that access it. The priority ceiling
of a global lock is the highest priority of all tasks that
access it plus PG.

DPCP Priority Assignment. A GCS that is gen-
erated by task T , is assigned a priority equal to the
sum of the base priority ceiling PG and the priority
of T .

Priority Ceiling Protocol. Each processor runs
the priority ceiling protocol on the LCSs and GCS's
by considering each thread of execution for executing
a GCS as a \task".

DPCP Example. The DPCP is a complicated pro-
tocol with many cases to consider. The following ex-
ample shows some of the cases. For a more detailed
example of the application of DPCP, we refer reader
to Rajkumar's work [4].

Consider a distributed system with two nodes. The
application consists of three tasks and two objects
(Otrack1 and Otrack2), guarded by 2 locks (L1 and L2).
Task T3 is bound to Node 1, while tasks T1 and T4 are
bound to Node 2 (we have no task T2 in this example,
we introduce a task T2 later in the example in Section
3). Pi is the priority of task Ti. In our notation, the
higher the Task's subscript, the higher its priority so
P1 < P3 < P4.

In the example, tasks T1, T3 and T4 execute the
following sequence of steps.

T1 : ... O_track2->read_speed ...

T3 : ... O_track1->write_speed ...

T4 : ... O_track1->read_altitude...

O_track2->read_depth

Object Otrack1 and its lock L1 are bound to Node
1. Object Otrack2 and its lock L2 are bound to Node
2. The priority ceilings of each lock, and the normal
execution priority of each critical section thread are
listed in the tables of Figure 1.

The following execution sequences demonstrate sev-
eral aspects of the DPCP including priority inheri-
tance and several forms of blocking of higher priority
tasks by lower priority tasks.

� At time t0, task T1 arrives on Node 2 and begins
execution. Similarly, task T3 begins execution on
Node 1.

Priority Ceilings of Locks
Lock PC

L1 (Global) 4 + 4 = 8
L2 (Local) 4

Normal Execution Priorities of CSs
Task CS Lock Priority
T1 L1 1
T3 L2 3 + 4 = 7
T4 L1 4 + 4 = 8

L2 4

Figure 1: Priority Ceilings and Execution Priorities In
DPCP Example

� At time t1, task T1 gets local lock L2 on Node 2
and begins execution of LCS at its normal execu-
tion priority of P1. Task T3 gets the global lock
L1 on Node 1 and begins execution of its GCS at
its normal execution priority of P3 + PG.

� At time t2, task T4 arrives on Node 2 and pre-
empts T1. Task T3 continues its execution of its
GCS on Node 1.

� At time t3, task T4 requests global lock L1. Since
the priority of T4's GCS (4+4 = 8) is not greater
than the priority ceiling of the held lock L1 (8),
T4 is blocked and T3 continues its GCS execution
at the inherited priority of 4 + 4 = 8. Task T1
resumes its execution of its LCS at Node 2.

� At time t4, task T3 completes the execution of
its GCS, releases global lock L1, and resumes its
own priority. Task T4 gets global lock L1 on Node
1 and begins execution of its GCS at its normal
execution priority of 4 + 4 = 8. Task T3 is pre-
empted by the higher priority T4's GCS. Task T1
continues the execution of its LCS at Node 2.

� At time t5, task T4 completes the execution of its
GCS and releases global lock L1. Task T3 resumes
its execution on Node 1. T4 attempts to get lock
L2. However, the priority of T4 (4) is not greater
than the priority ceiling of the held lock L2 (4),
so T4 is blocked and T1 continues its execution
with inherited priority of 4.

� At time t6, task T1 completes the execution of its
LCS and releases the lock L2 and resumes its own
assigned priority of 1. Task T4 gets the local lock
L2 on Node 2 and begins its execution.

� On completion of execution of task T4 at t9, task
T1 resumes its execution; it and T3 complete later.



Note the blocking and priority inheritance that oc-
curred at times t3 and t5. Although the DPCP in-
troduces new sources of blocking [4], for each source
that was not present in the PCP protocols, Rajkumar
has shown that the blocking is �nite and that DPCP
prevents deadlock [4].

Summary of Previous PCPs. In this section we
have summarized how the basic PCP and the DPCP
work by placing a single ceiling on an entire object,
thereby placing an exclusive lock on that object. The
Read/Write PCP places two ceilings on an object, thus
allowing many readers to an object at any given time
and limiting access to only one writer. In the next
section we describe how we have introduced a�ected
set semantics to improve concurrency in a single-node
object-oriented system by placing multiple priority
ceilings on each object - one for each method. Section
4 then describes how we do the same in a distributed
system.

3 A�ected Set Priority Ceiling Proto-
col.

This section describes the A�ected Set Priority
Ceiling (ASPC) protocol, which uses the a�ected sets
[1] of each method of an object to determine the com-
patibilities of the methods of the object, which in turn
establishes priority ceilings for each method.

Using a�ected set semantics, the critical section re-
quires a method lock. Thus, the ASPC protocol as-
signs a conict priority ceiling to each method of each
object:

The conict priority ceiling of a method m

is the priority of the highest priority transac-
tion that will ever lock a method that is not
compatible with method m; where compatibil-
ity is de�ned by a�ected set semantics.

In order to determine the priority ceilings used in the
ASPC protocol, the following four sub-steps to Step 1
in Section 2.2 must be performed:

1a Determine the read/write a�ected sets for each
method.

1b Determine the compatibilities of the methods us-
ing the a�ected sets.

1c Determine the highest priority transaction that
will access each method.

1d Determine the conict priority ceiling for each
method using the information from Steps 2 and
3.

At run-time, the priority ceilings are used the same
way as in the Original PC and the Read/Write PC
protocols: The ASPCP allows a transaction T to re-
ceive a lock on a method if and only if the priority of
transaction T is strictly higher than the conict pri-
ority ceiling of locks held by all other transactions.

3.1 ASPCP Example

Consider how the ASPCP works in the following ex-
ample of a tracking real-time object-oriented database
with two data objects Otrack1 and Otrack2:

Object Otrack1 :

Attribute speed;

Attribute altitude;

method read_speed(); /* RAS = speed */

method write_speed(); /* WAS = speed */

method read_altitude(); /* RAS = altitude */

method write_altitude(); /* WAS = altitude */

Object Otrack2 :

Attribute speed;

Attribute depth;

method read_speed(); /* RAS = speed */

method read_depth(); /* RAS = depth */

method write_speed_depth(); /* WAS = speed, depth */

PC Step 1a establishes the read a�ected sets (RAS)
and write a�ected sets (WAS) of each method, which
are also shown with the objects above. For simplicity,
these objects were de�ned to have distinct read and
write methods. However, methods are not restricted
to this behavior. They can be any user-de�ned method
on the object. Notice that object Otrack1 has separate
methods to write each attribute, while Otrack2 has a
method that writes to two attributes.

PC Step 1b establishes the method compatibilities
using a�ected set semantics. These method compati-
bilities are expressed in the table of YES and NO val-
ues of Figure 2. Notice in the table that using a�ected
set semantics, two methods may interact concurrently
if they are only reading attributes, or if they are ac-
cessing di�erent attributes. Also notice that methods
that write to the same attributes may not execute con-
currently.

To establish the conict priority ceilings, the trans-
actions must be examined. Consider four transactions,
T1, T2, T3, and T4, where the transaction's subscript
indicates its priority (1 = lowest, 4 = highest). The
transactions share objects Otrack1 and Otrack2 as fol-
lows:



Object Otrack1

method read speed write speed read altitude write altitude
read speed YES NO YES YES
write speed NO NO YES YES
read altitude YES YES YES NO
write altitude YES YES NO NO

Object Otrack2

method read speed read depth write speed depth
read speed YES YES NO
read depth YES YES NO
write speed depth NO NO NO

Figure 2: A�ected Set Compatibilities in Example Objects

T1 : ... O_track2.read_speed ...

O_track1.read_speed ...

T2 : ...O_track1.write_speed ...

O_track2.write_speed_depth ...

T3 : ...O_track1.write_speed ...

O_track1.write_altitude ...

T4 : ... O_track1.read_altitude...

O_track2.read_depth ...

PC Step 1c establishes the highest priority trans-
action that will invoke each method. PC Step 1d uses
this information to determine the conict priority ceil-
ing for each method. Figure 3 shows the results of
PC Steps 1c and 1d for our example. For compari-
son, it also displays the priority ceilings that would be
used by the previous priority ceiling protocols. The
determination of the conict priority ceiling of object
Otrack1's method read altitude requires identifying all
methods in the compatibility table that conict with
it. From Figure 2 we see that only the write altitude
method conicts with read altitude. The conict pri-
ority ceiling of read altitude is therefore set to the pri-
ority of the highest priority transaction that will use
write altitude, which is 3. The other conict priority
ceilings are set in a similar way.

Figure 4 shows one possible concurrent execution of
the transactions using each of the three PC protocols.
In all three executions, at time t0, T1 starts executing,
and at time t1, is granted a lock, since no other trans-
actions currently hold locks. T2 enters the system at
time t2 and preempts T1 from the CPU. At time t3,
T2 attempts to acquire a lock. In all three cases, T2
is denied the request since its priority is not greater
than the priority ceiling of the lock held by T1. Note
that this prevents a possible deadlock from occurring
between T1 and T2. At this point, the three protocols
begin to di�er in their executions, due to the di�er-
ent ceilings that they use. The Original PC protocol
(part A) continues to prevent higher priority transac-
tions from acquiring locks until T1 releases its locks at

time 8. The Read/Write PC protocol (part B) and the
ASPCP (part C) allow T3 to acquire its lock at time 5,
because T3's priority is greater than the ceiling of lock
held by T1 (that lock's priority ceiling is 2). When
the highest priority transaction, T4, enters the system
and tries to acquire a lock at time 7, it is blocked in
the Original PC protocol and in the Read/Write PC
protocol. On the other hand, the ASPCP allows T4 to
acquire the lock.

3.2 ASPCP Properties

As with the previous priority ceiling protocols, the
ASPC protocol bounds priority inversion, prevents
deadlock, and produces serializable schedules of ob-
ject operations. Here we present informal proofs of
these claims, which are based on the analogous proofs
of the original priority ceiling protocol. Notice that
the proofs do not rely on how the priority ceilings are
determined, and so the more formal proofs found in
[4] apply to the ASPC protocol as well.

Deadlock Prevention.
Theorem 3.1 The ASPC protocol prevents deadlock.
Proof: Informally, our proof of deadlock prevention is
based on the fact that the proofs of deadlock preven-
tion for PC protocols in [4] do not rely on how the pri-
ority ceilings are determined. Therefore, with minor
adjustments for terminology, a similar proof to those
given in [4] proves that the ASPC protocol prevents
deadlock. Basically, since the ASPC protocol orders
the locks, and maintains this order using PC Step 2, a
circular wait cannot occur. Since a circular wait is one
of the necessary conditions for deadlock in lock-based
systems such as we have described, deadlock cannot
occur using the ASPC protocol. The complete proof
for deadlock prevention in the ASPC protocol is given
in [5]. 2

Bounded Priority Inversion.
Theorem 3.2 Under the ASPC protocol, a transaction
T can be blocked by at most a critical section of one



Object Otrack1

method ! read speed read altitude write speed write altitude
Highest Priority Transaction T1 T4 T3 T3
Conict Priority Ceiling 3 3 3 4
R/W Priority Ceiling Abs. PC = 4 Write PC = 3
Original Priority Ceiling 4

Object Otrack2

method ! read speed read depth write speed depth
Highest Priority Transaction T1 T4 T2
Conict Priority Ceiling 2 2 4
R/W Priority Ceiling Abs. PC = 4 Write PC = 2
Original Priority Ceiling 4

Figure 3: Priority Ceilings in Tracking Example

Time
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B: Read/Write
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C:  ASPC
Protocol

read lock Otrack2
write lock Otrack1

release lock

read lock Otrack1

lock Otrack2.read_speed
lock Otrack1.write_speed

lock Otrack1.read_altitude

0   1    2    3   4    5    6   7    8 

0   1    2    3   4    5    6   7    8 

0   1    2    3   4    5    6   7    8 

= executing
no locks

= executing
with locks

= blocked

Figure 4: Executions of the Example Transactions Under the Three Priority Ceiling Protocols



lower priority transaction.
Proof: The proofs of bounded priority inversion in the
other PC protocols given in [4] rely on PC Step 2
and PC Step 3 (see Section 2.2), which are common
to all priority ceiling protocols, including the ASPC
protocol. Again, since the proofs given in [4] do not
rely on how the priority ceilings are determined, this
proof is similar to those proofs. The complete proof
for priority inversion bound using the ASPC protocol
is given in [5]. 2

Increased Potential Concurrency. The example
of Figure 4 shows how the ASPCP lowers ceilings,
which reduces blocking and increases concurrency.
Theorem 3.3 The ASPCP never decreases concurrency
compared to the basic PCP technique.
Proof: The priority ceiling used by the PCP is the
maximum of the conict priority ceilings of the AS-
PCP. Since lower priority ceilings can only mean less
blocking time, concurrency can only increase when
ASPCP is used instead of PCP. 2

Serializable Execution.
Theorem 3.4 The ASPCP enforces serializable sched-
ules of method operations for each object.
Proof: Under any PCP, a concurrent access is allowed
only if the requesting transaction has a priority higher
than the priority ceiling of all held locks. In the
ASPCP the priority ceiling of a lock is determined
by the priority of transactions accessing conicting
locks. Thus, a lock will not be granted if a conicting
lock is currently held. Badrinath and Ramamritham
showed that by de�ning conict using a�ected set se-
mantics, an object is ensured a serializable schedule
of method operations [1]. Thus, since ASPCP de�nes
conict with a�ected set semantics and denies conict-
ing locks, it produces a serialable schedule of method
operations on each object. 2

Note that the above theorem discusses serializabil-
ity of method operations within an object, and not the
more global notion of transaction serializability. Two-
phase locking of method locks can be used to ensure
transaction serializability.

4 Distributed A�ected Set Priority
Ceiling Protocol

For concurrency control in distributed real-time
object-oriented systems, we have developed the
DASPCP that combines techniques from Rajkumar's
DPCP, and our ASPCP. In particular, just as the AS-
PCP uses the PCP mechanism but with the lock gran-
ularity at the object method level, the DASPCP uses
the DPCP mechanism with its lock granularity at the
object method level.

The DASPCP uses the same de�nition of priority
ceilings as does the ASPCP: The priority ceiling of
a method m of an object is the highest priority of
a transaction that will ever lock a method that is not
compatible with methodm; where compatibility is de-
�ned by a�ected set semantics. The DASPCP also
uses the DPCP priority assignment so that GCS's ex-
ecute at the priority of the requesting task plus the
base priority ceiling, PG, of the system (see Section
2.3). Note that these priority ceilings cause the re-
duced blocking found in the DASPCP compared to
the DPCP. The DASPCP also follows the basic steps
of all priority ceiling protocols (see Section 2.2).

4.1 DASPCP Example

To illustrate the DASPCP, consider the example
that was introduced in Section 2.3 then augmented in
Section 3.1. The DASPCP priority ceilings are shown
in Figure 5. In this �gure, the priority ceilings of ob-
ject Otrack1, which is a globally accessed since it re-
sides on Node 1 and is accessed by T1 and T4 on Node
2, are shown as the sum of the highest priority of a
task that accesses a conicting method plus the base
priority ceiling, PG (we have chosen PG=4, the high-
est priority of any task in the system).

Consider the following execution sequence.

� At time t0, task T1 arrives on Node 2 and begins
its execution. Similarly, task T3 begins execution
on Node 1.

� At time t1, task T1 gets local lock on Otrack2 !

read speed on Node 2 and begins execution of its
LCS at its normal execution priority of 1. Task
T3 gets the global lock on Otrack1! write speed

on Node 1 and begins execution of its GCS at its
normal execution priority of 3 + 4 = 7.

� At time t2, task T4 arrives on Node 2 and pre-
empts T1. Task T3 continues execution of its
GCS.

� At time t3, task T4 requests the global lock on
Otrack1! read altitude. Since T4's GCS priority
(4 + 4 = 8), is higher than the priority ceiling of
Otrack1 ! write speed (3 + 4 = 7), it gets the
lock on Otrack1 ! read altitude and preempts
T3's GCS. Task T1 continues the execution of its
LCS at Node 2.

� At time t4, task T4 completes the execution of its
GCS and releases the global lock on Otrack1 !

read altitude. Task T3 resumes the execution of
its GCS with Otrack1 ! write speed. Task T4
requests a local lock on Otrack2 ! read depth.



Object Otrack1

method ! read speed read altitude write speed write altitude
Highest Priority Transaction T1 T4 T3 T3
DASPCP Priority Ceiling 3 + 4 = 7 3 3 + 4 = 7 4 + 4 = 8
DPCP Priority Ceiling 4 + 4 =8

Object Otrack2

method ! read speed read depth write speed depth
Highest Priority Transaction T1 T4 T2
DASPCP Priority Ceiling 2 2 4
DPCP Priority Ceiling 4

Normal Execution Priorities of Methods
Task Method Priority
T1 Otrack1! read speed 1 + 4 = 5

Otrack2! read speed 1
T3 Otrack1! write speed 3 + 4 = 7

Otrack1! write altitude 3
T4 Otrack1! read altitude 4 + 4 = 8

Otrack2! read depth 4

Figure 5: Priority Ceilings and Execution Priorities in Distributed Tracking Example

Since T4's priority (priority = 4) is higher than
the priority ceiling of Otrack2 ! read speed (PC
= 2), T4 gets lock on Otrack2 ! read depth and
preempts task T1.

� At time t5, task T3 completes the execution of its
GCS. Execution on Node 2 remains unchanged.

� At time t7, task T4 completes its execution in-
cluding execution of its LCS with Otrack2 !

read depth and releases that lock. Task T1
resumes execution of its LCS on Otrack2 !

read speed on Node 2. Tasks T1 and T3 complete
their executions at some later times.

Notice that two blockings of high priority task T4
that occurred in the DPCP example of Section 2.3 (the
blocking on the global lock at time t3 and the blocking
on the local lock at time t5) are alleviated under the
DASPCP.

4.2 DASPCP Properties

As we did with the ASPCP, we present informal
proofs that the DASPCP bounds priority inversion,
prevents deadlock, and never decreases concurrency
compared to the DPCP. Again, the �rst two proofs
follow Rajkumar's proofs in [4].

Deadlock Prevention.
Theorem 4.1 The DASPC protocol prevents deadlock.
Proof: Informally, our proof of deadlock prevention is
based on Rajkumar's results [4]. Since a job can not
deadlock with itself, it can deadlock with other jobs.

Since the nesting of GCSs and LCSs is prohibited, ac-
cess to gcs's and lcs's cannot occur within the same
critical section. Since each global and local semaphore
is accessed only by a single processor, deadlocks can't
occur across processor boundaries. The only possibil-
ity, we have not considered yet, is a deadlock within
a processor. We showed in Section 3.2 that the AS-
PCP used on each processor excludes deadlock on that
node. 2

Bounded Priority Inversion.
Theorem 4.2 Under the DASPC protocol, the blocking
experienced by a task T is �nite.
Proof: We partition blocking into three types and
show that each type is �nite.

1. A Task's Execution on its Local Node. Task T can
be blocked for the duration of at most (nG + 1)
local critical sections of lower priority jobs bound
to the same processor as T . Here nG is the num-
ber of GCS's executed by T at remote processors
during its period. To see this, realize that task
T suspends itself nG times during one period as
its execution is transferred to the GCS at the re-
mote node. Task T may be blocked every time it
attempts to resume its execution after returning
from the GCS. Under the ASPCP, the blocking
time of each resumption is limited by a longest
critical section of one low priority task. Thus, T 's
execution on its local node has bounded priority
inversion.

2. Task T 's GCSs. For every outermost GCS that



task T enters at a remote processor, T can be
blocked for the duration of one longest GCS of a
lower priority priority job executing its GCS at
the same node. This follows from the fact that
under ASPCP on that node, the GCSs as tasks
on that node are limited to blocking by at most
one lower priority GCS. Thus, each GCS of T has
bounded blocking time.

3. Blocking by Remote Tasks. Task T can be pre-
empted by any task Ti residing at a remote node
and accessing GCSs on T 's host node, as well as
by higher priority tasks executing their GCS at
the same remote node used by T 's GCSs. The
execution times of GCSs are �nite; the number
of tasks is �nite; the periods are �nite; therefore
there may not be an in�nite repetition of a task
Ti during one period of T . Thus, the blocking due
to remote tasks is �nite.

Since all types of blocking are �nite, the overall block-
ing for task T is �nite. 2

Increased Potential Concurrency. The example
of Section 4.1 shows how the DASPCP lowers ceil-
ings, which reduces blocking, thereby increasing con-
currency.
Theorem 4.3 The DASPCP never decreases concur-
rency compared to the basic DPCP technique.
Proof: The priority ceiling used by the DPCP is
the maximum of the conict priority ceilings of the
DASPCP. Since lower priority ceilings can only mean
less blocking time, concurrency can only increase when
DASPCP is used instead of DPCP. 2

Serializable Execution.
Theorem 4.4 The DASPCP enforces a serializable
schedule of method operations for each object.
Proof: The proof is similar to that of Theorem 3.4 -
since the DASPCP also de�nes priority ceilings based
on conict, and conict is still de�ned by a�ected set
semantics.

5 Conclusion
This paper has presented the A�ected Set Prior-

ity Ceiling Protocols (ASPCP) for concurrency control
in real-time object-oriented systems. It showed that
these protocols: enforce logical consistency by serializ-
able access to objects; prevent deadlock; bound prior-
ity inversion; and provide more potential concurrency
in object-oriented systems compared to other priority
ceiling techniques.

The ASPCP is suitable for single node systems
such as real-time object-oriented databases. We have

built the ASPCP into a shared main memory real-
time object-oriented database [5]. The DASPCP is
suitable for controlling access to distributed objects.
We have implemented a Basic Priority Ceiling Proto-
col within the CORBA Concurrency Control Service
interface as part of a Real-TimeCORBA prototype ex-
tension to the commercial Orbix CORBA system from
Iona Technologies [6]. We are currently implement-
ing the DASPCP in a static Real-Time CORBA ORB
with a global Deadline-Monotonic priority assignment
to allow for global analysis of real-time requirements
across CORBA. In both cases, the mechanisms to en-
force the ASPCP protocols were straightforward and
e�cient to implement.

The drawbacks of the ASPCP protocols, like all
PCP protocols, center on the strong requirement that
all task/transactions and their behavior be known a
priori. For some real-time applications, this assump-
tion is reasonable, for others it is not. Also, PCP pro-
tocols potentially allow less concurrency than straight
read/write locking and many other traditional con-
currency control techniques. However, the PCP pro-
tocols introduce the reduced concurrency due to extra
denials of locks that are the price for the deadlock pre-
vention and priority inversion bounds that they pro-
vide.

In real-time object-oriented systems where tasks
are known a priori, a simple and e�cient implemen-
tation of either ASPCP or DASPCP will yield logical
consistency of object while supporting real-time analy-
sis through deadlock prevention and priority inversion
bounding.
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