
 1

Chapter 1

Introduction

1.1 Statement of Problem

Joint Operations Virtual Environment (JOVE) is a software application that

provides a virtual environment for collaborative applications such as crisis action

planning [1]. It has been developed by the Office of Naval Research through the Naval

Command, Control and Ocean Surveillance Center (NRaD) with contractor support from

Science Applications International Corporation (SAIC). JOVE integrates Multi-User

Virtual Environment (MUVE) technology, available World Wide Web (WWW)

resources, and Commercial-off-the-shelf products to create a distributed collaborative

virtual environment for applications, such as humanitarian assistance operations.

A MUVE is an inherently collaborative computer environment that provides

facilities for navigation around virtual locations, as well as for information sharing and

communication among widely distributed users. The JOVE environment provides

buildings and rooms within the buildings in which users can maintain their own

information (a private office), and meet with other users in virtual conference rooms. In

these virtual meetings, users can remotely brief each other, discuss critical issues

(publicly and privately), search databases for pertinent information, provide immediate

 2

updates to each other, electronically gather and poll for critical assessment information,

and store information for critical action team use.

The JOVE system has been designed using the Rational Rose Design Tool [2].

Rational Rose is an implementation of the Unified Modeling Language (UML) standard

developed by the Object Management Group (OMG) [3]. The Unified Modeling

Language (UML) is the industry-standard expressive visual modeling language for

specifying, visualizing, constructing, and documenting the artifacts of software systems,

especially targeting the modeling of concurrent, distributed systems. It simplifies the

complex process of software design, making a "blueprint" for construction. UML fuses

the concepts of Booch, OMT, and OOSE [4]. UML incorporates the object-oriented

communities consensus on core modeling concepts, independent of particular

programming languages and development processes.

1.2 MOTIVATION

The collaborative nature of the JOVE system allows multiple users across the

world to work together in determining the most effective plan of action. In some crisis

actions, the JOVE may need to be employed by multiple parties to acquire timely

information and make fast and accurate decisions and plans in order to address critical

humanitarian needs. In such an environment, providing support for representation of real-

time data can further enhance the ability to make critical decisions. For instance, in a

 3

crisis meeting about an impending hurricane, the planning involved in minimizing

casualties and property damage would require collaboration among various groups,

including the National Weather Service, local police and fire departments, the National

Guard, local television and radio stations, etc. In such a distributed collaborative virtual

environment, users may share information such as planned evacuation routes, population

reports and satellite data. Some of this information, the satellite data for instance, should

be updated periodically, otherwise users may make a bad decision based on out-of-date

information. Therefore real-time representations of such data are required in order to

provide the best information to the users. In such a critical application, real-time

concurrency control will also be required among the various requests being made by the

users. Incorporating real-time objects with real-time concurrency control into the JOVE

architecture is important and necessary.

There are unique challenges faced in real-time software development. For real-

time system developers, understanding the impact of design decisions and effectively

communicating functionality can be a daunting task. An overriding concern is the

architecture of the software. This refers to the essential structural and behavioral

framework on which all other aspects of the system depend. Since UML is proven as a

good architectural design pattern and has a strong set of general purpose modeling

language concepts applicable across domains, it is extremely useful to capture the UML

as first-class modeling constructs to facilitate the design of good architectures of real-

time system software. Thus investigating adding real-time features into UML/Rational

 4

Rose Design Tool, for example, how to express the timing constraints, is one of the

necessary and challenging issues in this project.

 The Real-time research group at the University of Rhode Island (URI) has

designed the RTSORAC (Real-Time Semantic Objects, Relationships and Constraints)

model for real-time object-oriented database systems [5]. The RTSORAC model

incorporates features that support the requirements of a real-time database into an

extended object-oriented model. It supports data temporal consistency requirements and

time-constrained transactions by specifying objects that contain: attributes with value,

time and imprecision fields; constraints on each of those fields; and semantically defined

compatibility of object methods. It also provides the semantic locking mechanism for

concurrency control. Applying this RTSORAC model into the real-time JOVE system

would be another challenging part of this project. In this paper, we focus on real-time

objects in JOVE.

1.3 Objectives

 In this study, our primary research objective is to develop a model to integrate

real-time objects into the existing JOVE software to meet distributed and real-time

requirements. To this end, we have integrated the RTSORAC model objects into the real-

time JOVE system using the Rational Rose Design Tool. We have also implemented the

Semantic Locking Mechanism for concurrency control. Finally, we have installed the

 5

real-time items into the existing JOVE system and tested to ensure that the design and

implementation of the real-time items is correct.

1.4 Thesis Outline

Chapter 2 provides background and related work that has formed the foundation

for the work of this thesis. It introduces the JOVE system and contains a review of the

MySQL database, JDBC(Java Database Connectivity) connection and Java IDL(Interface

Definition Language). It also provides the background on the real-time system, UML for

real-time, real-time CORBA and the RTSORAC model. Chapter 3 presents the design of

real-time items. Chapter 4 describes the implementation and integration details of real-

time items in the JOVE system with CORBA and the MySQL database. Chapter 5

demonstrates the correctness and performance evaluations of the RT JOVE system.

Chapter 6 concludes the thesis with a summary and discussion of its contributions and

limitations, and future work.

 6

Chapter 2

Background and Related Work

 In this chapter, we will describe the background and previous work related to the

design and implementation of the integration of real-time items in the JOVE system.

First, we will introduce the JOVE system, including its architecture, information items,

MySQL database, JDBC connection and CORBA. Next we will describe real-time

systems. We will also describe the Unified Modeling Language (UML), its

implementation in the Rational Rose Design Tool and some proposed UML constructs

for real-time design. Finally, we will describe real-time CORBA and the RTSORAC

model developed by the URI real-time research group.

2.1 JOVE

 The JOVE system is a computer-mediated environment in which users perform

collaborative tasks, i.e. decision making, from distributed locations. The objective of the

JOVE project is to capitalize on advanced information technology in order to provide a

better environment for crisis action planning.

 7

2.1.1 JOVE System Architecture

The virtual environment at the core of the JOVE system consists of a multi-tiered,

object-oriented, layered set of services and components. The overall architecture of

JOVE system is shown as Figure. 1. All of the code is written in Java.

JOVE
Client

JOVE
Client

HTTPD
Server

CORBA
IIOP

CORBA
IIOP

MUVE
Engine

Item
Proxy

Item

Item

Item
Factory

MUVE
Factory

MySQL
Engine MySQL

Database

ref

Obj
CORBA

Figure 1 : JOVE Architecture

MUVE Factory. The MUVE Factory temporarily stores all of the objects being used in

the virtual environment. These objects are referred to as items in the JOVE system. The

items in the JOVE environment include authorized users, shared documents, and complex

shared applications, such as a whiteboard. When the JOVE system is started, all the

necessary items will be launched into the MUVE Factory from the MySQL database. All

 8

these items are stored in the MUVE Factory until the items are requested to be deleted

explicitly by users or the JOVE system is shut down or it crashes. When a request for an

item is made to the MUVE factory from the MUVE Engine, the system checks the Item

Factory object to determine if the requested item exists in the MUVE factory. If it does,

the reference to the requested item is returned. If the item does not exist in the MUVE

factory, the Item Factory creates an item in the MUVE factory by querying the MySQL

database (see Section 2.1.3) for information on the requested item. The Item Factory

then returns the reference to the newly created Item.

The MUVE Factory is responsible for persisting the items that it contains. A

thread in the MUVE Factory periodically and atomically writes the data in all of the

items to the MySQL database via a JDBC connection(see Section 2.1.4).

MySQL Database. The MySQL database (See Section 2.1.3) is relational and it provides

a way to store objects in the JOVE system persistently [6]. Whenever an item requested

by the user or the system is not stored in the MUVE Factory, the MUVE Factory will

query the MySQL database and create a new item. The MySQL database also inserts or

updates items on the request of the MUVE Factory.

MUVE Engine. The MUVE Engine acts as a server to the distributed clients. It is

multi-threaded and it contains references to items in the MUVE Factory that have been

requested by users. The connection between the MUVE Engine and the MUVE Factory,

 9

as well as the connection between the MUVE Engine and the distributed clients are made

using the CORBA distributed object computing standard (to be discussed in Section

2.1.5). The MUVE Engine handles multiple requests concurrently in a first-come-first-

served fashion.

Clients. A JOVE client is a stand-alone Java application. It presents a graphical

interface to the user in which the user can view the current room she is in, certain items

and applications in the room, other users in the room, and pathways to other rooms and

buildings in the environment. The client is connected to the MUVE Engine through

CORBA IIOP (Internet Inter-ORB Protocol) [7] (see Section 2.1.5). The client also

connects to an HTTP server that provides access to certain graphical data, as well as

access to URLs in the environment.

In a typical client server interaction, the client makes a request for a particular

item in the environment. The request goes to the MUVE Engine through CORBA IIOP.

In the MUVE Engine, the request is handled by a thread that is scheduled in FIFO order.

The MUVE Engine accesses the Item Factory in the MUVE Factory to determine if the

requested item is already in the MUVE Factory. If it is, then the object reference for the

item is passed to the thread in the MUVE Engine which in turn returns an object

reference to the client. If the item does not already exist in the MUVE Factory, the Item

Factory object queries the MySQL database for the requested item. The item returned by

MySQL is stored in the MUVE Factory and an object reference is returned to the MUVE

 10

Engine and eventually to the client. Once the client has a reference to a particular item, it

can call methods on the item object as if it were in its own address space.

2.1.2 MySQL database

MySQL is a multi-user, multi-threaded relational SQL (Structured Query

Language) database server [6]. It is a client/server implementation that consists of a

server daemon mysqld and several client programs and libraries. The main goals of

MySQL are speed, robustness and ease of use. MySQL has JDBC drivers, which allows

interfacing with a Java client. It has an Open DataBase Connectivity (ODBC) interface

for Windows 95/NT.

The JOVE architecture uses MySQL for persistence of item objects. Because

MySQL is a relational database, and the JOVE items are Java objects (or class instances),

when an object is persisted in the MySQL database, the object’s class is represented by a

table, the object’s attributes are represented as table columns and object instances are

represented as table rows.

 11

2.13 JDBC

The JDBC API of Java is a standard SQL database access interface, developed by

Sun and its Java partners [8]. This API provides Java programmers with a uniform

interface to a wide range of relational databases, and provides a common base on which

higher level tools and interfaces can be built. The JDBC API defines Java classes to

represent database connections, SQL statements, result sets, database metadata, etc. It

allows a Java programmer to issue SQL statements and process the results. Thus, JDBC

is the primary API for database access in Java.

With help from JDBC, Java’s ability to integrate with popular commercial DBMS

and its network-oriented nature make it an ideal client/server computing environment.

Therefore, the JOVE system uses JDBC as the connection between the MUVE Factory

and the MySQL database. The JDBC API is implemented via a driver manager that can

support multiple drivers connecting to different databases. In this project, the JDBC API

is implemented via the JDBC driver for MySQL database.

2.1.4 CORBA/IIOP/Java IDL

CORBA. Distributed object computing has become a widely accepted programming

paradigm for applications that require seamless interoperability among heterogeneous

clients and servers. CORBA (Common Object Request Broker Architecture) is a standard

 12

for distributed objects being developed by the Object Management Group (OMG) [7].

CORBA specifies the Object Request Broker (ORB) that allows applications to

communicate with one another no matter where they reside on a network. The CORBA

ORB is an application framework that provides interoperability between objects, built in

(possibly) different languages, running on (possibly) different machines in heterogeneous

distributed environments. CORBA also specifies an Interface Definition Language (IDL)

for description of interfaces to the functional behavior of distributed components.

IIOP. The General Inter-ORB Protocol (GIOP) is the OMG protocol for ORB

interoperability. It allows different ORB implementations to communicate without

restricting ORB implementation flexibility, which means a client of an ORB can invoke

operations on an object in a different ORB via GIOP. The Internet Inter-ORB Protocol

(IIOP) is the mapping of GIOP message transfers to TCP/IP connections. IIOP is an

underlying mechanism of CORBA technology, which is transparently managed by ORBs.

So IIOP and CORBA are, essentially, inseparable. Therefore, programmers and users are

never required to interact with IIOP in any way; it is invisible to them.

One of the most important aspects of CORBA/IIOP is its platform independence.

CORBA ORBs interoperate without regard to vendor origin. This platform independence

allows businesses to take advantage of the Internet without having to rebuild systems and

networking hardware and software of forcing them to commit to a single vendor solution.

CORBA/IIOP will allow most every system that is now in operation to be incorporated

with comparatively minor modifications so that a business’s installed base, even if it is

 13

made up of equipment and software packages from a variety of vendors, will be able to

work together seamlessly.

CORBA IDL. A key feature of CORBA is IDL, a language-neutral Interface Definition

Language. The Interface Definition Language (IDL) is the language used to describe the

interfaces that client objects call and object implementations provide. An interface

definition written in IDL completely defines the interface and fully specifies each

operation’s parameters. An IDL interface provides the information needed to develop

clients that use the interface’s operations. Clients are not written in IDL, which is purely

a descriptive language, but in languages for which mappings from IDL concepts have

been defined. The mapping of an IDL concept to a client language construct will depend

on the facilities available in the client language.

Java IDL. Each language that supports CORBA has its own IDL mapping. Java IDL

is SUN’s implementation of mapping from Java to IDL [9]. Thus, Java IDL is a

technology for distributed objects--that is, objects interacting on different platforms

across a network. Java IDL not only supports distributed objects written entirely in the

Java programming language, but also enables objects to interact regardless of whether

they are written in the Java programming language or another language such as C, C++,

COBOL, or others. To support interaction between objects in separate programs, Java

IDL provides an Object Request Broker, or ORB. The ORB is a class library that enables

low-level communication between Java IDL applications and other CORBA-compliant

applications.

 14

The JOVE system is coded entirely in Java, and its CORBA implementation is

Java IDL. Thus, the JOVE system provides a CORBA/IIOP interface (Java ORB) for

connection between the MUVE Engine and the MUVE Factory, and connection between

the Client and the MUVE Engine.

2.2 Real Time Systems

Many real-world computing systems are associated with time constraints [10].

These time constraints require that the computations must complete before their

deadlines, otherwise various degrees of damage may occur. Such systems are called real-

time (RT) systems. This requirement typically comes from the system interacting with

the physical environment such as the military command and control, nuclear power

plants, automatic manufacturing factories, crisis action management, and air traffic

control systems. The environment produces stimuli, which must be accepted by the real-

time system within timing constraints. The environment further requires control output,

which must be produced within timing constraints. For example, some timely information

must be retrieved to make crisis action decisions in an impending hurricane meeting.

A critical aspect of real-time systems is how time itself is handled. The design of

a real-time system must identify the timing requirements of the system and ensure that

the system performance is both correct and timely. Hard real-time systems require

deadlines absolutely must be met. A missed deadline would cause a fatal system failure.

 15

In these systems, late data causes system failure. Soft real-time systems are constrained

only by average time constraints. If a single computation is late, it is not usually

significant, although consistently late computation can result in system failures. In these

systems, late data is still good but not as good as on time data. Firm real-time systems’

requirement is between that of hard and soft real-time systems and late data is useless. In

this project, the RT JOVE is a soft real-time system.

2.3 UML for Real-Time

The Unified Modeling Language, or UML, is a third-generation object-oriented

modeling language. Because the UML is meant to be applicable to the modeling of all

types of systems, it applies equally well to real-time systems, client/server, and other

kinds of “standard” software applications. It provides a rich set of notations and promises

to be supported by all major CASE tool vendors.

2.3.1 Modeling with UML Diagrams

The UML distinguishes between the notions of model and diagram [14]. A model

contains all of the underlying elements of information about a system under consideration

and does so independently of how those elements are visually presented. A diagram is a

particular visualization of certain kinds of elements from a model and generally exposes

 16

only a subset of those elements’ detailed information. In this section, we will describe

class diagram, sequence diagram, collaboration diagram and state diagram.

A class diagram shows the important abstractions in a system and how they relate

to each other. The primary elements found on class diagrams are class icons and

relationship icons. Figure 2 shows an example of class diagram for satellite image

processing in the hurricane emergency planning project room. There are 5 classes – Item,

ItemServer, ImageServer, SatelliteImage, BlackBox and HurricaneRoom (see Figure 2),

with attributes and operations. The ItemServer class has an attribute ItemCount and three

operations: CreateItem(), DeleteItem() and GetItem(). In addition to classes with

attributes and operations, class diagrams also depict relationships that exist between

dependent classes, including association, aggregation, inheritance, dependency and

instantiates. In this example, class HurricaneRoom has an association with class

SatelliteImage. An association is used to represent a structural dependency between

objects, generally of different classes. Class ImageServer extends class ItemServer, and

SatelliteImage extends Item. These are the inheritance relationships. An ItemServer may

be composed of Items, and an ImageServer may be composed of image items, including

the SatelliteIamge. Thus, they are the aggregation relationships, which is used to show

that one kind of object is composed, at least in part, of another.

 17

Figure 2 : Class Diagram of Hurricane Example

A scenario is a specific instance of a use case and a particular path through the

system functionality. In an attempt to provide some graphical abstraction on top of all the

details, the UML provides two notations for modeling scenarios: the sequence diagram

and the collaboration diagram.

A Sequence diagram shows the sequence of messages between objects. It uses

object icons with vertical dashed lines projected downward on the diagram. The

horizontal directed lines represent the messages passed between objects. Time flows from

the top of the page downward. Unless specifically annotated, only the sequence of

messages is shown, not the exact time. Here we give an example of sequence diagram for

the scenario of updating satellite image in Figure 3. When the HurricaneRoom needs to

ImageServer

DisplayImage()

ItemServer

ItemCount

CreatItem()
DeleteItem()
GetItem()

extends

Item

GetId()
SetId()
GetName()
SetName()

SatelliteImage

GetImagePath()
SetImagePath()

extends

HurricaneRoom

extends

+image

BlackBox

receive()
send()

<<Boundary>>

 18

update the satellite image, it gets the SatelliteImage object reference from the

ImageServer. If the SatelliteImage object does not exist, the ImageServer will create the

SatelliteImage object first. After it gets the SatelliteImage object reference, it updates

satellite image by calling the updating methods of the SatelliteImage object.

Figure 3 : A Hurricane Example of Sequence Diagram

Collaboration diagrams show objects, their links, and their messages. They can

also contain simple class instances and class utility instances. Each collaboration diagram

provides a view of the interactions or structural relationships that occur between objects

and object-like entities in the current model. In a collaboration diagram, sequence

numbers must be attached to the messages to indicate the relative order in which the

The SatelliteImage
constructor is called
only if object does not
exist in the Image
Server yet.

 : Hurricane
Room

:BlackBox :ImageServer :SatelliteImage

1: receive(update
satellite image)

2: GetItem()

4: Item

5: SetName()

6: SetImagePath()

3: SatelliteImage()

7: send(update)

 19

messages are sent in the scenario. The arrows show the message direction. We can see

that sequence progression is more prominent in the sequence diagram, but structure is

more obvious in the collaboration diagram. The above scenario of updating satellite

image can be modeled by using a collaboration diagram as shown below in Figure 4.

After the BlackBox receives the updating satellite image command from the

HurricaneRoom, it gets the SatelliteImage object reference from the ImageServer. Then it

updates satellite image by calling the updating methods of the SatelliteImage object.

Figure 4 : the Hurricane Example of Collaboration Diagram

A state diagram is used to show the state space of a given class, the events that

cause a transition from one state to another and the actions that result from a state change.

Each state diagram is associated with one class or with a higher-level state diagram. A

state diagram is a directed graph of states connected by transitions. A state diagram

describes the life history of objects of a given class. A state diagram shows exactly one

 : Hurricane Room

:Black
Box

:Image
Server

:Satellite
Image

1: receive(update satellite image)

2: GetItem()

3: SatelliteImage()

4: Item

5: SetName()
6: SetImagePath()

7: send(update)

 20

start state, one or more states, one or more end states, and the state transitions between

them. Figure 5 shows a simple state diagram of class ItemServer. There are five states in

Figure 5, including State Off, Error, Running OK, Startup and Operational. In particular,

State Startup and Operational are nested in the State Running OK. When the JOVE

system starts, the ItemServer starts up. After all the necessary objects are launched in the

MUVE Factory, the ItemServer becomes operational. Whenever an error is detected, it

enters the Error state. When the system is shut down, it becomes the Off state.

Figure 5: the Hurricane Example of State Diagram for Class ItemServer

2.3.2 Extension Mechanism: Constraint

The Extension Mechanism package specifies how model elements are customized

and extended with new semantics. The concrete constructs that are defined in Extension

Mechanisms include Constraint.

Off

Error

Running OK

Startup

Operational

Startup

Operational

Shut down

Error Detected

Launching
Objects
Complete

Turn On

 21

The constraint concept allows new semantics to be specified linguistically for a

model element. The specification is written as an expression in a designated constraint

language. The language can be specially designed for writing constraints (such as Object

Constraint Language (OCL) [2]), a programming language, mathematical notation, or

natural language. If constraints are to be enforced by a model editor tool, then the tool

must understand the syntax and semantics of the constraint language. Because the choice

of language is arbitrary, constraints are an extension mechanism.

In the metamodel, a Constraint directly attached to a ModelElement describes

semantic restrictions that this ModelElement must obey.

Basically, Constraints are specified on Attributes and Associations. In the body of

Attributes, a Boolean expression defines the constraint. Expressions are written as strings

in a designated language. For the model to be well formed, the expression must always

yield a true value when evaluated for instances of the constrained elements at any time

when the system is stable (i.e., not during the execution of an atomic operation). In

Association, constrainedElement is an ordered list of elements subject to the constraint.

Constraint applies to their instances. In the example in which the object HurricaneRoom

has an association (use) with the SatelliteImage, we may specify the constraint to this

association: the SatelliteImage should not be older than 10 minutes, so that the user can

get the up-to-date satellite image for decision making. We can express this constraint

using Object Constraint Language by this way: SatelliteImage.age < 10 minutes.

 22

2.3.3 UML for Real-time Systems Design

UML is a 3rd generation modeling language which rigorously defines the

semantics of the object metamodel and provides a notation for capturing and

communicating object structure and behavior. However, UML does not necessarily

directly address all the important issues of deriving the object-oriented analysis and

design of real-time systems. OMG has issued a comprehensive RFPs (Request For

Proposal) leading to OMG standards that will support the use of object-oriented

approaches in the analysis, design and development of real-time systems. In particular, it

has requested proposals for a UML profile that defines standard paradigms of use for

modeling of time-, schedulability- and performance- related aspects of real-time systems

[15]. The proposals should use existing UML facilities if possible and deviate from the

current standard as little as possible. The proposals should also address how the facilities

provided in the submission can model Real-Time CORBA.

UML is well-suited to modeling real-time systems although there is no standard in

Real-time UML yet. Efforts for RT UML standard are currently being made, especially

for modeling on the behaviors of real-time systems [10]. Note that not all of these

diagram types have features specifically intended for the modeling of real-time systems.

In particular, sequence diagrams and collaboration diagrams have the most to offer in the

real-time area. UML can also provide Message Synchronization for real-time design.

 23

In Sequence Diagram, time flows from the top of the page downward. Unless

specifically annotated, only the sequence of messages is shown, not the exact time. For

real-time designs, exact timing often must be specified. The UML allows textual

annotations to be added to sequence diagrams when timing is important. Figure 6 shows a

scenario for the real-time update of satellite image. We can see that two different

notations are used to specify timing. The first uses short horizontal lines with a time

indication between them. The second labels the messages and specifies a timing

expression between curly braces using these message labels.

 24

Figure 6: Sequence Diagram of Updating Satellite Image with Timing Marks

The other notation for modeling scenarios is the collaboration diagram. Timing

annotations can be added as constraints to collaboration diagrams as well for real-time

system design. Figure 7 shows the collaboration diagram of the above example.

 : Hurricane
Room

:BlackBox :ImageServer :SatelliteImage

The SatelliteImage
constructor is called
only if object does no
t exist in the MUVE
Factory yet.

1: receive(update
satellite image)

 7: send(update)
b

2: GetItem()

4: Item
 a

5: SetName()

6: SetImagePath()

{b-a = 33 ms}

3: SatelliteImage() 33 ms

 25

{4-2 = 33 ms, 7-4 = 33 ms}

Figure 7: Collaboration Diagram of Updating Satellite Image with Timing Constraints

Real-time systems often concern themselves with the synchronization of

concurrent processes during message passing. The UML may provide icons that can be

added to any message to indicate its concurrent behavior. The symbols are taken from

Booch’s earlier work shown as Figure 8 [14].

Figure 8: Message Synchronization Icons

 : Hurricane Room

:Black
Box

:Image
Server

:Satellite
Image

1: receive(update satellite
i)

2: GetItem()

3: SatelliteImage()

4: Item

5: SetName()
6: SetImagePath()

7: send(update)

 26

These symbols shown in Figure 8 can be used in conjunction with messages to

indicate how the concurrent processes are synchronized during the message transfer.

• Simple Call - Simple messages denote that the synchronization either has not yet

been specified or is a sequential message (for example, function call semantics).

• Synchronous Rendezvous – A synchronous rendezvous means that the sender will

wait indefinitely for the receiver to accept the message before continuing on with its

processing.

• Timeout Rendezvous. A timeout rendezvous indicates that the sender will wait for the

receiver to be ready for the message up to some fixed period of time before aborting

the message transmission process and continuing on with its processing.

• Balking Rendezvous A balking rendezvous means that if the receiver of the message

is not immediately ready to accept the message, the sender aborts the message and

continues.

• Asynchronous – An asynchronous message means that the sender sends the message

immediately and continues on with processing without waiting for the receiver to

acknowledge its readiness for receiving the message.

 Note that current work being done towards developing a Real-Time UML

specification mostly handles real-time operations, including real-time scenario and

message synchronization. But the proposed RT UML specification does not handle real-

time data.

 27

2.3.4 Rational Rose Design Tool

Rational Rose is the world’s leading visual modeling tool, which allows users

to define and communicate a software architecture [2]. It provides static and dynamic

views of a logical model and a physical model to capture the in-process products of

object-oriented analysis and design. This overall model contains classes, use cases,

objects, logical packages, operations, component packages, components, processors,

devices and the relationships between them. Each of these model elements possesses

model properties that identify and characterize them. The notation provides graphical

icons to represent each kind of model element and relationship. The model also contains

diagrams and specifications, which provide a means of visualizing and manipulating the

model’s elements and their model properties. In addition, Rational Rose provides the

Interface Design Language (IDL) Code Generator to produce IDL source code from the

information contained in a model. The code generated for each selected model element is

a function of that element's specification, the model's properties, and the model's project

properties. These properties provide the language-specific information required to map

the model into IDL.

 A new design tool for embedded real-time system, called Rational Rose

RealTime, has been introduced recently. It is a visual modeling tool with the right

combination of the industry standard Unified Modeling Language, real-time design

constructs, high performance code generation, and model execution. It allows users to

untify their teams by describing the real-time embedded systems using UML, optimize

 28

the software development by generating complete, high-performance executables directly

from UML design models targeted to real-time operating systems. This simplifies tool-

chain complexity by providing users with seamless integration to leading real-time

operating systems, compilers, symbolic debuggers, and other market-leading Rational

Software products. However, it is only suitable for embedded real-time systems. It is not

suitable for the dynamic real-time system such as the RT JOVE system.

2.4 Real-time CORBA

Many distributed real-time applications, such as command and control, military

combat system, automated factory control, avionics navigation, and simulation, are

embracing the object-oriented paradigm and have a mandate to use open systems design.

The designers of many of these applications are considering CORBA (See Section 2.1.5)

for their architecture but are finding it is currently inadequate to support real-time

requirements. CORBA contains neither the services, nor the interface facilities to express

and enforce end-to-end timing constraints on distributed client/server interactions.

A real-time Special Interest Group (SIG) has been formed in OMG with the goal

of extending the CORBA standard with support for real-time applications. Specifically,

the real-time SIG is focusing on supporting the ability to enforce end-to-end timing

constraints by extending the current CORBA standard (CORBA/RT). In its white paper

[11], SIG details desired capabilities for extending/modifying CORBA to support real-

 29

time. The real-time desired capabilities specified in the CORBA/RT SIG white paper are

classified into three areas: i) desired capabilities for the operating environment, ii) desired

capabilities for the ORB architecture, and iii) desired capabilities for the object services

and facilities.

The Real-time Research group at URI has developed an implementation of RT

CORBA [12]. This work has concentrated on providing support for expressing and

enforcing timing constraints on client/server interactions. This support is implemented

through TDMI’s synchronized clocks, Global Time Service, Global Priority Service, RT

Concurrency Control Service and Real-Time Event Service.

2.5 The RTSORAC Model

RTSORAC (Real-Time Semantic Objects Relationships And Constraints) is a

database model developed by the real-time research group at the URI [5]. This model

supports time-constrained objects and transactions. RTSORAC is comprised of three

components: objects, relationships, and transactions.

Database objects describe the data entities. RTSORAC extends a traditional

object model with five components, <N, A, M, C, CF>, where N is a unique name or

identifier, A is a set of attributes, M is a set of methods, C is a set of constraints, and CF

is a compatibility function. Attributes have name, value, time and imprecision fields.

Objects are also extended to express constraints: logical constraints (on the value fields of

 30

attributes), temporal constraints (on the time field of attributes), and bounds on

imprecision (on the imprecision fields of attributes). The compatibility function expresses

the semantics of simultaneous execution of each ordered pair of methods in the objects.

For each ordered pair of methods, (mi, mj), a Boolean expression (BEi,j) is defined. BEi,j

is evaluated to determine whether or not mi and mj can execute concurrently. This

compatibility function may relax the serializability constraint of traditional databases in

order to allow timing constraints to be met. This relaxation may result in the introduction

of imprecision into the object or the transactions that access the object.

In the RTSORAC model, database objects are designed to be kept in shared main

memory for fast, predictable access. Since each transaction may concurrently map objects

in the shared memory segment into its own virtual address space, a concurrency control

mechanism for the shared objects must be provided. The RTSORAC model designers

have developed a concurrency control technique called semantic locking for RTSORAC

object management [13]. The semantic locking technique utilizes the user-defined

compatibility function of a RTSORAC object to determine the trade-off between logical

consistency and temporal consistency, and to define correctness for that particular object.

In this technique, a transaction requests a semantic lock to invoke a method on an object.

Semantic locks are granted based on the evaluation of a set of conditions and on the

evaluation of the compatibility function of the object.

In this section, we have presented background on real-time systems, UML for

real-time and CORBA in this chapter. We have also presented the previous work of this

 31

project, including the JOVE system and RTSORAC model. In the next two chapters, we

present the design and implementation of real-time items in the RT JOVE system, the

major contribution of this thesis.

 32

Chapter 3

Real-Time Item Design

The design of the RT JOVE system involves adding real-time features to the

JOVE system described in Section 2.1. There are four specific areas in which real-time

features will extend the JOVE architecture: real-time items; real-time CORBA; real-time

database; and real-time scheduling. Figure 9 depicts the real-time extensions that are

being made to the JOVE architecture. Since this project focuses on adding real-time

items into RT JOVE system, this chapter describes how to design real-time items in the

integration of real-time objects into the JOVE system.

JOVE
Client

JOVE
Client

HTTPD
Server CORBA

 IIOP
CORBA
IIOP

MUVE
EngineItem

Proxy

Item

Item

Item
Factory

MUVE
Factory

MySQL
Engine

Obj
ref CORBA

RT RT

RTRT RT

Real-Time

Item
RT

RT

QoS/
Scheduling

Service

MySQL
Database

RT Item
Proxy

RTOODB

Figure 9 : RT JOVE Architecture

 33

In the current JOVE system, the items that are represented do not have any real-

time features. However, in scenarios such as the hurricane preparedness situation, it may

be necessary to represent real-time data in the system. For instance, a current satellite

image could be maintained and updated periodically so that collaborating users can have

access to the most current information to make decisions. This section describes how we

represent this type of data item. The RTSORAC model described in Section 2.5 provides

a mechanism for representing real-time objects. Therefore we will incorporate the

RTSORAC objects into the RT JOVE MUVE factory to represent the real-time items,

such as the satellite image described above. We will design all the real-time item objects

in the JOVE system using the Rational Rose design tool described in the Section 2.3.4. In

this chapter, we design the general real-time objects using Rational Rose design tool, and

then we apply the general real-time object design to the real-time item design in the RT

JOVE system.

3.1. Design of the General Real-time Objects

The goal of the project is to devise a methodology for designing real-time items in

the system using Rational Rose Design Tool. As stated in Section 2.3.3, there is current

work being done towards developing a Real-Time UML specification for scenario and

message synchronization. But there is little work done for developing a real-time UML

specification for objects. In our design, we apply the RTSORAC objects to design

general real-time objects using the Rational Rose Design Tool.

 34

The UML class diagrams that represent the real-time object design are shown in

Figure 10. The class RTObject represents the general real-time objects, the class

RTAttribute represents the real-time attributes, the class CF represents the compatibility

function and the class ObjectUpdateThread represents the thread for updating all the real-

time attributes periodically. The RTObject has a call-by-value aggregation relationship

with the RTAttribute and the CF respectively. A call-by-value aggregation is an

association that is used to show one kind of object is composed of another. The Whole

object declares an actual instance of the Part object within the body of the Whole object

itself, thus making the Part object physically contained by the whole. Thus the RTObject

contains the RTAttribute and the CF physically. The CF has a “uses” association with the

RTAttribute. By using a RTAttribute, the CF can return the current state of the

compatibility functions. And the RTObject has an association with the

ObjectUpdateThread, by which the RTObject can update its real-time attribute

periodically.

 35

Figure 10 : RTSORAC Objects Designed by Rational Rose

3.1.1 Real-time Objects (Class RTObject)

 In the RTSORAC model, a real-time object has zero or more attributes. In our

design, we set the relationship between the class RTObject and the class RTAttribute as

the call-by-value aggregation consists. This indicates that the RTObject declares actual

instances of the RTAttribute within the body of the RTObject itself, thus making the

RTAttribute contained by the RTObject. As Rational Rose only supports constraints on

the relationships, we specify constraints within braces on the aggregation relationship

RTAttribute <type>

value : <type>
time : long
imprecision : <type>
update_flag : boolean

getValue()
setValue()
getTime()
setTime()
getImprecision()
setImprecision()
getValueConstraint()
getTimeConstraint()
getImprecisionConstraint()

CF <size>

CF_array : Array

getCF()

uses

ObjectUpdateThread

ObjectUpdateThread()
run()

RTObject

method_count : int
Active_method : Vector
Waiting_method : Vector

SLM_lock()
SLM_release()
UpdateAttribute()

{constaints}

consists

consists

gUpdateThread

 36

between the RTObject and the RTAttribute. In this way, we can express the inter-attribute

timing constraints and logical constraints on the real-time object. For example, the real-

time object Hurricane has two real-time attributes: min_central_pressure and

max_wind_speed for forecast and analysis. We can specify the constraint on the

aggregations as { | min_central_pressure.time – max_wind_speed | < 5 minutes}, which

means that the max_wind_speed should not be more than 5 minutes older than the

min_central_pressure and vice versa.

The class CF<size> is used to obtain the compatibility functions of methods in

the RTObject for concurrency control. It is a parameterized class, which means it is set up

to function independently of the size with which actual classes will work. The parameter

size is specified for the size of the two-dimensioned Boolean array of compatibility

functions for methods. Programmers can define semantic Boolean expressions for the

compatibility functions in the array statically. The class RTObject has a call-by-value

aggregation with the class CF. Thus the RTObject can use the CF to get the compatibility

of object methods in the concurrency control. The method getCF(i, j) returns the value of

the compatibility function of methodi and methodj.

The RTObject uses the thread ObjectUpdateThread to periodically update all real-

time attributes. And the RTObject has the table Active_method for active method

invocations and the table Waiting_method for the blocking method requests. Both tables

are used for the semantic locking concurrency control mechanism.

 37

There are three methods in the RTObject. The method SLM_lock() is used to grant

the client request the semantic lock and the method SLM_release() is used to release the

semantic lock explicitly. Both of them are used for semantic locking mechanism. The

method UpdateAttribute() is used to get the updated attribute from the data source.

3.1.2 Real-time Attributes (Class RTAttribute)

The class RTAttribute <type> is a parameterized class, which means it is set up to

function independently of the type of information with which actual classes will work.

For example, if the data type of the real-time attribute humidity is integer, we can declare

it as “RTAttribute<int> humidity”. As in the RTSORAC model, the class RTAttribute has

value, time and imprecision fields (V,T,I), and methods to set or get the value of these

three fields respectively. Since the Rational Rose Design Tool does not support

constraints within objects, we provide the methods in the RTAttribute to get the

constraints of three fields respectively. Thus we can express the internal attribute timing

constraints and logical constraints within the attributes. For example, the real-time object

Hurricane has a real-time attribute min_central_pressure for forecast and analysis. We

can specify the constraint in the method getTimeConstraint() as return

min_central_pressure < 60, which means that the min_central_pressure should not be

more than 60 seconds old.

In our design, we use the state diagram to express the handling of timing

constraints of the real-time attributes. Figure 11 shows the state space of the class

 38

RTAttribute, the events that cause a transition from one state to another and the actions

that result from a state change. When the server starts up, all of the real-time objects are

launched to the server and their real-time attributes are given their initial values. This is

the Initial State. When some client writes the real-time attribute, it enters the Up_to_date

State from the Initial State. Whenever the timing constraint is violated in the RTAttribute,

its state is changed from the Up_to_date State to the Out_of_date State. When it enters

the Out_of_date State, the RTObject may use the UpdateAttribute(RTAttribute) method

to update the attribute and change it to the Up_to_date State. Alternatively, the RTObject

may throw an exception.

Figure 11 : the State Diagram of the Class RTAttribue

There are two ways to update the out-of-date attributes. One is to use the thread

ObjectUpdateThread in the RTObject to periodically update all of the out-of-date

attributes in the RTObject. The other is event-driven. When a process requests a semantic

lock, only the out-of-date attributes needed in the specified method are updated by the

Out_of_date

Initial

Up_to_date

Exception

write

Out_of_date detectedUpdated

throws

 39

method UpdateAttribute(). The periodic update is used to make the real-time attributes as

up-to-date as possible so that the processes need not update attributes and thus uses less

time to complete the method execution. But if the periodic update is too often and

unnecessary, the overload will increase greatly and thus lower the performance.

Therefore there is a tradeoff between these two options and the tradeoff is object-specific.

We will let the users specify the period for update of individual attributes in an object,

and choose one of the following ways for the period: maximum, minimum, average and

median. For example, if the user set the periods of four attributes as 20 seconds, 30

seconds, 60 seconds and 10 seconds, then the period of the objects is 60 seconds if the

user chooses maximum option, 10 seconds for the minimum option, 30 seconds for the

average option, or 25 seconds for the median option. In this way, we provide great

flexibility to users to specify the update periods of objects with a better real-time

performance.

3.1.3 Semantic Locking Object Concurrency Control

Concurrency allows multi-tasks in a software application to run at the same time

and thus greatly improve the efficiency. It is especially beneficial to real-time

applications because concurrency greatly increases the chances for tasks to meet their

timing constraints. Therefore we add concurrency to the JOVE system for better

performance as the JOVE system is a single-process application. Concurrency control is

an important part of this project when multiple tasks request the shared resources.

 40

The concurrency control technique called semantic locking is capable of

supporting data logical consistency and data temporal consistency, and expressing the

tradeoffs between them (See Section 2.5). We will use it as the concurrency control in the

RT JOVE system. Each real-time object has its own semantic locking mechanism. The

concurrency control mechanism of each object uses semantic locking to enforce the

allowable concurrency expressed by the compatibility function of the object. A process

request for a real-time object must acquire a semantic lock for a method invocation

before the method is allowed to execute.

When a client requests for a method invocation mreq of the real-time object

RTObject, the semantic locking mechanism will first call the SLM_lock() method in the

RTObject to get the semantic lock, specifying the method, subset of real-time attributes

used by the method and the arguments for the requested invocation. The SLM_lock()

acquires the mutex for access to the tables Active_method and Waiting_method in the

RTObject. When the mutex is granted, the SLM_lock() attempts to acquire a semantic

lock for the request. There are two possible outcomes when a process requests a semantic

lock for a method invocation: the SLM_lock() either grants permission to the process to

execute the requested method, or it suspends the requesting process. A suspended

transaction will be awakened and will retry its lock request whenever a lock is released.

In either case, the transaction releases the mutex at the end of the SLM_lock(). Note that

the server uses mutexes to ensure mutual exclusion only for each real-time object’s tables

during the semantic locking mechanism execution. Access to object attributes is

 41

controlled with semantic locks. In this way, it increases the concurrency and thus

improves the real-time performance.

The RTObject uses its methods SLM_lock() and SLM_release() to control

concurrency. The method SLM_lock() is used for mreq to obtain the semantic locking

shown in the sequence diagram of Figure 12. When the SLM_lock() is called, it will call

the method checkAttribute() to evaluate the subset of attributes used in the mreq and see if

they are up-to-date. If some or all of this subset of attributes are out-of-date, it will call

the method UpdateAttribute() in the RTObject to update them. Then the SLM_lock() will

call the method checkCF() in the RTObject to evaluate the compatibility function for mreq

with each currently locked method invocation and with each blocking request in the

waiting queue for a method invocation with higher priority than mreq. If all compatibilities

are valid, then the SLM_lock() will call the method addActiveTable() to add mreq to the

table for the currently active methods and grant the semantic lock to the mreq. Otherwise

it will call the addWaitingTable() to add mreq to the table for the waiting methods block

the mreq.

 42

Figure 12 : Sequence Diagram of SLM_lock()

A process must explicitly release the locks that it is granted by calling the method

SLM_release(). Figure 13 shows how the SLM_release() performs. At first, the

SLM_release() calls the method RemoveActiveTable() to remove the method invocation

from the table Active_method for the active locks set. It then calls the method

notifyBlockingQueue() to awaken the suspended processes in the real-time object one by

one from the high priority to low priority. Due to the newly-released lock, it may now be

possible to grant some of these previously denied locks.

 : RTAttribute
<type>

 : Concurrency
Control

 : CF <size> : RTObject

checkAttribute()

UpdateAttribute()
is called only if
attribute is
out-of-date

UpdateAttribute(RTAttribute <type>)

checkCF()

getCF(i,j)

addActiveTable()

AddActiveTable() is
called only if
compatibilities are
true

addWaitTable()

AddWaitTable() is
called only if
compatibilities are
false

 43

Figure 13 : Sequence Diagram of SML_release()

3.2 Design of the Real-time Items for the RT JOVE System

In the RT JOVE system, real-time items not only have the characteristics of items

in the JOVE system, but also have the real-time features. Thus we will apply the general

real-time object model described in Section 3.1 to the items in the JOVE system for the

real-time item design.

3.2.1 Information Items Design in the JOVE System

Information items are the core of the entire virtual environment system. Every

item within the system can be described as an object including the system itself. Items

notifyBlockingQueue()

addActiveTable() :
Concurrency Control

 : RTObject

removeActiveTable()

 44

may contain any type of information, including multimedia content, as well as their own

“verbs” describing their actions and interactions. For example, the room item named

Emergency Planning Project Room in the JOVE system contains the project schedule

item whose type is “Briefing”.

The object base in the JOVE system is extended to include a CORBA interface.

This will allow access to fully distributed objects which adhere to the CORBA standards

as well as enable access other databases, such as ORACLE or Sybase.

In the JOVE system, the object ItemServer consists of multiple object Items and

their relationship is aggregation. The object ItemServer is responsible for creating and

deleting an item object, and getting the specified Item object reference shown as Figure

14. The object ItemServer has the thread to periodically save changed items to database.

 45

Figure 14 : Class diagram of Items in the JOVE System

3.2.2 Real-time Items Design in the RT JOVE system

The JOVE system has been designed to provide good modularity and support easy

plug-and-play of capabilities. The multi-tiered client-server approach enables simple

upgrades of existing modules and the addition of new functionality. At the highest level,

the JOVE system can be split into three segments – the components that reside on the

client workstation, the server module and the information items. To add the real-time

items to the JOVE system, we can add a new module of real-time items to the existing

system.

+gSaveThread

Item

getId()
setId()
getName()
setName()
getType()
setType()
getLink()
setLink()
getOwner()
setOwner()
getImagePath()
setImagePath()

(f rom Item)

ItemServer

createItem()
deleteItem()
getItem()
getItemByName()
getItemsOwnedBy()
getItemCount()
getName()
getIOR()

(f rom Item)

ItemServerSaveThread

ItemServerSaveThread()
run()

(f rom Item)

consists

 46

Figure 15 shows the real-time item design by integrating the general real-time

object design described in Section 3.1 and the item design described in Section 3.2.1. The

Object RTItem represents the real-time items, the object Item represent the existing item

in the JOVE system, the object ItemServer represents the item server and the object

RTObject represents the general real-time objects. The object RTItem is designed to

inherit from the object Item and the object RTObject since the Rational Rose supports

multiple inheritance. Thus the object RTItem includes the same attributes and methods as

the object Item and as the object RTObject. The object RTItem not only has the non-real-

time attributes and the methods using only non-real-time attributes defined in the Item,

but also the real-time attributes defined and methods using one or more real-time

attributes in the RTObject. When the client requests a non-real-time method in the

RTItem, the server will invoke this method as that did in the Item. And when the client

requests a real-time method in the RTItem, the server will invoke the semantic locking

mechanism for concurrency control and then grant the semantic lock and invoke the

method in the RTItem as that did in the RTObject. In a word, the object RTItem is a

combination of the object Item and the object RTObject.

The object RTItemServer consists of multiple RTItem objects. The RTItemServer

is responsible for creating, deleting, getting and periodically saving the RTItem objects.

In this way, we can quickly and easily add new real-time features to the JOVE

system without changing the existing features or capabilities. We also reuse the existing

module in the new capabilities.

 47

Figure 15 : Class Diagram of Real-time Item in the RT JOVE System

RTAttribute <type>

value : <type>
time : long
imprecision : <type>
update_flag : boolean

getValue()
setValue()
getTime()
setTime()
getImprecision()
setImprecision()
getValueConstraint()
getTimeConstraint()
getImprecisionConstraint()

CF <size>

CF_array : Array

getCF()

uses

ObjectUpdateThread

ObjectUpdateThread()
run()

RTObject

method_count : int
Active_method : Vector
Waiting_method : Vector

SLM_lock()
SLM_release()
UpdateAttribute()

{constraints}

consists

consists

gUpdateThread

RTItem

getId()
setId()
getName()
setName()
getType()
setType()
getLink()
setLink()
getOwner()
setOwner()
getImagePath()
setImagePath()

extends

RTItemServerSaveThread

RTItemServerSaveThread()
run()

RTItemServer

createItem()
deleteItem()
getItem()
getItemByName()
getItemsOwnedBy()
getItemCount()
getName()
getIOR()

consists

gSaveThread

Item

getId()
setId()
getName()
setName()
getType()
setType()
getLink()
setLink()
getOwner()
setOwner()
getImagePath()
setImagePath()

consists

extends

 48

Chapter 4

Real-Time Item Implementation

 In this chapter we will describe the implementation of the real-time objects in the

RT JOVE system based on the design presented in Chapter 3. The first section describes

the migration of the RT JOVE system to support CORBA in Java. The second section

presents how the RTSORAC object is incorporated into the RT JOVE system in full

details.

4.1 Migration of the RT JOVE System

 The current JOVE system uses CORBA for communication between the client

and the MUVE Server, and its CORBA implementation is Java IDL. In the real-time

implementation, we use Java IDL to implement the real-time objects in the RT JOVE

system.

 49

4.1.1 Define and Compile the IDL Interface

 To develop the Java IDL, we define the interface for the remote object using the

OMG’s interface definition language. We use IDL instead of the Java language because

the idltojava compiler automatically maps from IDL, generating all Java language stub

and skeleton source files, along with the infrastructure code for connecting to the ORB.

For example, we define the remote object ItemServer using the IDL as following:

 #pragma javaPackage "com.saic.MUVE.Realtime"

interface ItemServer

{

 Item createItem (in string name, in string type, in string

link, in string path, in long long owner, in long long location,

in string description);

 void deleteItem (in long long id);

 Item copyItem (in long long id);

 Item getItem (in long long id);

 Item getItemByName (in string name);

 Items getItemsByOwner(in long long owner);

 Items getItemsByLocation(in long long location);

 Names getItemNames ();

 Types getItemTypes ();

 long long getItemCount ();

 ItemServer getItemServer();

 string getName ();

 50

 string getIOR ();

};

 When we run the idltojava compiler over this interface definition file

ItemServer.idl, it generates five files, including the Java version of the interface

ItemServer.java, the server skeleton _ItemServerImplBase.java, the client stub

_ItemServerStub.java, and two auxiliary files ItemServerHolder and ItemServerHelper.

4.1.2 Implement the IDL Interface

There are two mechanisms for implementing an IDL interface: the ImBase

approach and the TIE approach.

• The ImplBase Approach

The ImplBase [17] approach is also called the inheritance approach. In the

ImplBase approach, we create a Java class that inherits from the corresponding ImplBase

class (server skeleton) to indicate it implements a given IDL interface. Each ImplBase

class is the Java equivalent of an IDL interface. Therefore a class that inherits from the

ImplBase class implements the operations of the corresponding IDL interface. For

example, we define the class ItemServerServant that inherits from the abstract class

_ItemServerImplBase (server skeleton) to implement the CORBA interface for the

ItemServer shown in the Figure 16.

 51

Figure 16 : Class Diagram of ItemServer Java IDL Implementation

Using ImplBase Approach

• The TIE Approach

The TIE approach is also called the delegation approach. To use the TIE

approach, we need to compile the IDL interface with the flag –ftie in the command. The

idltojava compiler generates two additional files: Operations.java and Tie.java. In the

ItemServerHelper

ItemServerHelper()
__write()
__read()
extract()
insert()
type()
id()
_is_a()
narrow()

(f rom Item)

ItemServer

createItem()
deleteItem()
getItem()
getItemByName()
getItemsOwnedBy()
getItemCount()
getName()
getIOR()

(f rom Item)

<<Interface>>

ItemServerHolder

ItemServerHolder()
ItemServerHolder()
__write()
__read()
__type()

(f rom Item)

+value

ItemServerSaveThread

ItemServerSaveThread()
run()

(f rom Item)
_ItemServerStub

_ItemServerStub()
_get_operations()
_get_ids()
createItem()
deleteItem()
getItem()
getItemByName()
getItemsOwnedBy()
getItemCount()
getName()
getIOR()

(f rom Item)

_ItemServerImplBase

_get_dispatch_table()
_ItemServerImplBase()
_get_ids()
_execute()
_execute()

(from Item)

ItemServerServant

ItemServerServant()
ItemServerServant()
getItem()
getItemByName()
getItemsOwnedBy()
createItem()
deleteItem()
getItemServer()
getItemCount()
getName()
getIOR()
getConnection()
save()

(f rom Item)

-$gItemServer

extends

gSaveThread

 52

TIE approach, we implement the IDL operations and attributes in a class which does not

inherit from the automatically generated ImplBase class. Instead, this approach uses the

automatically generated Java TIE class in the file Tie.java to tie together the

implementation class and the IDL interface. We define a new class that must implement

the Java interface Operations in the file Operations.java. Figure 17 shows how to use the

tie approach to implement the IDL interface ItemSserver. We define the class

ItemServerServant to implement the automatically generated interface

_ItemServerOperations. Then we instantiate an object of type _ItemServerTie, passing an

object of type ItemServerServant to the constructor. A TIE object is thus created which

delegates incoming operation invocations to the methods of the ItemServerServant object

as following:

 ItemServerServant servant = new ItemServerServant();

 ItemServer ItemServerRef = new _ItemServerTie(servant);

 53

Figure 17 : Class Diagram of ItemServer Java IDL Implementation

Using TIE Approach

• Comparison of the ImplBase and TIE Approach

Both the TIE and ImplBase approaches to interface implementation allow us to

provide a number of different implementation classes for the same IDL interface. This is

_ItemServerTie

createItem()
deleteItem()
getItem()
getItemByName()
getItemsOwnedBy()
getItemCount()
getName()
getIOR()

ItemServer

createItem()
deleteItem()
getItem()
getItemByName()
getItemsOwnedBy()
getItemCount()
getName()
getIOR()

(f rom Item)

<<Interface>>

ItemServerHolder

ItemServerHolder()
ItemServerHolder()
__write()
__read()
__type()

(f rom Item)
+value

ItemServerHelper

ItemServerHelper()
__write()
__read()
extract()
insert()
type()
id()
_is_a()
narrow()

(f rom Item)

_ItemServerImplBase

_get_dispatch_table()
_ItemServerImplBase()
_get_ids()
_execute()
_execute()

(from Item)

ItemServerServant

ItemServerServant()
ItemServerServant()
getItem()
getItemByName()
getItemsOwnedBy()
createItem()
deleteItem()
getItemServer()
getItemCount()
getName()
getIOR()
getConnection()
save()

(f rom Item)

-$gItemServer

_ItemServerOperations

createItem()
deleteItem()
getItem()
getItemByName()
getItemsOwnedBy()
getItemCount()
getName()
getIOR()

<<Interface>>_ItemServerStub

createItem()
deleteItem()
getItem()
getItemByName()
getItemsOwnedBy()
getItemCount()
getName()
getIOR()
deleteItem()
getItem()
getItemByName()
getItemsOwnedBy()
getItemCount()
getName()
getIOR()

(f rom Item)

 54

an important feature, especially in a large heterogeneous distributed system. An object

can then be created as an instance of any one of the implementation classes. Client

programmers do not need to be aware of which implementation class is used.

The ImplBase and TIE approaches to interface implementation impose similar

overheads on the implementation programmer. However, there are two significant

differences, which may affect the choice of implementation strategy:

• The ImplBase approach requires the implementation class to extend a

generated base class, while the TIE approach merely requires the

implementation of a Java interface.

• The TIE approach requires the creation of an additional object for each

implementation object instantiated in a server.

Java does not support multiple inheritance for classes. So the inheritance

requirement which the ImplBase approach imposes on implementation classes limits the

flexibility of those classes and eliminates the possibility of reusing existing

implementations when implementing derived interfaces. The TIE approach does not

suffer from this restriction.

The creation of a TIE object for each implementation object may be a significant

factor in applications where a large number of implementation objects are created and

 55

tight restrictions on the usage of virtual memory exists. In addition, the delegation of

client invocations by TIE objects implicitly involves an additional Java method

invocation for each incoming request.

Thus, we need not choose one approach exclusively, as both can be used within

the same server.

4.1.3 Implement Multiple Inheritance

In the design of real-time objects in the RT JOVE system described in Section 3,

the real-time class RTItem inherits from the general real-time object class RTObject and

the existing class Item in the JOVE system. Thus we need to implement the multiple

inheritance for the real-time items in the Java IDL.

IDL allows us to define a new interface by extending the functionality provided

by an existing interface. IDL also supports multiple inheritance, which allows an

interface to have several immediate base interfaces. However, Java only supports

multiple inheritance of interfaces, but it does not support multiple inheritance of classes.

Consequently, each generated Java class implements all the methods of the corresponding

Java interface and of all interfaces from which it inherits.

 56

Using the ImplBase approach, the implementation class RTItemServant of type

RTItem must inherit from class _RTItemImplBase and directly implement all methods for

interface RTItem and all types – RTObject and Item – from which it inherits.

Using the TIE approach, the implementation class RTItemServant must implement

Java interface _RTItemOperations, but may inherit the implementation methods from the

existing class Item in the JOVE system. However, the absence of support for multiple

inheritance of classes in Java implies that a multiple inheritance hierarchy of IDL

interfaces can never map directly to the implementation classes for those interfaces.

The current version of JOVE system is developed using the JDK1.1.7 and the

early release of Java IDL. With this early version, the early release of Java IDL compiler

does not support the TIE approach. Thus, in this project, we use the ImplBase approach

to implement the real-time items. The IDL interface RTItem defines all the required

methods, including the non-real-time methods defined in the interface Item, and the real-

time methods needed for itself. The implementation class RTItemServant inherits from

the generated class _RTItemImplBase. It implements the all the methods in the IDL

interface RTItem and the methods in the general real-time object RTObject, including the

methods SLM_lock(), SLM_release(), UpdateAttribute() for the semantic locking

mechanism and update of real-time attributes.

 57

4.2 Implementation of Real-time Item

Real-time items in the RT JOVE system are scenario-specific. For example, we

can define the real-time item Hurricane in the hurricane meeting scenario. Thus different

real-time items have different real-time attributes and compatibility functions. As

described in the Section 3, the real-time item also has a semantic locking mechanism for

concurrency control. There are three parts of the implementation: real-time attributes,

compatibility functions and semantic locking mechanism. This section describes how to

implement the incorporation of the RTSORAC objects into the RT JOVE system. We

also go through the example how to implement the real-time item Hurricane in the RT

JOVE system.

4.2.1 Real-time Attributes

We define an interface RTAttribute for the real-time attributes as the following:

package com.saic.MUVE.Realtime;

public interface RTAttribute

 {public Object getValue();

 public void setValue(Object value);

 public long getTime();

 public void setTime(long time);

public Object getImprecision();

 public void setImprecision(Object imprecision);

 public boolean getValueConstraint();

 58

 public boolean getTimeConstraint();

 public boolean getImprecisionConstraint();

 public String getSource();

 }

The interface RTAttribute defines ten methods. The first six methods are used to

set and get the value, time and imprecision fields, and get their constraints as described in

the Section 3.1.2. The final method getSource() is used to get the update source. In this

project, all the persistent sources for real-time attributes are the corresponding files.

When there is a need for updating a real-time attribute, the real-time item needs to call

the method getSource() to get the source file name. In the future RT JOVE system, we

will replace these files with a real-time database to store all the real-time attributes.

 We can define a real-time attribute to implement the interface RTAttribute. For

example, we define a real-time attribute Wind_speed to implement the interface

RTAttribute as the following. In the code, we specify the timing constraint on the

getTimeConstraint() that the Wind_speed can not be older than 20 seconds.

Public Class Wind_speed implements RTAttribute

 {private Object value = null;

 private long time = 0;

 private Object imprecision = null;

 private String file_name;

 .

 .

 //define the timing constraint of Wind_speed

 59

 public boolean getTimeConstraint () {

 long current_time = (System.currentTimeMillis() %

 1000000000) /1000;

 long start_time = time;

 return current_time - start_time < 20 ;

 }

 .

 .

}

In this way, programmers have great flexibility to specify the timing constraints

on the real-time attributes.

4.2.2 Compatibility Function

Compatibility functions are used to control concurrency. We define an interface

CF for the Compatibility functions as the following:

package com.saic.MUVE.Realtime;

public interface CF

 {

 boolean getCF(int i, int j);

 }

The method getCF(int i, int j) is used to get the concurrent compatibility of the

two methods. Programmers can define semantic Boolean expressions for the

 60

compatibility functions in the array statically. For example, there are just two methods

using this real-time attribute Wind_speed in the real-time item Wind: write_speed() and

read_speed(). The method void write_speed(int) is used to write integer parameter to the

value of the Wind_speed, and the method int read_speed() is used to return the integer

value of the Wind_speed. We can define the class wind_cf to implement the interface CF

for the real-time item Wind as the following:

class wind_cf implements CF {

 boolean[][] comp_func = new boolean[2][2];

 public wind_cf () {

 // specify the semantic Boolean expressions for compatibility functions

 comp_func[0][0] = false;

 comp_func[0][1] = false;

 comp_func[1][0] = false;

 comp_func[1][1] = true;

 }

 public boolean getCF(int i, int j) {

 return comp_func[i][j];

}

 In the code above, we specify that we can read the real-time attribute Wind_speed

concurrently only in the real-time item Wind because we define the last compatibility

function as true while others are false. In this way, programmers have great flexibility to

specify the compatibility functions for real-time items.

 61

4.2.3 Semantic Locking Mechanism

In the RT JOVE system, we provide a concurrent environment for client requests

to improve the real-time performance. Java is inherently multi-threaded. A single Java

program can have many different threads executing independently and continuously.

Thus, we implement the concurrent processing using the multi-thread mechanism in Java.

When several threads want to access the shared resources such as variables, we

need the concurrency control mechanism. Each Java object has a lock. This lock can be

used as an implicit binary semaphore in a block of code synchronized on the object. To

execute synchronized code on an object, a thread must own the object’s lock. When two

threads execute code synchronized on the same object, only one of them acquires the lock

and proceeds. The other is paused until the first one releases the lock. If obj is a reference

to some object, then obj is used as an implicit binary semaphore in the following way.

synchronized (obj) {

 block of code, e.g. critical section;

}

Any object can be used in a synchronized block as an implicit binary semaphore.

In the semantic locking mechanism as designed in the Section 3.1.3, each real-

time item object has its own semantic locking mechanism, including the method

SLM_lock(), the thread SLM_release and the method updateAttribute().

 62

4.2.3.1 the Method SLM_lock()

The method SLM_lock() in each real-time item is used to grant semantic locks to

the client request for method invocation. The method SLM_lock() uses the binary

semaphore. We define the method SLM_lock() synchronized as the following:

public synchronized boolean SLM_lock(int id, Thread

current_thread, int priority, RTAttribute[] rtattr, boolean

new_thread) {

.

.

 //update out-of-date real-time affected attributes

 for (int i=0; i< attr_size ; i++)

 if (!rtattr[i].getTimeConstraint())

 updateAttribute(rtattr[i]);

 //check the CF of the current method and active methods

 synchronized (gActiveMethodTable) {

 int active_table_size = gActiveMethodTable.getLength();

 while (compatible && j < active_table_size)

{compatible = gCompFunc.getCF

(gActiveMethodTable.getId(j), id);

 j++;

 }

}

 63

//check the CF of the current method and waiting methods

//with higher priority

 j=0;

 while (compatible && higher_priority &&

j < gWaitingMethodTable.getLength())

 {temp = gWaitingMethodTable.getWaitingMethod(j);

 if (priority >= temp.getPriority())

 higher_priority = false;

 else

 {compatible = gCompFunc.getCF(temp.getId(), id);

 j++;

 }

 }

 //If compatible, add the method to the Active Method Table

 //Otherwise, add the method to the waiting method

 if (compatible)

 {gActiveMethodTable.Add_method(id);

 return true;

 }

 else

{if (new_thread)

 {WaitingMethod new_waiting_method = new

 WaitingMethod(id, current_thread, priority, rtattr);

 gWaitingMethodTable.Add_method(new_waiting_method);

 }

 return false;

 }

 }

 64

The method SLM_lock() is called when a real-time method is requested to be

invoked by a client or by the thread SLM_release for the blocked threads in the waiting

table. It takes the method id, the thread that called the SLM_lock(), the priority, the

affected real-time attribute set and the Boolean flag that tells if the thread is a new thread

or a blocking thread in the waiting table as its parameters. It updates the affected real-

time attributes if necessary, then it checks the compatibility of the method with the active

methods, and the compatibility of the method with the blocked methods with higher

priority in the waiting table. Finally, SLM_lock returns true if the method can be granted

a semantic lock based on method compatibilities and false if not.

4.2.3.2 the Thread SLM_release

When a method thread is going to finish, it must explicitly release the lock by

creating a thread SLM_release(). We use a thread instead of a method to implement the

explicit release of a semantic lock because a thread provides more concurrency, and thus

dramatically boosts its performance. The following is the implementation of the Thread

SLM_release.

class SLM_release_thread extends java.lang.Thread {

 private int method_id;

 //constructor

 public SLM_release_thread (int id)

 {

 65

 super ("SLM_release_thread");

 method_id = id;

 this.start ();

 }

 public void run ()

 {WaitingMethod temp = null;

 //remove the method from the active method table

 synchronized (gActiveMethodTable) {

 gActiveMethodTable.Remove_method(method_id);

 }

 int size = gWaitingMethodTable.getLength();

 //Synchronizing

 java.lang.Object release_mutex = new java.lang.Object();

 int i = 0;

 synchronized (release_mutex) {

 while (i<size)

{temp=(WaitingMethod)

gWaitingMethodTable.getWaitingMethod(i);

if (SLM_lock(temp.getId(), temp.getThread(),

temp.getPriority(), temp.getAttr(), false))

 {

 //compatible

 temp.getThread().resume();

 gWaitingMethodTable.Remove_method(i);

 size = gWaitingMethodTable.getLength();

 66

 }

 else //not compatible

 {i++;

 }

 }

 }

 }

} //class end

The thread SLM_release inherits from the class Thread. When the SLM_release is

created by a method thread, it removes the method from the active method table first.

Then it calls the method SLM_lock() to check the compatibility of all the waiting method

threads from the highest priority to the lowest priority. If it is compatible, the

SLM_release removes it from the waiting method table, grants it the semantic lock and

resumes the suspended method thread.

4.2.3.3 the Method updateAttribute

The updateAttribute() method is used to update real-time attributes if they are out-

of-date. Up-to-date data may be provided by a real-time database, a file or a program.

There may be different ways to update real-time attributes if the sources of real-time

attributes are different. In this project, the sources of real-time attributes are files. When

we need to update the real-time attributes, the method updateAttribute() will read the up-

to-date data from the file and assign it to the real-time attributes. The following is the

implementation of the method updateAttribute() for an integer real-time attribute.

 67

 public void updateAttribute(RTAttribute attr) {

 try {

 synchronized(this) {

File temp_File = new File(attr.getFile_name());

 FileInputStream fis = new FileInputStream(temp_File);

 byte[] buf = new byte[100];

 int n = fis.read(buf);

 String temp_string = new String(buf);

 Integer temp_int = new Integer(temp_string.trim());

 attr.setValue(temp_int);

 attr.setTime((System.currentTimeMillis()%1000000000)

 /1000);

 }

 } catch(Exception e) {

 System.err.println("ERROR: " + e);

 e.printStackTrace(System.out);

 }

}

The method updateAttribute() takes the RTAttribute as the parameter. At first it

obtains the source file name from this real-time attribute. Then it reads the updated data

from the file and assigns it to the value of the real-time attribute. Finally it resets the time

of the real-time attribute to the current time.

 68

4.2.3.4 the Real-time Method

A real-time method here is defined as a method that uses one or more real-time

attributes. When a client requests a real-time method invocation, the real-time item server

will create the corresponding real-time method thread. In this way, the RT JOVE system

allows concurrent processing. The following is an example to implement a real-time

method.

 public int read_wind_speed (int priority)

 {

 //start the read Thread for real-time attribute wind_speed

 read_wind_speed_Thread temp_thread = new read_wind_speed_Thread

(priority);

 //get the value of wind_spreed

 return temp_thread.getResult();

 }

 In this example, the method read_wind_speed() is used to read the real-time

attribute Wind_speed. When it is executed, it creates a corresponding thread

read_wind_spreed_Thread() and then returns the result by calling the method getResult()

in the read_wind_spreed_Thread. The read_wind_spreed_Thread() is implemented as

the following:

class read_wind_speed_Thread extends java.lang.Thread {

 69

 private int priority = 0;

 private RTAttribute rt_attr[] = {count1};

 private int temp_wind_speed;

 //constructor

 public read_wind_speed_Thread (int cpriority)

 {

 super ("Read_wind_speed_thread");

 priority = cpriority;

 rt_attr[0] = Wind_speed;

 this.start ();

 }

 public void run ()

 {

//get the semantic lock of this thread. If it fails,

//suspend this thread

 if (!SLM_lock(2, this, priority, rt_attr, true))

 this.suspend();

temp_wind_speed = ((Integer)

Wind_speed.getValue()).intValue();

 //release the semantic lock

 SLM_release_thread temp_slm_thread = new SLM_release_thread

(2);

 }

 int getResult () {

 70

 try{ //wait until the thread terminates

 join();

 }

 catch (Exception e) {

 System.err.println("ERROR: " + e);

 e.printStackTrace(System.out);

 }

 return temp_wind_speed;

 }

} //class end

 The thread read_wind_speed_Thread() inherits the class Thread. It takes the

priority as its parameter for the constructor. In the method run(), it first tries to get the

semantic lock by calling the method SLM_lock(). If it gets the semantic lock, it will go

ahead to read the value of the real-time attribute Wind_speed. Otherwise, it will suspend

itself and wait for some active threads that are not compatible with it to finish. After it

reads the value of Wind_speed, it starts the thread SLM_release to release its semantic

lock. In the method getResult(), the method join() is used for synchronization. The

getResult() waits for the this thread to finish by calling the method join(). Then it returns

the value of Wind_speed.

4.2.4 Real-time Item Server

The real-time item server is responsible for creating, deleting and getting real-

time items. Since there are different types and numbers of real-time attributes in different

 71

types of real-time items, it is hard to implement a general real-time item server to

maintain different types of real-time items. Therefore in this project, we implemented

separate real-time servers for different types of real-time items instead of just a single

real-time server. For example, the real-time item type Hurricane has its own server

HurricaneServer. The real-time item server is used to manage its own real-time items.

When the RT JOVE system is started, the real-time item server launches its own real-

time items from MySQL database.

The separate real-time server is responsible for the creation, deletion and

obtaining of its own real-time items. Since different types of real-time items have

different timing constraints, we use a thread RTItemServerSaveThread in each type of

real-time server instead in the MUVE server to save all the objects of its real-time items

periodically. Thus we can define different periods for saving in different types of real-

time item servers. For example, the HurricaneServer may save all Hurricane items

every 30 seconds while the SatelliteImageServer may save all SatelliteIamge items every

10 minutes.

The implementation of saving thread in the real-time item server is very similar to

that of the non-real-time item server existing in the JOVE system. Thus we can reuse

most of its codes. For example, we implemented a real-time item Hurricane and its server

HurricaneServer in the RT JOVE system. In the HurricaneServant for the real-time item

Hurricane, we have the method save() to save the changed attributes within it. And in the

HurricaneServerServant for the real-time item server HurricaneServer, we have a thread

 72

RTItemServerSaveThread to save all the Hurricane items periodically. In the existing

implementation of MUVE server MuveServerServant, we add a creation of the

HurricaneServer. When we run the MUVE server, it will create an object of the

HurricaneServerServant and then start a RTItemServerSaveThread thread for periodically

saving all changed attributes of all Hurricane items.

 73

Chapter 5

Real-Time Item Evaluation

 In this chapter we present three groups of tests that indicate the correctness of our

design and implementation. One test is for periodically saving attributes into the

database, one is for updating real-time attributes, and one is for the semantic locking

mechanism for concurrency control to ensure the runtime correctness of the

implementations. To test the correctness of our design and implementation, we added a

real-time item Hurricane with two real-time attributes Wind_speed and Central_pressure

and its real-time item server HurricaneServer to the JOVE system. We also wrote several

client programs to request real-time methods of Hurricane. We created a real-time

environment in the JOVE system by running the clients with priorities and tested the

correctness of these three groups of tests.

5.1 Testing the Saving Thread for Real-time Attributes

Each real-time item in the RT JOVE system has a thread for periodically saving

all the changed attributes within the item. The saving thread is started when the real-time

item server loads real-time items from database. For example, the saving thread of real-

 74

time item Hurricane is started when its server HurricaneServer is loading real-time

Hurricane objects from the database.

 To test the implementation of the saving thread, we created a Hurricane item and

its server HurricaneServer as described in Section 4.2.4. We then created a client

program to request the MUVE server to change some real-time attributes and non-real-

time attributes of the Hurricane item. After the RTItemServerSaveThread thread

completes saving the Hurricane items in every interval, we used two ways to test its

correctness. One is that we added a block of test code that gets the attribute values from

the table Hurricane in the MySQL database using the JDBC connection after the method

save() in each the Hurricane item is called in the code of the RTItemServerSaveThread.

The other way is that we accessed the MySQL database directly and queried the table

Hurricane to check if all the changed attributes have been saved in the database. We

specified the period as 5 seconds, 30 seconds and 2 minutes respectively to test the saving

thread RTItemServerSaveThread and ran it. We found that all the changed real-time

attributes were saved into the MySQL database periodically and correctly.

5.2 Testing the Update of Real-time Attributes

Each real-time item in the RT JOVE system has three ways to update its real-time

attributes. The first way requires a client to request the MUVE server to invoke a write

method for writing a new value to the real-time attribute. The second way is to use a

thread to update the real-time attributes periodically. The third way to update real-time

 75

attributes is to call the method updateAttribute() to update real-time attributes whenever a

real-time method requests a semantic lock and the real-time attributes are out-of-date in

the semantic locking mechanism for concurrency control. All the up-to-date real-time

attributes are stored in separate files. For example, the updated real-time attribute

Wind_speed is stored in the file called Wind_speed.txt.

 We simulated a real-time environment in which the real-time attributes are

changing from time to time by creating an auxiliary program ChangedWindSpeed to

generate up-to-date data for real-time attribute Wind_speed and to write it into the file

Wind_speed.txt. Thus the file Wind_speed.txt works just like a sensor in an embedded

real-time system. Whenever the real-time item needs to update its real-time attributes, it

can obtain the up-to-date data from the files.

 To test the update thread of real-time attributes, we further implemented the real-

time item Hurricane and its server HurricaneServer in the RT JOVE system. In the

HurricaneServant for the real-time item Hurricane, we have a method

updateAttribute(RTAttribute) to update the specified real-time attribute within it, and a

thread Update_thread to update all the real-time attributes periodically. When we create

an object of the real-time HurricaneServant, it will start an Update_thread thread for

updating all the real-time attributes within it. When the auxiliary program

ChangedWindSpeed changes the data of real-time attribute Wind_speed in the Hurricane

and the thread Update_thread updates the real-time attribute Wind_speed, we can get the

updated data of the Wind_speed. We specified the update period as 5 seconds, 30 seconds

and 2 minutes respectively to test the update thread Update_thread and ran it, we found

 76

that all the real-time attributes had been accessed the updated data from the

corresponding files and had reset the current time periodically and correctly.

.

To test the update of real-time attributes in the semantic locking mechanism, we

defined the timing constraint of the real-time attribute Wind_speed as {current_time –

start_time < 10 seconds} which means that the Wind_speed can not be more than 10

seconds old, and defined a real-time method read_wind_speed(). We also wrote a client

program to request the MUVE server for reading the attribute Wind_speed continuously.

When the client requests for the method read_wind_speed(), it needs to check the timing

constraint of the real-time attribute Wind_speed. If the real-time attribute Wind_speed is

less than 10 seconds, the method will use it directly. Otherwise, the semantic locking

mechanism will get the updated data from the file Wind_speed.txt. We ran the client

program to request the method read_wind_speed() continuously, and we found that the

real-time attribute Wind_speed was up-to-date after each time the method SLM_lock()

completed granting a semantic lock.

5.3 Testing the Semantic Locking Mechanism

A full suite of tests has previously been performed on the Semantic Locking

Mechanism (SLM) that proved its correctness, and that indicated that it generally

outperforms other object-based concurrency control techniques [18] [19]. The tests

described here were performed to indicate the correctness of the design and

implementation of the SLM in the RT JOVE system.

 77

Each real-time item in the RT JOVE system has a semantic locking mechanism

for concurrency control described as the Section 4.2.3. To test it, we simulated a

concurrent processing environment. We implemented the real-time item Hurricane with

two real-time attributes Wind_speed and Central_pressure. We add six real-time

methods. The methods increase_one(), increase_ten(), and read_wind_speed() use the

real-time attribute Wind_speed, the method increase_hundred() and

read_central_pressure() use the real-time attribute Central_pressure, and the method

sum() uses both two real-time attributes. To make the concurrency more clear, we added

a for loop in each real-time method thread to make the methods execute longer.

We also implemented the interface CF to define the compatibility functions of

these six real-time methods. We used the affected set semantics [20] to determine the

compatibility for enforcing serializability of objects. A method’s Read Affected Set (RA)

is the set of the object’s attributes that the method reads. A method’s Write Affected Set

(WA) is the set of the object’s attributes that the method writes. For example, the Read

Affected Set (RA) is { Wind_speed } and the Write Affected Set (RA) is { Wind_speed }

for the method increase_one(). Another example is that the Read Affected Set (RA) is {

Wind_speed, Central_pressure } and the Write Affected Set (RA) is empty in the method

sum(). Under affected set semantics, methods m1 and m2 are compatible if and only if:

((WA(m1) ∩ WA(m2)=∅) ∧ (WA(m1) ∩ RA(m2)=∅) ∧ (RA(m1) ∩ WA(m2)=∅))

Note that defining lock compatibility based on these affected set semantics has been

proven to produce serializable object schedules [18]. Table 1 shows the CF in the real-

time item Hurricane defined by affected set semantics. Two methods can run

 78

concurrently only when their compatibility is true. For example, the method

increase_one() can run concurrently only with the method read_central_pressure().

 increase
_one

increase
_ten

read_wind
_speed

increase_
hundred

sum read_central
_pressure

increase_one FALSE FALSE FALSE TRUE FALSE TRUE
increase_ten FALSE FALSE FALSE TRUE FALSE TRUE

read_wind_speed FALSE FALSE TRUE TRUE TRUE TRUE
increase_hundred TRUE TRUE TRUE FALSE FALSE FALSE

sum FALSE FALSE TRUE FALSE TRUE TRUE
read_central_pressure TRUE TRUE TRUE FALSE TRUE TRUE

Table 1 Compatibility Functions of Six Real-time Methods in the Hurricane

 At first, we tested the semantic locking mechanism among the real-time method

invocations using single real-time attribute in a real-time item object. We know that only

the read methods can run concurrently according to the compatibility functions in Table

1. We wrote several client programs to request the invocations of real-time methods

increase_one(), increase_ten(), and read_wind_speed() separately and continuously,

which only use the real-time attribute Wind_speed. In this case, only the method

read_wind_speed() can run concurrently with itself. In the second case, we wrote several

client programs to request the invocations of real-time methods increase_hundred() and

read_central_pressure() separately and continuously, which only use the real-time

attribute Central_pressure. In this case, only the method read_central_pressure() can run

concurrently with itself. In both cases, our testing results indicate that only the read

methods did run concurrently. Therefore, our implementation of the semantic lock

 79

mechanism works correctly among the real-time method invocations using single real-

time attribute in a real-time item object.

 Second, we tested the semantic locking mechanism among the real-time method

invocations using multiple real-time attributes in a real-time item object. We wrote

several client programs to request the invocations of these six real-time methods which

use either the real-time attribute Wind_speed or Central_pressure or both. The methods

using different real-time attributes can run concurrently due to the affected set semantics.

For example, the method increase_one() using attribute Wind_speed and the method

increase_hundred() using attribute Central_pressure can run concurrently. But the

method using both attributes can not run concurrently with the method using either real-

time attribute. For example, the method sum() can not run concurrently with the method

increase_one(). We ran different numbers of clients concurrently in different orders and

we found that the server can invoke the read_wind_speed(), the read_central_presure()

and the sum() concurrently, the increase_one() and the increase_hundred() concurrently,

the increase_ten() and the increase_hundred() concurrently, the read_wind_speed() and

the increase_hundred(). Our results indicate that our implementation of the semantic lock

mechanism works correctly among the real-time method invocations using multiple real-

time attributes in a real-time item object.

 Finally, we tested the semantic locking mechanism among the real-time method

invocations using multiple real-time attributes in multiple real-time item objects.

Methods of different Hurricane objects can be run concurrently since each Hurricane

 80

object has its own semantic locking mechanism and they do not influence each other. We

added three rows of Hurricane Arlene, Bret and Cindy to the table Hurricane in the

MySQL database. When the MUVE Server started, the real-time item server

HurricaneServerServant loaded the three real-time item objects of the Hurricane from

the database and created corresponding Hurricane objects in the MUVE Factory. We

also wrote some client programs to request different methods in different Hurricane

objects and ran these client programs concurrently in different order. We found that the

methods, such as increase_one(), increase_ten() and increase_hundred(), in Hurricane

object Arlene, Bret and Cindy run concurrently. This means that our implementation of

the semantic lock mechanism works correctly among the real-time method invocations

using multiple real-time attributes in multiple real-time item objects.

 81

Chapter 6

Conclusion

 In this thesis research, we have devised a methodology for designing real-time

objects using Rational Rose Design Tool. We have applied it to the design of real-time

items in the RT JOVE system and have implemented the real-time items. In this chapter,

we will describe our research contributions, limitations and future work.

6.1 Contribution

This thesis has applied real-time and CORBA technology to a large legacy

software application, the JOVE system. We have provided some real-time extensions to

the JOVE system, including the representation of real-time objects and their persistence

in the MySQL database. This project has focused on the incorporation of the RTSORAC

objects into the real-time items of the RT JOVE system, the migration of Java ORB

implementation and the persistence of real-time items.

We have designed the real-time items by integrating the RTSORAC objects into

the RT JOVE system using the Rational Rose Design Tool. We used UML class

 82

diagrams and state diagrams to represent the real-time attributes, compatibility functions

and real-time objects and to express the timing constraints. We also used the sequence

diagram to describe the semantic locking mechanism for the concurrency control. As

stated in Section 2.3.3, there is current work being done towards developing a Real-Time

UML specification. While the current version of Rational Rose does not implement any

real-time features, our work on this project will provide insight into which features of RT

UML might be useful in designing real-time objects, and what other features may be

advantageous to add to the RT UML specification.

We have provided the ability to multi-thread the MUVE server to allow the

concurrent processing, and thus increase the efficiency. We have also provided the

semantic locking mechanism for concurrency control for real-time objects to further

enhance the real-time performance. This concurrency control is transparent to the client.

Our work could lead to a general way to develop concurrent programming in the real-

time distributed systems.

We have provided a CORBA interface in Java for connection between the MUVE

server and clients. We have explored the approaches to implement the Java IDL and

chose the ImplBase approach to do it. Our work shows a way to implement the multiple

inheritance in the Java IDL despite the restriction that Java does not support multiple

inheritance for classes.

 83

We have provided a way to persist the real-time items in the RT JOVE system

periodically. We provided a separate persistence thread for each real-time item since real-

time items have their own specific timing constraints. This will allow each real-time item

to be persisted at a period that reflects its own real-time constraints. The persistence

period may be specified statically by the programmer or dynamically by the user.

6.2 Limitations and Future work

In this project, we use files as the source of up-to-date data of real-time items.

Each real-time attribute has its own file as the update source. It works well when the

number of real-time items is small. But it is not reasonable if the number of real-time

items is large. The current RT JOVE system uses MySQL as the database for persistence

of real-time items and non-real-time items. MySQL is a relational database, which could

make the representation of certain objects in the system more complex than necessary.

Thus we need to provide a real-time object-oriented database (RTOODB) for persistence

and update source of real-time items.

The current implementation of the semantic locking mechanism is good, but far

from perfect. It does not support imprecision of real-time attributes. Also, it does not deal

with the priority inversion problem in the concurrency control, which occurs when a

higher priority transaction must wait for the execution of lower priority transactions. We

 84

need to improve the semantic locking mechanism for concurrency control. We may solve

the priority inversion problem by using the priority inheritance.

The current RT JOVE system uses CORBA for communication between the

MUVE server and clients without any real-time features. In a real-time implementation, it

is necessary to be able to express timing constraints on client requests, and to be able to

enforce the constraints on the server side. Thus we may add real-time CORBA to this

system as done in the JFLEX (Joint Force Level Execution Aid) system [16].

Another scheduling issue in the RT JOVE system involves scheduling concurrent

requests in the MUVE server. Because the MUVE server is multi-threaded, it will be

able to handle multiple requests concurrently. In a real-time system, the order in which

these requests are handled should be based on priority. In this project, we use the priority

that clients provide directly. This is not practical. In the RT JOVE environment, we

recognize that the collaborative nature of the system may introduce other factors that

could effect priority. Thus, another interesting project is examining different criteria that

could effect priority of a client request.

 Another interesting future project is to propose some specifications about how to

add real-time features to UML for object specification. We have used the existing UML

specifications to design real-time objects. However, there is no specification standard for

real-time UML. We may propose a specification for expressing the timing constraints

within an object.

 85

Reference

[1] NRaD, Command and Control Multi-User Virtual Environment Demonstration

[2] Rational Software Corporation, www.rational.com

[3] Sinan Si Alhir, UML in a Nutshell: A Desktop Quick Reference. O’Reilly &

Associates, Inc., 1998.

[4] UML Resource Center, Scope of the UML,

http://www.rational.com/uml/resources/documentation/summary/summary4.jtmpl

[5] J. Prichard, L. C. DiPippo, J. Peckham and V. F. Wolfe, RTSORAC: A real-time

object-oriented database model, in The 5th international Conference on Database

and Expert Systems Applications, Sept.1994.

[6] MySQL. www.mysql.com

[7] The Object Management Group, The Common Object Request Broker:

Architecture and Specification, Revision 2.0, July 1995

[8] Sun Microsystems, Inc., http://java.sun.com/docs/books/tutorial/jdbc/index.html

[9] Geoff Lewis, Steve Barber, and Ellen Siegel, Programming with Java IDL, John

Wiley & Sons Inc., November 1997.

[10] Bruce Douglass, Gary Cernosek, Real-time UML: Developing Efficient Objects

for Embedded systems, Addision-Wesley Inc., 1998

 86

[11] The Real-Time Platform Special Interest Group of the OMG, CORBA/RT White

paper.

[12] Victor Fay Wolfe, Lisa Cingiser DiPippo, Roman Ginis, Michael Squadrito,

Steven Wohlever, Igor Zykh and Russell Johnston, Real-Time CORBA, June 1997

[13] L. Cingiser DiPippo and V. Fay. Wolfe, Real-Time Semantic Object-based

Concurrency Control, the Proceedings of IEEE Real-Time Systems Symposium,

Dec. 1993.

[14] Booch, Object-Oriented Analysis and Design with Applications, Addison-Wesley,

Menlo Park, CA, 1994

[15] OMG, RFP: UML Profile for Scheduling, Performance, and Time – Version 5.0,

Jan. 1999

[16] Yurou Chen, Integration for Real-time CORBA into an Existing Distributed

Planning Application, Master Thesis, URI, 1998

[17] Sun Microsystems, Inc., http://java.sun.com/products/jdk/1.2/docs/guide/idl/index.html

[18] Lisa Cingiser DiPippo, Semantic Real-Time Object-based Concurrency Control,

Dissertation, URI, 1995

[19] Lisa Cingiser Dipippo and Victor Fay Wolfe, Performance of Object-Based

Semantic Real-time Concurrency Control, Technical Report 95-245, URI, 1996

[20] B. Badrinath and K. Ramamritham, Synchronizing transactions on objects, the

IEEE Transactions on Computers, 37(5):541-547, May 1988.

 87

Bibliography

Coulouris, G., Dollimore, J., Distributed Systems: Concepts and Design, Second Edition.

Addison-Wesley Publishing Company, Reading, MA. 1994

Flanagan, D., Java Examples In A Nutshell, O’Reilly & Associates, Inc., Sebastopol, CA,

1997

Hartley, S., Concurrent Programming: The Java Programming Language, Oxford

University Press, Oxford, NY, 1998

Horstmann, C., Cornell, G., Core Java, Sun Microsystems Press, Palo Alto, CA, 1998

Krishna, C., Shin, K., Real-Time Systems, McGraw-Hill, Portland, Oregon, 1997

Rajkumar, R., Synchronization in Real-Time Systems : a Priority Inheritance Approach,

Kluwer Academic Publishers, Boston, MA, 1991

Silberschartz, A., Peterson, J., Galvin, P., Operating System Concepts, Addison-Wesley

Publishing Company, Reading, MA. 1992

Tanenbaum, A., Distributed Operating Systems, Prentice Hall, Englewood Cliffs, NJ.

1995.

