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Abstract

Agents communicate with their peers by exchanging messages in an expressive agent

communication language. An Agent Communication Language (ACL) defines the types

of messages (and their meanings) that agents may exchange. Knowledge Query

Manipulation Language (KQML) is a high-level, message oriented communication

language and protocol for information exchange and knowledge sharing among agents. It

focuses on an extensible set of performatives, to describe the kinds of communication

that agents can have. In addition, KQML provides a basic architecture for knowledge

sharing through a special class of agents called communication facilitators, which

coordinate the interactions of other agents. A real-time agent must meet its objectives

within specified timing constraints, possibly trading-off the quality of its results. For

example, a real-time agent might be employed to monitor stock prices to look for certain

changes in the market, and report on these changes within  a deadline. In order to express

timing constraints in a real-time multi-agent system, the agent communication language

should be suitably extended. In this thesis we develop extensions to an ACL to support

real-time communication. We also implement the extended ACL in KCOBALT,  an

agent   communication tool-kit based on KQML and CORBA. The extensions we have

made to KQML are equally applicable to FIPA ACL .
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1.0  Introduction

The software world is one of great richness and diversity. Many thousands of software

products are available today, providing a wide variety of information and services in a

wide variety of domains. While most of these programs provide their users with

significant value when used in isolation, there is increasing demand for programs that can

interoperate, that is exchange information and services with other programs and thereby

solve problems that cannot be solved alone.

Part of what makes interoperability difficult is heterogeneity.  Agent-based

software engineering was invented to facilitate the creation of software able to

interoperate in such settings. In this approach to software development, application

programs are written as software agents. These software components communicate with

their peers by exchanging messages in an expressive agent communication language.

Agent-based software engineering is often compared to object-oriented

programming. Like an object, an agent provides a message-based interface independent

of its internal data structures and algorithms. The primary difference between the two

approaches lies in the language of the interface. In general object-oriented programming,

the meaning of a message can vary from one object to another. In agent-based software

engineering, agents use a common language with an agent-independent semantics [11].

Agent technology is beginning to be used to solve real-world problems in a range

of industrial and commercial applications. Businesses and consumers are relying more

and more on automated processes to handle the buying and selling of goods and services.

Many of these systems such as real-time auction systems, stock-market quoting systems,

and goods pricing systems, have inherently autonomous features as well as tight

constraints on when and how they can execute specific tasks. These types of applications

could benefit from a real-time multi-agent system in which agents communicate,
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coordinate and negotiate to meet their goals, within specified timing and quality

constraints.

In this thesis we present extensions to support timing and quality constraints in an agent

communication language, KQML to support real-time communication between agents

and implement the extensions in KCobalt, an agent communication tool-kit based on

KQML and CORBA. Section 2 provides the background and related work that has

formed the foundation for the work of this thesis. It introduces Agent and Muti-Agent

System and contains a review of KQML and FIPA ACL. It also describes the KCobalt

system and provides the background on the real-time system. Section 3 presents our

model for Real-Time Multi-Agent System (RTMAS) on which our architecture and real-

time agent services are based. It then describes an example electronic commerce

application to illustrate the features of the model and the RTMAS architecture. Section 4

presents the real-time extensions made in KQML. Section 5 describes the implementation

and integration details of the extensions in the KCobalt system. Section 6 concludes the

thesis with a summary of the contributions of this work and a discussion of future work.

2.0 Background

This section provides foundational definitions and discusses related work in the areas of

multi-agent systems and real-time agents. It gives background information about the

various features of KQML and compares it with another existing agent communication

language, FIPA ACL.

2.1 Agents & Multi-Agent System (MAS)

An agent is a computer system, situated in some environment, that is capable of flexible

autonomous action in order to meet its design objectives [1]. Situatedness, in this context,

means that the agent receives sensory input from its environment and that it can perform

actions which change the environment in some way. Examples of environments in which

agents maybe situated include the physical world or the Internet. An autonomous system
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should be able to act without the direct intervention of humans (or other agents), and it

should have control over its own actions and internal state. Examples include any process

control system, which must monitor a real-world environment and perform actions to

modify it as conditions change, such systems range from very simple thermostats to

extremely complex nuclear reactor control systems. Another example is a software

daemon, which monitors a software environment and perform actions to modify the

environment as conditions change. A simple example is the UNIX xbiff program, which

monitors a user’s incoming email and obtains their attention by displaying an icon when

new, incoming email is detected. An agent should respond to its environment, and should

exhibit opportunistic, goal-directed behavior and interact with other agents to solve its

own problems as well as helping others with their activities.

A multi-agent system is designed and implemented as several interacting agents.

Multi-agent systems are ideally suited to representing problems that have multiple

problem solving methods or multiple problem solving entities. Most multi-agent systems

provide a specialized agent, called a facilitator, which is tasked with finding agents

to fulfill services required by requestor agents. There are two types of facilitators that can

be employed. In both models, each agent registers with the facilitator and advertises the

services that it can perform on behalf of other agents. When an agent requests a service

from a broker facilitator, the broker passes the request along to the agent that provides

the requested service. If no such  agent exists, that is if the requested service has not been

advertised to the broker by any agent, the broker responds to the requesting agent with a

message. A  matchmaker facilitator  works in much the same way as an agent broker.

However, when a request for service is made to a matchmaker, the matchmaker agent

passes along a reference to the agent that can provide the service.  That is, the

matchmaker puts together, or matches, agents that can work together. Once this match is

made, the agents can communicate with each other directly without the use of the

matchmaker.
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2.2 KQML

Knowledge Query and Manipulation Language (KQML) is a language that is designed to

support interactions among intelligent software agents [2]. It was developed by the

DARPA (Defense Advanced Research Projects Agency) supported Knowledge Sharing

Effort. The DARPA Knowledge Sharing Effort (KSE) is a consortium to develop

conventions facilitating sharing and reuse of knowledge bases and knowledge based

systems. Its goal is to define, develop, and test infrastructure and supporting technology

to enable participants to build much bigger and more broadly functional systems than

could be achieved working alone [2].

 KQML focuses on an extensible set of performatives, which defines the

permissible “speech acts” agents may use in communicating with each other. It is a

language and  a set of protocols that support computer programs in identifying,

connecting with and exchanging information with other programs. The performative

signifies that the content is an assertion, a query, a command, or any other mutually

agreed upon speech act. It also describes how the sender would like any reply to be

delivered, that is what protocol will be followed.

2.2.1 KQML message Three-layer organization

A KQML message consists of three layers[6] : content, communication, and message.

The content layer bears the actual content of the message in the program’s own

representation language. KQML can carry any representation language, including

languages expressed as ASCII strings and those expressed using binary notation. Every

KQML implementation ignores the content portion of the message, except to determine

where it ends.

The communication layer encodes a set of features to the message that describe

the lower-level communication parameters, such as the identity of the sender and

recipient, and a unique identifier associated with the communication.
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The message layer, which encodes a message that one application would like to

transmit to another, is the core of KQML. This layer determines the kinds of interactions

one can have with a KQML-speaking agent. A primary function of the message layer is

to identify the protocol to be used to deliver the message and to supply a speech act or

performative that the sender attaches to the content. The speech act indicates whether the

message is an assertion, a query, a command, or any of a set of known performatives.

In addition, since the content is opaque to KQML, the message layer also includes

optional features that describe the content language, the ontology (set of term

descriptions for a specific domain of discourse) it assumes, and some type of description

of the content, such as a descriptor naming a topic within the ontology. Every agent

incorporates some view of the domain (and the domain knowledge) it applies to. The

technical term for this body of background knowledge is ontology. More formally, an

ontology is a particular conceptualization of a set of objects, concepts, and other entities

about which knowledge is expressed, and of the relationships among them [6]. These

features make it possible for KQML implementations to analyze, route, and properly

deliver messages whose content is inaccessible.

2.2.2 Syntax and Performatives

The syntax of KQML is based on a balanced parenthesis list [2]. The initial element of

the list is the performative; the remaining elements are the performative’s arguments as

keyword / value pairs.

For example, a KQML message from agent joe representing a query about the

price of a share of IBM stock can be encoded as:

(ask-one
:sender    joe
:content   (PRICE IBM ?price)
:receiver    stock-server
:reply-with  ibm-stock
:language    LPROLOG
:ontology    NYSE-TICKS)
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In this message, the KQML performative is ask-one. It sends a query asking about the

price of a share of IBM stock. The content which encloses the actual message is (PRICE

IBM ?price). The ontology assumed by the query is identified by the token NYSE-

TICKS. This indicates that the message uses the tickers in the New York Stock

Exchange. The receiver of the message is to be a server identified as stock-server

and the query is written in a  language called LPROLOG. The value of the :content

keyword is the content level, the values of the :reply-with, :sender, and

:receiver keywords form the communication layer; and the performative name with

the :language and :ontology form the message layer. In due time, the stock-

server might send to joe the following KQML message:

(tell
:sender    stock-server
:content   (PRICE IBM 14)
:receiver    joe
:in-reply-to ibm-stock
:language    LPROLOG
:ontology    NYSE-TICKS)

This message binds the value of a share of IBM stock to the variable price and sends it as

a response to the query message received with the identifier ibm-stock.

Altogether KQML proposes a set of 36 performatives divided into three domains :

1) discourse - normal conversation between agents

e.g.   ask-if, ask-one, ask-all, advertise, tell, stream-all

2) intervention - error & information processing messages

e.g.   error, sorry, standby, discard

3) facilitation - messages to facilitators & network information

e.g.   broker, recruit, recommend, broadcast

Table 1 gives a summary of  reserved  performatives for :sender S and  :receiver R

[3]. The KQML Reserved Parameter Keywords are given in the Table 2 [3].
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Name Meaning
ask-if S wants to know if the :content is in R’s VKB
ask-all S wants all of R’s instantiations of the :content that are true of  R
ask-one S  wants one of  R’s instantiations of the :content that  is true of  R
stream-all multiple-response version of ask-all
eos the end-of-stream marker to a multiple-response (stream-all)
tell the sentence is in S’s VKB
untell the sentence is not in S’s VKB
deny the negation of the sentence is in S’s  VKB
insert S asks R to add the :content to its VKB
uninsert S wants R to reverse the act of a  previous  insert
delete-one S wants R to remove one matching  sentence from its VKB
delete-all S wants R to  remove all matching sentences from its VKB
undelete S wants R to reverse the act of a previous delete
achieve S wants R to do make something true of its physical environment
unachieve S wants R to reverse the act of a previous achieve
advertise S wants R to know that  S can and will process a message like the one in a

:content
unadvertise S wants R to know that S cancels a previous advertise and will not process any

more messages like the one in the :content
subscribe S wants updates to R’s response  to a  performative
error S considers R’s earlier  message  to  be  malformed
sorry S understands  R’s  message but cannot  provide  a  more  informative response
standby S wants R to announce its readiness to provide a response to the message in

:content
ready S is ready to  respond  to a  message  previously  received  from  R
next S wants  R’s  next  response  to a  message  previously  sent  by  S
rest S wants R’s remaining  responses  to  a  message  previously  sent  by  S
discard S  does not want  R’s  remaining  responses  to a  previous

(multi-response)  message.
register S  announces to  R  its  presence  and  symbolic  name
unregister S  wants  R  to  reverse the  act  of  a  previous  register
forward S wants  R  to  forward  the  message to  the  :to  agent ( R might be

That  agent)
broadcast S wants  R  to send  a  message to all  agents  that R  knows  of
transport-address S  associates  its  symbolic name with a new  transport  address
broker-one S wants R to find one response to a  <performative>  (some agent

other than R is going to provide that  response)
broker-all S wants R to find all responses to a <performative>  (some agent

other than R  is going  to  provide that  response)
recommend-one S  wants  to learn  of an agent  who may respond  to a <performative>
recommend-all S  wants  to learn  of  all agents who may respond to a  <performative>
recruit-one S wants  R to get  one  suitable agent  to respond  to  a  <performative>
recruit-all S wants  R  to get  all  suitable  agents  to respond  to  a <performative>

Table 1. Summary of reserved performatives for :sender S and :receiver R
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Keyword Meaning

:sender name of the agent sending the performative

:receiver name of the agent receiving the performative

:reply-with unique identifier for a message, to be referenced in later communications

:in-reply-to the expected label in a response to a previous message (extracted from  :reply-

with)

:language name of the representation language used in :content

:ontology name of the ontology used in :content

:content the information carried within the performative, for which it expressed an

attitude.

Table 2. Summary of reserved parameter keywords and their meanings

2.2.3 Semantics

The semantics of KQML is provided in terms of preconditions,

postconditions, and completion conditions for each performative.

Assuming a sender A and a receiver B, preconditions indicate the necessary states for an

agent to send a performative, Pre(A), and for the receiver to accept it and successfully

process it, Pre(B). If the preconditions do not hold, the most likely response is error

or sorry.

Postconditions describe the states of the sender after the successful utterance of a

performative, and of the receiver after the receipt and processing of a message but before

a counterutterance. Postcondition Post(B) holds unless a sorry or an error is sent as

response to report the unsuccessful processing of the message.

A completion condition for the performative, Completion, indicates the final

state.  For example, after a conversation has taken place and the condition indicates

whether the intention associated with the performative that started the conversation has

been fulfilled.
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Preconditions, postconditions, and completion conditions describe states of agents

in a language of mental attitudes (belief, knowledge, desire and intention) and action

descriptors (for sending and processing a message). For example the semantics for tell

performative suggests that an agent cannot offer unsolicited information to another agent.

Suppose that an agent A wants to tell agent B the truth about X, tell(A,B,X). Then Pre(A)

is that A believes X to be true and agent A knows that agent B wants to know the truth

about X. Pre(B) is that agent B intends to know the truth of X.  Post(A) will be that A

knows that B knows A believes X to be true. Post(B) is that B knows that A believes X to

be true. The Completion condition for the tell performative is that agent B knows that

agent A believes X to be true.

2.2.4  Suitability of KQML for Cooperative Multi-Agent interactions

The different interaction needs existing in the case of cooperative intelligent management

agents can be divided into 7 types: affirmation, negation, question, action request,

acceptation, denial and error [5]. Therefore KQML must cover each of these cooperation

interactions through its performatives.

It can be verified that KQML is able to answer to these seven interactions by

establishing a correspondence between them and one or several KQML performatives

that support each interaction in an inter-agents message as given in table below.

Cooperation Interactions KQML  performatives

Affirmation tell, insert

Negation deny, untell, uninsert

Question ask-if, ask-all, ask-one, stream-all

Action request achieve

Acceptation tell

Denial sorry

Error error

Table 3. KQML response to needs for cooperation interactions
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Thus KQML proposes at least one performative for each interaction that can take

place between cooperative intelligent agents. Therefore it is suitable to offer a layer

allowing high-level interactions between agents. KQML also provides the notion of

a facilitator that provides indispensable base services for a multi-agent system.

Considering these features of KQML, we used it as the language to extend to support

real-time communication in a multi-agent system.

2.3 FIPA ACL

FIPA’s (The Foundation for Intelligent Physical Agents) agent communication language

(ACL), like KQML, is based on speech act theory [4]. Messages are actions or

communicative acts, and they are intended to perform some action by virtue of being

sent. FIPA ACL is superficially similar to KQML. Its syntax is identical to KQML’s

except for different names for reserved primitives. KQML uses performatives to refer to

communication primitives whereas in FIPA ACL, the communication primitives are

called communicative acts, or CAs for short.

The FIPA ACL specification document[4] claims that FIPA ACL (like KQML)

does not make any commitment to a particular content language. This claim holds true

for most primitives. However to understand and process some FIPA ACL primitives,

receiving agents must have some understanding of Semantic Language, or SL which is

the language used to define FIPA ACL’s semantics. More details are given in Section

2.3.1.

Given below is an example of an ACL message:

(request
:sender      test-agent
:receiver    ping-agent
:content    (inform

:sender    ping-agent
:receiver    test-agent
:content     (alive)
:language    simple)
:language    fipa-acl)
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In this message the test-agent is sending a request to the ping-agent to inform test-agent

whether ping-agent is alive or not. The ACL message that the test-agent expects to

receive in response to its request is shown below:

(inform
:sender ping-agent
:receiver test-agent
:content (alive)
:language  simple)

The semantics of the request communicative act do not guarantee that the ping-agent

will act upon the request made by the test-agent.  It is therefore possible that the test-

agent will not receive the inform message as expected even though the ping-agent is in

fact alive. The impact of such a result is that the test-agent is still unaware of the ping-

agent’s status.

2.3.1 Semantics

SL is the formal language used to define FIPA ACL’s semantics. In FIPA ACL, the

semantics of each communicative act is specified as sets of SL formulae that describe the

act’s feasibility preconditions and its rational effect. For a given CA ‘a’, the feasibility

preconditions FP(a) describe the necessary conditions for the sender of the CA. That is

for an agent to properly perform the communicative act ‘a’ by sending a particular

message, the feasibility preconditions must hold for the sender. The agent is not obliged

to perform ‘a’ if FP(a) holds, but it can if it chooses. A communicative act’s rational

effect represents the effect that an agent can expect to occur as a result of performing the

action. It also typically specifies conditions that should hold true of the recipient. The FPs

and the REs involve agents state descriptions that are given in SL.

Consider the CA inform, in which agent i informs agent j of content φ,

<i,inform(j, φ)> . The content of inform is a proposition, and its meaning is that
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the sender informs the receiver that a given proposition is true. Here the FP is similar to

the precondition and RE is similar to the postcondition for the tell performative of

KQML. According to FIPA ACL semantics the FP for inform is that agent i holds the

proposition is true and does not believe that agent j has any knowledge of the truth of the

proposition. RE for the communicative act is, agent i intends that agent j should also

come to believe that the proposition is true.

2.4 Comparing the ACLs

KQML and FIPA ACL are almost identical with respect to their basic concepts and the

principles they observe. The two languages have the same syntax. They differ

semantically at the level of what constitutes the semantic description: preconditions,

postconditions, and completion conditions for KQML, feasibility conditions and rational

effect for FIPA ACL.

Both languages assume a basic noncommitment to a reserved content language.

However, in the FIPA ACL, an agent must have some limited understanding of SL to

properly process a received message.

Another difference between the two ACLs is in their treatment of the registration

and facilitation primitives. These primitives cover a range of important pragmatic issues,

such as registering, updating registration information, and finding other agents that can be

of assistance in processing requests (register, unregister, broker, recommend, recruit). In

KQML, these tasks are associated with performatives that the language treats as first-

class objects. FIPA ACL does not consider these tasks CAs. Instead, it treats them as

requests for action and defines a range of reserved actions that cover the registration and

life cycle tasks. In this approach, the reserved actions do not have formally defined

specifications or semantics and are defined in terms of natural-language descriptions.
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2.5  KCOBALT

KCobalt [5] is an agent communication tool-kit based on KQML and CORBA. CORBA

(Common Object Request Broker Architecture) is a standard software specification for

distributed environments in which all entities are treated as distributed objects [14]. Its

main role is to provide message transport between agents. CORBA also offers standard

services to facilitate distribution. These services can be used to simplify the

implementation of the facilitator concept at the KQML level. The KQML layer

contacts the CORBA services it needs to provide services of the facilitator. The

CORBA architecture allows for location, language and operating system transparency. To

provide such functionality, it uses interface definitions, written in the CORBA Interface

Definition Language (IDL), specifying the methods, parameters, types and exceptions a

CORBA object supports [14].

The KCobalt cooperation framework offers communication abstraction between

intelligent agents to allow them to exchange information and messages. This

communication abstraction, represented in the case of interaction between two intelligent

agents, is shown in Figure 1[12].

KCobalt offers to intelligent agents a communication interface to allow them to

exchange messages as well as interaction content through KQML performatives.

Message transport itself is provided by CORBA. By combining KQML and CORBA,

KCobalt offers the communication and interaction framework to cooperative intelligent

agents. Intelligent agents using it have to be seen as KQML agents at the KQML level

and as CORBA objects at the CORBA level.

In order to go from the agent level to the KQML level, and express messages of

cooperative intelligent agents under the KQML textual form, there is a parser/generator.

To go from the KQML level to the CORBA level, an interface is provided written in IDL

language. It describes all messages the intelligent agents (seen as CORBA objects at this
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level) can exchange. Here we move from asynchronous communication in KQML to

synchronous client/server exchanges in CORBA requests.

    Figure 1. Communications between two KCobalt agents

2.5.1 Base architecture

The functional architecture depicted in Figure 2[12] for KCOBALT consists of the

following modules:

• Parser/ Generator module:

This module helps to go from the agent level to the KQML level, and express messages

of agents under the KQML textual form. The parser intercepts the KQML textual

messages emitted by agents. It decomposes the messages, identifying the nature of the

performatives and the fields matching associated parameters. The generator rebuilds a

textual message from the received data. The intelligent agent can then process this textual

message.

Intelligent
Agent
KCobalt 1

Intelligent
Agent
KCobalt 2

KQML
Agent

CORBA
Object

KQML
Agent

CORBA
Object
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• Services calls processing/ redirection module:

This module intercepts all KQML messages transmitted to the KCOBALT framework

and identifies the ones addressing services and especially the KQML facilitator.

Depending on the service asked for, it may process it locally or transfer (possibly after

translating it) the request to the suitable service.

•  KQML/ CORBA interface module:

This module identifies KQML performatives, translates the  parameters to types CORBA

can deal with, and calls methods matching the performatives on the CORBA object . In

the KCobalt architecture, inspired from Y.Labrou’s work in [3] (Table 5), the KQML

performatives are divided into three categories.

1) All agents category:

These are performatives all KQML agents can exchange. They form the Core

performatives. There are 27 core performatives.

2) Facilitators category:

These are performatives used for communication with KQML facilitators (being specific

KQML agents, providing services). There are only three pure facilitation performatives :

register, unregister, transport-address

3) Optional category:

These are performatives available only if published. There are six optional performatives

(these also are facilitation performatives as Y.Labrou described). They are broker-

one, broker-all, recruit-one, recruit-all, recommend-one,

recommend-all
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 Figure 2. KCOBALT Functional Architecture

Depending on the performative, the interface uses Core, Facilitation or Optional

functions.

• CORBA object modules:

These modules are independent of each other and they support message marshaling and

transport. Depending on the concerned performatives, the Core, Facilitation or Optional

module will be used to transport messages from one KCobalt infrastructure to another

one, and finally from one intelligent agent to another one.

       KQML
   Parser/Generator
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CORBA
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    Application Agent
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   KQML-CORBA Interface

CORBA
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• Performative Exchanger:

This is a simple user interface provided with KCobalt  for testing. This GUI can be used

for sending and receiving performatives one after the other to simulate inter-agent

communication.

KCobalt, based on the combination of KQML and CORBA, offers an open and

generic cooperation framework between intelligent agents. It is therefore a suitable

framework to develop any cooperative intelligent system. So KCobalt was used as the

basis for implementing real-time extensions to KQML for inter-agent communication.

2.6  Real-Time Systems

A real-time system is a system in which the time at which the output is produced is

significant [13]. The input corresponds to some “movement” in the physical world, and

the output has to relate to the same movement. Real-time systems interact with the

external world in a way that involves time. When a stimulus appears, the system must

respond to it in a certain way and before a certain deadline. If it delivers the correct

answer, but after the deadline, the system is regarded as having failed.

Real-time systems are generally split into two types [9] depending on how serious

their deadlines are and the consequences of missing one. These are:

1) Soft real-time systems.

2) Hard real-time systems.

Soft real-time means that missing an occasional deadline is all right. For example,

a telephone switch might be permitted to lose or misroute one call in 105  under overload

conditions and still be within specification. In contrast, even a single missed deadline in a

hard real-time system is unacceptable, as this might lead to loss of life or an

environmental catastrophe. e.g : nuclear reactor. There are intermediate systems with firm

real-time where missing a deadline is not catastrophic, but there is no value in continuing

with operation if timing constraint is not met. For example, if a robot in an assembly line
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conveyor belt missed picking up the object being passed, there is no point in attempting

to pick it up later.

2.6.1 Real-Time Extensions to SQL

SQL (Structured Query Language) is a standard relational database language. RTSQL [7]

includes extensions to support real-time databases that specify timing constraints on

execution along with other constraints on data and transactions. The most developed

support in RTSQL is for timing constraints. RTSQL specifies time constrained execution

by placing timing constraints on individual data manipulation statements or a block of

statements.

The START BEFORE and COMPLETE BEFORE clauses are used to express the

latest start time and latest finish time for the execution of the statement. The START

AFTER and COMPLETE AFTER clauses are used to express the earliest start time and

earliest finish time for the execution of the statement. The SQL standard, SQL2 provides

three datetime data types: DATE, TIME, TIMESTAMP. There is also an interval data

type called INTERVAL, that can be used to express a period of time, such as 5 minutes.

SQL also supports three datetime valued functions: CURRENT_DATE returns the

current date, CURRENT_TIME returns the current time, and CURRENT_TIMESTAMP

returns the current date concatenated with the current time.

The IMPORTANCE LEVEL directive allows for the specification of the relative

importance of an action. A scheduling algorithm may use relative importance of tasks as

a parameter in determining scheduling priority of the tasks. The basic data manipulation

operations SELECT, INSERT, UPDATE and DELETE were implemented with timing

constraints specified for each action.

This work helped in deciding the appropriate places to include timing constraints

and to do parallel extension of an agent communication language in order to support real

time communication between agents.
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2.6.2 Related Real-Time Agent Work

Here we discuss related real-time agent work that has been done.

TAEMS (Task Analysis, Environment Modeling, and Simulation) is a domain

independent task modeling framework used to describe and reason about complex

problem solving methods [15]. TAEMS models are used in multi-agent coordination

research and are used in many projects. TAEMS models are hierarchical abstractions of

problem solving processes that describe alternative ways of accomplishing a desired goal.

All primitive actions in TAEMS, called methods, are statically characterized via discrete

probability distributions in three dimensions: quality, cost and duration. Quality is a

deliberately abstract domain-independent concept that describes the contribution of a

particular action to overall problem solving. Duration describes the amount of time that

the action modeled by the method will take to execute and cost describes the financial or

opportunity cost inherent in performing the action.

Soft constraints in TAEMS take the form of soft commitments made with other

agents and soft interactions between tasks. In the model, a client may specify an overall

soft deadline, soft cost limit, or soft quality requirement. These soft constraints are

members of a package of client preferences called design criteria that describes for the

scheduler the client’s objective function. The scheduler then makes trade-off decisions as

needed to best address the client’s needs.

AMSIA is another agent architecture that supports real-time requirements. It

combines the possibility of using different reasoning methods with a mechanism to

control the resources needed by the agent to fulfill its high level objectives [16]. Agent

missions in this model have as relevant parameters their priority (importance for the

agent) and deadline. In this architecture it is the control mechanism which is in charge of

deciding which tasks to execute. The goal of the control mechanism is to maximize the

profit of the line of activity of the agent. To do so, it always tries to favor the sequences

of tasks corresponding to more important plans and to use tasks to carry out those plans
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which offer more quality. The control mechanism can remove sequences of tasks

corresponding to less important plans to favor the introduction of those corresponding to

more important ones. To decide between sequences of tasks the control mechanism

scores them taking into account both the importance of the objectives of the plan and the

quality offered by the tasks used to follow it.

These works helped in coming up with the appropriate constraints needed to be

incorporated in our RTMAS model. As of now, no published work is available that

describes extending an agent communication language like KQML to handle real time

requirements on agents.

3.0 Real-Time Multi-Agent System

A real-time agent must meet its objectives within specified timing constraints, possibly

trading-off the quality of its results. For example, a real-time agent might be employed to

monitor stock prices to look for certain changes in the market, and report on these

changes within a deadline. In order to express and enforce the timing and other quality of

service (QoS) constraints of individual agents, a real-time multi-agent system (RTMAS)

must provide services that allow the real time agents to communicate, coordinate, and

cooperate to meet the goals of their particular application and the specified QoS

constraints.

This section describes an example Real-Time Multi-Agent application and presents

our model for RTMASs on which our architecture and real-time agent services are based.

3.1 An Example Real-Time Multi-Agent Application

 

A stock trading system is an example of an application for which a real-time multi-agent

system(RTMAS) would be useful. Here the real-time agents work together to meet their
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goals, and specified QoS requirements and coordinate to make intelligent

recommendations, purchases and sales of stocks.

Suppose there are four different types of agents: a UserAgent, a QuotingAgent, a

TrendWatchingAgent, and a BuySellAgent. The UserAgent communicates with the human

user to determine her requirements, such as risk level, amount of money to spend, and

market sector preferences. The UserAgent also communicates with the other agents in the

system to be able to make recommendations to the user. Each QuotingAgent has the

ability to get quotes on stocks on a particular sector of the market. It can also monitor a

particular stock for a  particular price range. QuotingAgents communicate with the other

agents that require information about stock prices. They can also communicate with each

other if a request is made to one QuotingAgent for a stock that it cannot quote.

The TrendWatchingAgent looks for particular trends in the market. Each specific

TrendWatchingAgent may be responsible for a particular kind of trend, such as a long-

term increase in biotechnology stocks. When a TrendWatchingAgent recognizes a trend

that might be interest to other agents, it notifies them. The TrendWatchingAgent

communicates with a UserAgent if the UserAgent has expressed interest in a particular

trend. It communicates with the QuotingAgent in order to get quotes on specific stock

prices.

The BuySellAgent is responsible for actual purchases and sales of stocks. This

kind of agent can act autonomously if the human user has expressed to the UserAgent

that transactions can be made automatically. In this case, the UserAgent utilizes the user’s

profile and information from the other agents in the system to specify buy and sell

transactions to the BuySellAgent. If the user wants to be involved in each transaction, then

the UserAgent can make recommendations to the user, get her approval, and then notify

the BuySellAgent to perform transaction.

The timing constraints on this RTMAS stem from the volatility of prices in the

stock market. For example, if the UserAgent determines that the user should purchase
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100 shares of Techno stock because the price is currently relatively low, then it must

specify a deadline to the BuySellAgent by which the transaction must be made in order to

realize the desired result.

3.2 RTMAS Model

The Real Time Multi-Agent System Model proposed by the Real Time Research group in

URI [8] embodies the features and functionality required to express and enforce timing

constraints on real-time agent interactions. The model is based on the assumption that

many agents can perform their tasks in multiple ways. Each of the methods of execution

of an agent’s task is associated with a worst case execution time and an expected amount

of quality returned. The model is made up of  a set of real-time agents(RTAgent) and a set

of communications among the real-time agents(Request).

3.2.1 RTAgent

A real-time agent can be defined as follows:

RTAgent  =  {S1, S2,...., Sn }

Each RTAgent is comprised of a set of solvables, {S1, S2, … Sn}, where a solvable

is a problem that the agent is designed to solve. Each solvable within the agent is

represented by an optimal result (O) and a set of execution strategies (ES):

Si =  < O, ES >

The optimal result for a solvable may vary from environment to environment

depending upon the developer, the user, and the intended use of the agent. This is an

objective, system-specific definition of what is considered to be the absolute best result

for the problem. For instance, in the case of stock trading , the BuySellAgent may have a

solvable, BuyStock, to purchase a particular stock. The optimal solution in this scenario

might be to buy the stock at the current price with no fee.
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In the model of a solvable, ES represents a set of execution strategies that can be used to

produce a result for the solvable:

ES = {es1, es2, esn}

For example, the solvable BuyStock may have an execution strategy, BS1, that uses a

discount broker with a low fee. This execution strategy may come close to the no fee

requirement of the optimal result, but if the discount broker typically has a longer turn

around time, then the deadline of the BuyStock request may be violated and the price of

the stock may have changed. On the other hand, an execution strategy, BS2,  that uses a

more expensive broker may be able to handle the request more quickly.

Each execution strategy of a solvable is comprised of three elements:

esi   =  < ex, q, tv >

The execution time (ex), represents the amount of time it takes a strategy to run. Quality

(q) is calculated as a percentage of the optimal result such that q = (strategy result /

optimal result ). This definition of quality is conditional upon the ability to quantify the

result of a task. In the example above, we quantify the optimal result of the BuyStock

solvable by specifying zero fee for the transaction. While this optimal result may be

impossible to achieve, it provides a metric by which to measure the results of the actual

execution strategies.

In this model, the quality of an execution strategy must be known ahead of time.

In some cases, an average quality will have to be used to represent the actual quality

returned by an execution strategy in a specific scenario. For example, in the BuyStock

solvable, it may not be possible to know the exact quality returned by its execution

strategies if the fee is based on a percentage of the exact stock price. Instead, we can

determine a statistical delta from the requested stock price for the particular broker, and
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compute the fee based on this estimate. This estimate may be updated based on the actual

use of the system in which the real-time agent exists.

 The last component of  an execution strategy is the tradeoff value (tv). This

parameter provides a measure of how much value will be lost by reducing the execution

strategy of  a solvable. The tradeoff value is defined as the change in quality between two

execution strategies, divided by the change in time. More precisely, for any esi, we have :

            qi  -  qi+1

                       qi

tvi      =
          exi  -  exi+1

3.2.2 Real-Time Agent Request

Communication among agents in this model is performed through requests for service

from one agent to another. The formal specification for a request R is

R= < A, V, I, D, H >

A represents the name of the real-time agent to which the request is directed. V is the

name of the solvable that the client is requesting to be performed. I is the level of

importance of the request. This value is based on some system–wide scale of importance

agreed-upon by all agents. D represents the deadline by which the request must be

completed. In the model, this deadline can be either a soft deadline, or a firm deadline,

depending upon the requirements of the application. H specifies the quality threshold for

the request. That is, the requesting agent expresses through H, the minimum quality

returned by the request. If the servicing agent cannot provide this amount of quality, then

the requesting agent may choose to abort the request.
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As an example of a real-time agent request, consider a UserAgent in the stock

trading example. It may send a request to the QuotingAgent for the price of IBM stock

GetPrice(IBM). In the real-time agent request A gets the value QuotingAgent and V gets

the value GetPrice(IBM).The deadline that the UserAgent specifies on this request may

be based on the requirements of some other transaction that the UserAgent is performing.

The UserAgent may specify a quality threshold that allows for a quarter of a point

difference from the actual stock price in order to meet its deadline. The importance of the

request depends upon the overall transaction that the UserAgent is attempting to perform.

If the transaction involves spending a few hundred dollars, then the importance is low.

But if it involves thousands of dollars, the importance may be higher. This model of a

request forms the basis for our real-time extension to KQML described in the next

section.

4.0 Real-Time Extensions to KQML

In order to express timing constraints in a real-time multi-agent system, we must extend

the expressibility of the agent communication language used. Such a language is a

protocol for information exchange and knowledge sharing among agents. These

languages provide “communicative acts” or “performatives” to describe the kinds of

communication that agents can have. Due to the similarities between the languages, most

of the extensions we are considering for KQML are equally applicable to FIPA-ACL.

This thesis extends the expressibility of the agent communication language

KQML in order to express timing constraints in a RTMAS. There are two types of

communication that we have identified as requiring extension: (1) a request from one

agent to another, and (2) an advertisement of capabilities from a servicing agent to a

facilitator.

The KQML performatives are extended to include the constraints such as

deadline, importance, and quality to represent RTAgent requests. For example, consider a
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request from a UserAgent to a  TrendWatchingAgent, to report on current trends in

internet stocks within 15 seconds. The KQML request will look like the following:

(ask-one
:sender     UserAgent
:receiver     TrendWatchingAgent
:reply-with   Trend
:Qos_requirement (dl=15,imp=4,qual=75)
:language     Java
:ontology     Stock
:content     Watch(internet))

The Qos_requirement parameter is added to the KQML ask-one

performative to allow for the expression of the deadline (dl), the importance (imp) and

the quality threshold (qual) for this request. All these constraints are included as part of

a Qos_requirement parameter in order to allow for the addition of further quality of

service constraints in the future.

Communication between agents and facilitators must also be extended to allow

for expression of timing capabilities. All agents that provide services to other agents must

advertise with a facilitator. For example, the BuySellAgent has a solvable to buy a stock

(BuyStock). It has two execution strategies, each with a  specific execution time and

quality. The facilitator message to advertise the capabilities of this agent is as follows:

(advertise
:sender BuySellAgent
:receiver Facilitator

     :Qos_capabilities (
       (ex=5,qual=85)
       (ex=2,qual=65) )

:language      Java
     :ontology      Stock

:content      BuyStock(A))

In this example, the BuySellAgent specifies through the Qos_capabilities

parameter that it has two execution strategies, one can execute in 5 seconds with a
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returned quality of 85, and the other that can execute in 2 seconds with a returned quality

of 65. The Qos_capabilities used to express the quality of service characteristics

can be easily extended.

In most real-time applications deadlines or other time constraints are present on

the agent’s problem solving. We can extend KQML by either adding new performatives,

adding new parameters or creating new ontologies. For real-time communication between

agents extending KQML by adding new parameters is the best choice. Our real-time

extension to an agent request which includes Qos_requirement parameter in the

KQML performatives takes into account the deadline, importance and quality constraints

that the user inputs for the particular message. These constraints can then be used by the

real-time scheduling algorithm run by the real-time scheduler which will be incorporated

in future. The scheduler determines the scheduling priority and execution time values for

each agent request depending on the constraint values specified by the user. The

Qos_capabilities parameter added to the advertise performative allows an

agent communicating with the facilitator to specify the execution time as well as the

quality of the result returned by each execution strategy for a solvable of that agent. The

real-time facilitator which will be incorporated into the system in future, communicates

with the real-time scheduler to determine which agent can best satisfy the user’s request

using alternate solution methods, or trading-off quality depending on what is available.

5.0 System Implementation

The extended Real-Time Agent Communication Language is implemented as part of  a

Real-Time Multi-Agent System prototype being developed at URI [8]. This prototype is

based  on the RTMAS architecture depicted in Figure 3. It is a multi-layered architecture.

At the lowest layer, there is a POSIX-compliant real-time operating system. Above that is

the real-time ORB layer. The real-time middleware services layer consists of the

Scheduling Service and the RT Trader Service. The Scheduling Service assigns priority

to servers and to client requests. The RT Trader Service receives requests for service

from clients with the specified timing constraints, such as deadline and importance. It
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then determines which server object can respond to the request within the specified

timing constraints. Finally, the real-time agent services layer extends the Scheduling

Service and the RT Trader Service of the previous layer to provide a Real-Time Agent

Scheduling Service and a Real-Time Facilitator Service. The agent services layer also

provides a service for Real-Time Agent Communication.

  Figure 3. Real-Time Multi-Agent System Architecture

The initial design is based on the implementation of the KCobalt system [5] that maps

KQML messages to CORBA IDL.

5.1 KCobalt Implementation

The KCobalt architecture was implemented using the JavaBeans technology [5].

JavaBeans are independent software components that can be assembled and

parameterized statically at compile time or dynamically during Java program execution.

Beans are concepts similar to object programming, but applied to high-level components

offering advanced services. The implementation architecture based on JavaBeans is

shown in Figure 4[12].
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Figure 4. KCobalt Implementation Architecture

In the KCobalt implementation, agents are represented as CORBA objects. The

IDL for each of the objects in cobalt.idl includes the  following specification. Here we

show only two performatives, ask-one and tell,  but the interfaces for the other

performatives are similar.

module Core {

interface CoreS {

//ask-one//
void askOne (  in  string  sender,

   in  string  receiver,
   in  string  inReplyTo,
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   in  string  replyWith,
   in  string  language,

         in  string  ontology,
   in  string  content) ;

//tell //
void tell (  in  string  sender,

   in  string  receiver,
   in  string  inReplyTo,
   in  string  replyWith,
   in  string  language,

         in  string  ontology,
   in  string  content) ;

. . .

  }
}

The interface for the agent object includes a CORBA method for each KQML

performative, with parameters to represent the KQML parameter. There are  three distinct

interfaces, corresponding to the three performative categories: Core, Facilitation

and Optional.

 Thus the only mechanism, for communication with an agent object is through its

KQML performative methods. Agent communication is expressed as a KQML string.

That is, when an agent wishes to communicate with another agent object, it expresses a

KQML string with the desired performatives. The string is sent to a KQMLParser

object that parses the string and creates a CobaltPerformative class object to

represent the specific performative being requested. The parser is based on a public

domain tool initially developed by Sun Microsystems, JavaCC [10], functioning like

Yacc and Lex and used to describe KQML grammar and to call Java functions matching

each keyword. The parser then calls the Dispatch(CobaltPerformative)

method of the CobaltDispatcher  which determines to what agent the performative

should be directed. The dispatcher object is responsible for calling the method on the

agent object that corresponds to the performative in the message.

The interceptor module deals with performative interceptions, calling the right

internal class when required. This provide agents KQML facilitator’s capabilities. It
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intercepts KQML messages and redirects them to the right CORBA service. The

interceptor uses a configuration file perf-intercept.map defining :

- performatives to intercept,

- content of the receiver parameter required for performative interception,

- Java class to call in case of interception.

The interception module offer to agents the ability  to register, locate and discover

each other dynamically, during the multi-agents system operation.

5.2 Real-Time Agent Communication Implementation

Our current implementation is based on the KCobalt implementation described in Section

5.1. As is the case in KCobalt, all agents in our implementation are represented as

objects. The IDL for an agent object in our implementation includes the following

specifications :

interface CoreS {

//ask-one//
void askOne (  in  string  sender,

   in  string  receiver,
   in  string  inReplyTo,
   in  string  replyWith,
   in  string  language,

         in  string  ontology,
   in  string  content,
   in  string  Qos_info);

. . .

  }

The interface for an agent object is similar to the interface for agent objects in

KCobalt. Each performative is represented as a method on the interface. The main

difference is that our performative methods provide parameters for the expression of QoS

constraints. The Qos_info parameter includes the priority and execution time allotted

to the agent by the scheduler to execute this request.
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Figure 5 displays the implementation design. To specify its capabilities, a

servicing agent sends a RT KQML “advertise” string to the parser object, through its

parse() method. The parser parses the message and creates a  performative object to

send to the dispatcher object. The dispatcher calls the advertise() method on the RT

Agent Facilitation Service object to be integrated into the system . When a requesting

agent requires a service from a servicing agent, the requesting agent sends a RT KQML

string with the specified performative to the parser object (1). The parser parses the string

and sends the associated performative object to the dispatcher object (2). For example,

assume that a real-time agent specifies the following RT KQML string message:

(askOne
      :sender UserAgent
      :receiver TrendWatchingAgent

:replyWith Trend
:Qos_requirement (dl=15,imp=4,qual=75)
:language Java
:ontology IBM
:content Watch(internet) )

The parser object parses this string and passes it to the dispatcher. The dispatcher extracts

the specified agent, solvable and QoS information, and makes the following method call

to the RT Agent Scheduling Service object (3):

schedule(“TrendWatchingAgent”, “Watch(internet)”,15,4,75)
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Figure 5. RTMAS Prototype Implementation.

For the implementation developed for this thesis the schedule function  assigns

priority and  execution time values in the form of Qos_Info string for each agent

request. A scheduling algorithm for a Real-Time Multi-Agent System has been developed

by the Real-Time research group at URI which will soon be integrated into the system.

For this implementation, the real-time parameters in Qos_Info are not based on any

real-time scheduling algorithm. The scheduling service returns dummy values (4).

Finally, the dispatcher calls the method on the servicing agent corresponding to the

requested performative with the QoS parameters determined by the scheduling service

(5).

In our implementation the interface for an agent object is similar to the interface

for agent objects in KCobalt except that the performative methods represented on the

interface were extended to include the Qos constraints. This makes it possible for agents

to communicate using the performative methods defined on the agent interface in

KCobalt.
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5.3 Example Agent Implementation

To demonstrate the Real-Time Agent communication , I implemented in this thesis two

example agents as shown in Figure 7. A BuyStock agent with two solvables

GetPrice(stock) and Buy(stock,num) and a UserAgent with two solvables

namely TellPrice() and ConfirmSale().When the  BuyStock agent gets a

“GetPrice” request, it calls the method GetPrice(searchStr). The

searchStr is the stock name specified by the UserAgent.

The GetPrice() method of the BuyStockAgent object reads in a datafile

containing records with fields stock name and prices. This method will search through a

vector of strings holding raw input lines from the datafile, breaking each line into fields

and comparing the stock name field against the searchStr passed to the method. If a

match is found the entire line in the datafile entered for that stock, namely the stock name

and its price, is returned. If no match is found then a string with the message “No match

found” is returned. The BuyStock_wrapper object then sends a reply TellPrice() to

the UserAgent_wrapper  with the returned  string from GetPrice().The

BuyStock_wrapper and the UserAgent wrapper provide interface functions for the

solvables of the BuyStockAgent and UserAgent respectively.

When the UserAgent_wrapper  gets the stock price information it calls

TellPrice() on the UserAgent. The  UserAgent extracts the price from the content

parameter value field and checks it. If the price is less than or equal to a particular limit

value then it will send a message Buy(stock,num) to the BuyStockAgent to buy that

number of stocks specified in the value num of the particular stock name specified by the

argument stock. On getting the buy request the BuyStock_wrapper calls Buy() on the

BuyStockAgent which sends back a ConfirmedSale() reply.

In order to test the extended performatives, the Performative Exchanger GUI was

used. It acts as a simple graphical agent interface and allows a user to select the
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performative to send, then to enter parameters depending on this performative. The test

graphical interface is presented in Figure 6.

Figure 6. Graphical Interface of the test application for KCobalt
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                    Figure 7. Example Agents
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6.0 Conclusions

This chapter summarizes the completed work and discusses some key work to be done in

the future.

6.1 Summary of Completed Work

 Our RT Agent Communication Service extends the KQML agent communication

language with the ability to express QoS parameters in each performative. This extension

makes it possible for the supporting environments to analyze and deliver messages based

on its Qos parameters, even though the :content itself is inaccessible. The design of

these extensions is extensible in that new QoS features, such as security, network latency,

and periodic execution of a task can easily be added in the future. We have used the

KCobalt implementation since the model is very close to the model being developed by

the Real Time Research group at URI. In order to extend the KCobalt implementation to

allow for the expression of QoS constraints we extended the parser to recognize the

additions that we have made to KQML, and we extended the implementation of agent

objects to allow for QoS parameters in the performative methods. This provides agents

with the ability to express the kinds of real-time and QoS constraints that occur in many

real-world applications.

6.2 Future Work

Some suggestions for extending this work are listed below.

1 Improve performance

 This implementation is not efficient for a real-time system because each time a RT

KQML performative is expressed as a string, it must be parsed on the fly. While we could

determine a worst case bound on the parsing time, this technique severely impedes real-

time performance.
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The performance of the system can be improved if new techniques similar to the

KCobalt parsing techniques can be developed that do not require on-the-fly parsing of

strings. The new technique can allow real-time agent programmers to implement their

agent objects in exactly the same way as in the current implementation. It can employ a

pre-processor that performs the role of the parser object and the dispatcher object. That is,

the pre-processor will parse the KQML strings in the real-time agents, and builds the

calls to the RT Agent Scheduling Service directly into the real-time agent objects. Thus,

the final code for a real-time agent will not send a string to a parser, but rather, it will

make a call to the schedule() method of the RT Agent Scheduling Service, bypassing

the parser and the dispatcher altogether.

2 Apply To FIPA ACL

Syntactically both KQML and FIPA ACL messages are almost identical. The similar

syntax guarantees that a developer will not have to alter the code that receives, parses and

sends messages. The code that processes the primitives should change depending on

whether the code observes the proper semantics. When compared to KQML, FIPA ACL

is more powerful with composing new primitives. In FIPA ACL the “administration

primitives” such as register, unregister etc., are treated as requests for action

with reserved (natural language) meaning. There are no “facilitation primitives”, e.g.,

broker, recommend, recruit, etc., in FIPA ACL. The power stems from the power of the

SL language as a content language to describe agents’ states. KQML’s weakness is its

religious non-commitment to a content language.

3 Integrate implementation of RT Scheduling Service and RT Facilitator     

This work should be integrated with a RT Scheduling Service which uses a real-time

scheduling algorithm to schedule the various user requests coming into the system. Each

agent in the system advertises its capabilities with the facilitator. A RT Facilitator

provides the ability to request real-time agent services without specifying the exact agent

that will perform the service. The RT Scheduling Service communicates with the

facilitator in order to determine the best agent to provide a particular service using
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alternate solution methods, or trading-off different resources, depending on what is

available.
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