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Abstract

In many real-time applications such as command and control, industrial automation,

aerospace and defense systems, telecommunications data is naturally distributed

among several locations. Often this data must be obtained and updated in a timely

fashion. But sometimes data that is required at a particular location is not available,

when it is needed and getting it from remote site may take too long before which the

data may become invalid, violating the timing constraints of the requesting

transaction.

One of the solutions, for the above-mentioned problem, is replication of data in real-

time databases. This makes the data available locally on the requested site.

Unfortunately, very little research is involved in replicating the data in real-time

databases, especially in real-time object-oriented databases.

We have developed an algorithm called Just-In-Time Real Time Replication (JITRTR)

algorithm that generates replication transactions that copy required data where and

when it is needed. The algorithm takes the requests and updates from the

specifications and translates them into local transactions. It also analyzes the

parameters of the requests and updates and creates replication transactions so that all

the requests always read valid data at any point of time. The JITRT replication

algorithm takes care that all requests always read valid data. The algorithm has two

versions. The first version deals with requests or updates made on the full object.

Second version deals with requests made on the methods of objects.
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Preface:

The thesis is organized as follows. Chapter 1 gives the introduction of the algorithms

we have developed. Chapter 2 gives the background material that is closely related to

the thesis. Chapter 3 gives the detailed explanation of the JITRT replication algorithms

for full object and affected sets. Chapter 4 states and proves three theorems that

demonstrate the correctness and goodness of the algorithm. Chapter 5 gives the

implementation methodology of the algorithms. Chapter 6 presents the results of a

series of test suites that we performed comparing our algorithm with other replication

strategies. Chapter 7 gives the conclusion of the thesis work. Chapter 8 lists the future

work that can be done based on the present thesis. Then the list of references is given.

The final part consists of two appendices. Appendix A details the implementation of

the algorithm based on full object requests. Appendix B details the implementation of

the algorithm based on method requests.
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Chapter 1

Introduction

As computers have become essential parts of our daily activities, real time computing

is emerging as an important discipline and an open research area in computer science

and engineering. Many real time systems are now being used in safety critical

applications in which human lives or expensive machinery may be at stake. Their

missions are often long lived making maintenance and reconfiguration difficult.

Examples of such applications include command and control, industrial automation,

aerospace and defense systems, telecommunications etc. The demands of the operating

environment of such systems often pose rigid requirement on their timely

performance. To satisfy these requirements, the system may need to trigger necessary

transactions (Real-Time) to react to the critical events.

Transactions in real time databases (RTDB) should not only consider logical

consistency but also consider timing constraints and temporal consistency of the data.

Temporally consistent data may be valid only for a short interval of time. Maintaining

temporal consistency in real time databases is very difficult due to its unpredictable

data access. Recently, developers of real-time systems have recognized the need for

research in database systems that satisfy timing constraint requirements in reading and

updating data. On the other hand, many of the above-mentioned applications are

globally distributed rather than centralized and an application at one site requires

communication with the same application at another site. This forces the need for a

distributed version of the real time database system. Applying the principles of real
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time systems and the database systems complicates issues like communication

between a database on one site and a database on the other site, concurrency control,

maintaining temporal consistency, etc. The added communication costs makes the

timing property of the requests on the remote site more unpredictable. Therefore

accessing or updating data on the local site may take less time than that on the remote

site. One of the solutions, to make the data available on the local site and minimize the

response time, is replication of data from the remote site to the local site. But to

maintain the validity of data, the replication strategy should consider real time

parameters like period and deadline of the requesting transactions.

This thesis presents two replication algorithms called Just In Time Real-Time Full

Object (JITRT-FO) replication and Just In Time Real-Time Affected Set (JITRT-

AS) replication that generates replication transactions to copy the required data where

and when it is needed and guarantees that the copy is always valid. JITRT-FO deals

with the full object and JITRT-AS deals with affected sets. The paper also presents

three theorems that indicate the necessity of the deadline assignment of our algorithm,

and that all requests read valid data with the JITRT-FO and JITRT-AS algorithms.

The rest of this thesis is organized as follows. Chapter 2 gives the background material

related to the thesis. Chapter 3 gives the detailed explanation of the JITRT replication

algorithms for full object and affected sets. Chapter 4 states and proves three theorems

that demonstrate the correctness and goodness of the algorithm. Chapter 5 gives the

implementation methodology of the algorithms. Chapter 6 presents the results of a

series of test suites that we performed comparing our algorithm with other replication

strategies.
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Chapter 2

Background

This section gives background information related to relational and object-oriented

databases, real-time systems, real-time databases, distributed databases and distributed

concurrency control protocols.

2.1) Relational and Object-Oriented Database Systems:

The relational database model was first introduced by Ted Codd of IBM research in

1970 and attracted immediate attention due to its simplicity. It represents the database

as a collection of relations [10]. This model has been very successful in developing the

database technology required for many traditional business database applications. But

it has certain limitations when more complex database applications must be designed

and implemented. Examples of such complex database applications include database

for engineering design & manufacturing (CAD/CAM & CIM), scientific experiments,

telecommunications, Geographical Information Systems (GIS), multimedia etc. These

applications have requirements and characteristics that differ from those of traditional

business applications, such as complex structures for objects, longer duration

transactions, user defined data types for storing image objects and large textual items.

Object oriented databases (OODB) were proposed to meet the requirements of the

above applications. OODBs have proven to be more flexible to handle these

requirements without being limited by data types and query languages available in

traditional database systems. A powerful advantage of OODB over relational

databases is the ability to specify the structure of complex objects and the methods that
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can be applied to these objects. Another reason why OODB have become important is

that they are based on the concepts of object-oriented programming languages.

Increasing use of object-oriented programming languages in developing software

applications and ease of embedding OODB in object-oriented software applications

developed in object-oriented programming languages like C++, SMALLTALK, JAVA

etc. have also made OODB more attractive. Examples of prototypes of OODB include

ORION, Open OODB, IRIS etc. Examples of commercial databases include

GEMSTONE/OPAL, ONTOS, Objectivity etc. Object Data Management Group

(ODMG), which is a standard organization, has become the standard for most of the

OODB [10].

Due to the above advantages of OODB, in this thesis project, we plan to use object-

oriented version of database rather than relational version.

2.2) Real-Time Systems:

A real-time system is one in which the correctness of the computations not only

depends upon the logical correctness of the computation but also upon the time at

which the result is produced. If the timing constraints of the system are not met,

system failure is said to have occurred [28]. So, data in real-time databases has to be

logically and temporally consistent. The latter arises from the need to preserve the

temporal validity of data items that reflect the state of the environment that is being

controlled by the system [25]. There can be made a classification into hard and soft

real-time systems based on their properties.
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Hard Vs Soft real-time system:

In hard real time system, no lateness (missing deadline) is accepted under any

circumstances. This will result in catastrophic failure and the cost of missing deadline

is infinitely high [26]. This type of system should guarantee the timing constraints a

priori. An example of a hard real time system is a digital fly-by-wire control system of

an aircraft. In this, lateness may result in catastrophic failure and the result may be a

hole in the ground. The lives of people depend on the correct working of the control

system of the aircraft.

In soft real time system, missing deadline is allowed but may result in increase of the

cost. It does not result in any catastrophic failure. One example of a soft real-time

system is a multimedia application in which there is a relatively high tolerance for

missing deadlines related to decompressing sound or video. Such failures might result

in temporary degradation of output quality, but the presentation itself remains largely

intact. However the users are often are often willing to tolerate a few glitches, as long

as the glitches occur rarely and for short lengths of time [24].

Static Vs Dynamic systems:

A static system is one in which all of the system specifications are known a priori and

do not change once the system starts.

A dynamic system is a system in which new specifications can be added or the old

specifications can be changed even after the system is started.
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2.3) Real-Time Databases:

Traditional databases deal with persistent data. Transactions access data while

maintaining its consistency. Serializability is the usual correctness criterion associated

with these transactions. The goal of transactions and query processing approaches

adopted in databases is to achieve a good throughput and response time. Many real

world applications involve time-constrained access to data as well as access to data

that has temporal validity. For example, consider telephone-switching systems,

program stock trading, managing automated factories and command and control

systems. Such applications introduce the need for real-time database systems. The area

of real-time database systems has attracted the attention of researchers in both real-

time systems and database systems. The motivation of the database researchers has

been to bring to bear many of the benefits of database technology to solve the

problems in managing the data in real-time systems [13].

Real-Time databases, for the most part, deal with temporal data, data that becomes

outdated after a certain time or data that is valid for some certain period of time. Due

to temporal nature of data and response time requirements imposed by the

environment, transactions in real-time databases possess timing constraints like period

or deadline. The resulting important difference is that the goal of real-time databases is

to meet the timing constraints of the activities [3]. Transactions in real-time database

systems should be scheduled considering both data consistency and timing constraints

[2]. In addition to the timing constraints that arise from the need to continuously track

the environment, timing correctness requirements in real-time database systems also

arise because of the need to make data available to the controlling system for its
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decision-making activities. The need to maintain consistency between the actual state

of the environment and the state reflected by the contents of the database leads to the

notion of temporal consistency.

Adding the object-oriented features to the traditional real-time databases will provide

all the benefits of the real-time databases as well as object-oriented databases, but also

will complicate many of the issues. Many of the real-time applications discussed

above deal with complex data. So, a real-time object-oriented database system

(RTOODB) solves many of the problems with complex data.

2.3.1) Transactions in Real-Time Databases:

The nature of transactions in real-time databases can be characterized along 3

dimensions [13]:

1) Manner in which data is used by transactions: A Real-Time database systems

employ all three types of transactions that are employed in the traditional database

systems.

• Write-only transactions obtain state of the environment and write into

the database.

• Update transactions derive new data and store in the database.

• Read-only transactions read data from the database and send them to

actuators.

2) The nature of timing-constraints: Some transaction timing constraints come

from temporal consistency requirements and some come from requirements

imposed on the system reaction time. Temporal consistency requirements take the
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form of periodicity requirements. System reaction requirements typically take the

form of deadline constraints imposed on aperiodic transactions.

3) Significance of executing transactions by its deadline: Transactions can also be

distinguished based on the effect of missing transaction’s deadline. They are hard,

soft and firm transactions.

• Hard deadline transactions are those that may result in a catastrophe if the

deadline is missed. These are typically safety-critical activities, such as those

that respond to life or environment-threatening emergency situations.

• Soft deadline transactions have some value even after their deadline. Typically

the value drops to zero at a certain pints after the deadline.

• Firm deadline transactions are those whose value drops to zero exactly after

the deadline, i.e. they have no value after their deadline expires [13].

The processing of transactions in real-time database systems is more complicated than

that in traditional database systems. Since meeting timing-constraints is the goal, it is

important to understand how transactions are scheduled and how their scheduling

relates to time constraints. So, absolute validity requirements on the data induce

periodicity requirements.

2.4) Distributed RTOODB:

Many of the real-time applications like command and control, defense systems,

aerospace, telecommunications are distributed globally rather than centralized at one

place. So, a centralized real-time object-oriented database may not be sufficient for
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such applications. This leads to the need for making the Real-Time object-oriented

database systems (RTOODB) distributed globally.

2.4.1) Distributed Databases:

A distributed database (DDB) is a collection of multiple logically interrelated

databases distributed over a computer network and a distributed database management

system (DDBMS) is a software system that manages a distributed database making the

distribution transparent to the user [15]. There are two types of distributed databases.

A Homogeneous distributed database is one in which all the database servers run the

same DBMS. A Heterogeneous distributed database is one in which each database

server runs a different DBMS. There are many advantages of using distributed

database management systems. Distribution of data is transparent to the users. So,

users at each site don’t need to know where exactly the requested or updated data is

physically stored within the system. Since the system doesn’t depend on just a single

processor, even if any site fails at a certain point, it might be possible to finish the

computing tasks in progress by services provided by another site. This increases the

reliability of the system. Since the data & DBMS are distributed at multiple sites, even

if one site fails, data on the others will continue to be available. In a distributed

environment, expansion of the system in terms of adding more data, increasing

database size and changing the DBMS at each site is made easier [10].

Along with the advantages, distributed databases also have some disadvantages. One

of the important issues to be considered in a distributed DBMS is the communication

between the database servers. The operation on an object on a local site may take less
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time than the time taken by the same operation on same object on the remote site. A

distributed DBMS should have the ability to devise execution strategies for queries

and transactions that access data from more than one site and to synchronize access to

distributed data and maintain integrity of the overall database. This makes the

transaction management more complex than for a centralized DBMS. The ability to

recover from individual site failures and from new types of failures such as the failure

of communication links makes the recovery issues more complex [16].

2.4.2) Distributed RTOODB: As discussed above, many real-time applications are

distributed, which leads to the need for a distributed real-time object-oriented database

systems (DRTOODB). A DRTOODB provides the benefits of OODB systems, real-

time systems and the distributed systems. But it also has its own disadvantages. As

discussed above communication between database servers is an important issue to be

considered in distributed system. The added communication cost in a DRTOODB

makes the timing property of requests to remote servers more unpredictable [2]. So, an

operation on a local object may take less time than the same operation on the same

object on remote site. This may reduce the performance of DRTOODB in which

meeting timing constraints is the most important property to be considered.

One of the solutions for the above problem is replication. In a truly distributed

database system the data is distributed without replication. But in many distributed

database systems, data is replicated to increase the availability and performance.

Chapter 3 discusses in detail, replication and its advantages and disadvantages in a

DRTOODB.
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2.5) Distributed Concurrency-Control protocols:

This section describes two concurrency control protocols (DPCP and DASPCP) in

distributed systems that do not suffer from unbounded blocking time and deadlock.

Blocking time is the duration for which a job in a task is delayed for execution by a

lower priority task. Two jobs are said to be in deadlock when one of them holds a

resource X and requests for resource Y, while the other holds Y and requests for X

[24]. Due to these advantages, these two protocols were chosen to be used for the

analysis of the JITRT replication algorithms and also to implement the transactions.

These protocols assume that tasks and resources have been assigned and statically

bound to processors, and that priorities of all tasks are known in advance [24] making

them suitable for static hard real-time systems. Presently these protocols cannot be

used for dynamic priority systems [24].

2.5.1) Distributed Priority Ceiling Protocol (DPCP):

DPCP is sometimes called the multiprocessor priority ceiling protocol (MPCP).

Priority Ceiling of a lock is the highest priority of all tasks that will ever access it. A

resource that resides on the local processor of the job is a local resource and that

residing on a remote processor is the remote resource. A global resource is required

by the jobs that have different local processors [27]. A job executes in global critical

section if it requires a global resource and executes in local critical section if it

requests a local resource. A global lock is the lock executing in global critical section

and a local lock is a lock executing in local critical section.
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The Priority Ceiling of a resource is the highest priority of all the jobs that require the

resource. The Base priority ceiling of the system is a fixed priority, greater than or

equal to the highest priority task in the system.

The Priority-Ceiling Protocol is a real-time synchronization protocol with two

important properties: 1) freedom from mutual deadlock and 2) bounded priority

inversion, namely, at most one lower priority task can block a higher priority task

during each task period [27]. The underlying idea of this protocol is to ensure that

when a job J preempts the critical section of another job and executes its own critical

section z, priority at which this new critical section will execute is guaranteed to be

higher than inherited priorities of all preempted critical sections.

In DPCP, the scheduler of each processor schedules all the local tasks and global

critical sections on the processor on fixed priority basis and controls their resources

according to the PCP with the modifications described below.

The priority ceiling of the global lock is sum of highest priority task that access it and

base priority ceiling. When a task uses a global resource, its global critical section

executes on the synchronization processor of the resource. DPCP schedules all global

critical sections at higher priorities than all local tasks on every synchronization

processor [24].

2.5.2) Distributed Affected-Set Priority Ceiling Protocol (DASPCP): DASPCP is

an extension of Affected Set Priority Ceiling Protocol (ASPCP) [6]. ASPCP is a

concurrency control protocol, designed for a single node system. DASPCP is designed

for distributed system and uses object-oriented semantics to determine the lock
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granularity. Both protocols combine features of semantic concurrency control for

added concurrency, with priority ceiling techniques for deadlock prevention and

bounded priority inversion.

ASPCP: ASPCP uses affected sets of each method of an object to determine the

compatibilities of the methods of the object, which in turn establishes priority ceilings

for each method. Affected set is of two types, read affected set (RAS) and write

affected set (WAS). RAS of a method consists of set of attributes that the method

reads. WAS of a method consists of set of attributes that the method writes.  Here lock

is obtained on each method. So, ASPCP assigns a conflict priority ceiling to each

method of each object.

The conflict priority ceiling of a method m is the priority of the highest priority

transaction that will ever lock a method that is not compatible with method m; where

compatibility is defined by affected set semantics.

At runtime priority ceilings are used the same way as in BPCP. ASPCP allows

transaction T to receive a lock on a method if and only if priority of transaction T is

strictly higher than the conflict priority ceiling of locks held by other transactions [6].

DASPCP: The DASPCP protocol was developed for concurrency control in DRTOO

systems. DASPCP uses the DPCP mechanism with its lock granularity at the object

method level. A global critical section in DASPCP is an object method that is accessed

by one or more remote nodes. The priority of global method is the sum of the base

priority ceiling and the highest priority of a transaction that will ever lock a method

that is not compatible with method m. The DASPCP also uses DPCP priority
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assignment so that global methods execute at the priority of the requesting task plus

base priority ceiling.

2.6) Data Replication in Distributed Databases:

As discussed in the section 2.4 data replication plays an important role in a

DRTOODB. Also it solves many of the problems in DRTOODB like communication

costs, and availability of data. There are two types of replication, Synchronous

replication and Asynchronous replication. In synchronous replication, which is

sometimes called Real-Time replication, transactions should see the temporally

consistent data regardless of which copy of the object they access and from where they

access. Synchronous replication comes at a significant cost, because it has to consider

temporal consistency, deadline and priority of the transaction. Asynchronous

replication allows different copies of the same object to have different values for short

periods of time. Even though this violates the principles of distributed data

dependence, this sometimes can be considered as a practical compromise that is

accepted in many situations [17]. However, in the present project we will be

developing algorithm for real-time replication strategies only.

In a DRTOODB, timing constraints and consideration of temporal consistency of real-

time data are important. Replication provides the following benefits [17]:

1) Increased availability: If a site containing the original data goes down, its

replica can be found at the other site. Similarly, if local copies of remote

objects are available, we are less vulnerable to failure of communication links.
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2) Faster query evaluation: Queries can execute faster by using a local copy of

the object instead of going to remote site. This helps more transactions in a

DRTOODB to meet their corresponding deadlines.

3) Increased Performance: Replication reduces the response time of the

transactions and increases the performance in DRTOODB by making the data

object available at its local site.

Replication can also be characterized based on where and how the objects are

replicated. The most extreme case is replication of the whole database at every site

in the distributed system, thus creating a fully replicated distributed database. This

can improve availability remarkably because the system can continue to function

as long as at least one copy is available. But this makes the system slow since

updating one copy creates the transactions for updating at all other sites. Also

issues like concurrency control and recovery become more complicated. If some

objects of the database are replicated at other sites then it creates a partially

replicated database. This makes the above issues less complicated than the full

replication. In this thesis we considered a partial replication strategy instead of full

replication.

2.6.1) Replication control algorithms:

A major restriction in using real-time replication is that replicated copies must

behave like a single copy, i.e., mutual consistency [19]. Replicated copies must be

valid when needed so that the value read at any site, any time should be valid. A

replication should also consider concurrency control issues in a distributed
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database where several users concurrently access and update data. For this, the

algorithm should consider some concurrency control mechanism.

Many algorithms for asynchronous replication control have been proposed based

on concurrency control mechanisms like majority consensus approach [20] and

Distributed two-phase locking [20]. Algorithms for synchronous (real-time)

replication have been proposed based on concurrency control mechanisms like

Distributed two-phase locking, Distributed Optimistic Concurrency Control

(OCC) [21], Distributed Optimistic two-phase locking (O2PL) [22], Managing

Isolation in Replicated Real-Time Object Repositories (MIRROR) [23]. Most of

them use two-phase locking mechanism that does not consider deadlock and

priority inversion. So, all of the above mentioned concurrency control algorithms

suffer from the possibility of deadlock and unbounded blocking. To overcome the

above drawbacks, our replication algorithm based on DPCP and DASPCP [6]. As

mentioned earlier DPCP and DASPCP do not suffer from deadlock and

unbounded blocking. The algorithm we have developed takes the system

specifications and replicates the data objects only if necessary rather than

replicating full.

In the distributed two-phase locking (2PL) algorithm, a transaction that intends to

read a data item has to only set a read lock on any copy of the item to update an

item, however, write locks are required on all copies. Write locks are obtained as

the transaction executes, with the transaction blocking on a write request until a

local cohort and its remote updaters have successfully locked all of the copies of

the item to be updated [22].
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The Distributed Optimistic two-phase locking (O2PL) algorithm read requests in

the same way that 2PL does; in fact, 2PL and O2PL are identical in the absence of

replication. However, O2PL handles replicated data optimistically. When a cohort

updates a replicated data item, it requests a write lock immediately on the local

copy of the item. But it defers requesting write locks on any of the remote copies

until the beginning of the commit phase is reached [22].

MIRROR augments the O2PL protocol with a novel, simple to implement,

state-based conflict resolution mechanism called state-conscious priority blocking.

Two real-time conflict resolution mechanisms are used in MIRROR. They are

Priority Blocking (PB) and Priority Abort (PA). PB is similar to the conventional

locking protocol in that a transaction is always blocked when it encounters a lock

conflict and can only get the lock after the lock is released. PA attempts to resolve

all data conflicts in favor of high-priority transactions [23]. The basic idea of

MIRROR is that PA should be used in the early stages of transaction execution,

whereas PB should be used in the later stages since in such cases a blocked higher

priority transaction may not wait too long before the blocking transaction

completes. But unfortunately none of the above considers the possibility of dead

lock and unbounded blocking. Also all the above algorithms consider either soft-

deadline and firm-deadline but not hard-deadline.
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Chapter 3

Just In Time Real-Time Replication (JITRTR)

This chapter describes the Just In Time Real-Time Replication (JITRT) replication

algorithm. It creates real time replication transactions in a DRTOODB based on the

data requirements and transaction requirements in a static system. The algorithm has

two parts. In the first part the Replication Manager (RM) takes the parameters from

the system specifications and creates the local and replication transactions. In the

second part, the created transactions are mapped to an analyzable model, which in our

case is based on the DPCP model [24]. As discussed previously, DPCP prevents dead

lock and unbounded blocking of the tasks.

This section describes the design and methodology of the two versions of algorithms.

The First version involves replication of full object and the second version involves

replication based on the affected set semantics [6]. Section 3.1 gives the detailed

description of full object algorithm. Section 3.2 gives the detailed explanation of

replication based on affected set semantics.

3.1) Just In Time Real-Time Replication – Full Object (JITRT-FO):

This section describes JITRT-FO algorithm. We start by defining assumptions we

have made about the system in Section 3.1.1 followed the system model in Section

3.1.2. Then we explain how the RM does the core work of the algorithm, i.e taking the

parameters from the system specifications and creating the local and replication

transactions in section 3.1.3. Section 3.1.4 describes how the transactions are mapped

to the DPCP model. Section 3.1.5 shows some examples illustrating the advantages of
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the algorithm. The following diagram gives the overview of the methodology of the

JITRT replication algorithm.

System Specifications (including objects, requests, updates)

JIT-RT Replication Algorithm

Transactions + Objects

Map to DPCP

Tasks, Critical Sections, Objects

Figure 3.1 – JITRT algorithm methodology

3.1.1) Assumptions

The following is a list of assumptions we have made regarding the system in which

JITRT-FO algorithm works.

1) The system is a static system. This assumption means, all the registered sites

for each object on each site are known a priori. All read/write requests from

clients are known a priori. Before the start of replication, the system is aware

of all the parameters of requests and updates.

2) For each object there is one update transaction that we call the “sensor update

transaction” for that object. There can be more than one update sensor

transactions for each object but we choose only one sensor update transaction

for the purpose of the algorithm.

3) Each object has a local site, where it originates. Any other sites that require

this object have a copy of it.
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4) All the databases in the distributed system are homogeneous. All the sites in

the system contain the same DBMS. This assumption eliminates many

complexities that might complicate the algorithm.

5) The period of the sensor update is always less than the temporal validity of the

objects, that is, the object will be updated before it becomes temporally

inconsistent. This assumption gives some time for the execution of replication

transaction.

6) Local object copies are not accessible to other sites.

3.1.2) System Model

The JITRT-FO algorithm is based upon the following system model.

1) The distributed system consists of N sites.

2) Each object in the database of each site is recognized by unique OID and also has

the following parameters:

Object - < OID, Value, Time, OV >

OID is a unique identifier of the object to recognize it on particular site. Value is

the present value of the object. Time is the time at which object is last updated. OV

is the object validity, time after which object is no longer valid.

3) Application Requirements are specified as periodic Requests for data and Updates

of data with following parameters:

Request (OID, period, release, deadline, LSiteID)

Update (OID, period, release, deadline, LSiteID)
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Where OID is the unique ID of the requested object, Period is the period of

Update/Request, Release is the time at which the Request/Update should be started,

Deadline is the relative deadline of the Request/Update within each period and

LSiteID specifies the site at which Update/Request was made.

3.1.3) Transaction Creation (Replication Manager)

Given a system specified by the above model, JITRT-FO algorithm creates replication

transactions to ensure the availability of data. The algorithm produces a model with

two types of transactions, local transaction and replication transaction. A transaction is

a local transaction if all of its operations execute on the same site as the site on which

the request is made, and it is a replication transaction if at least one of its operations

executes on a remote site. The Replication Manager (RM) takes the above

parameters and creates the replication and local transactions according to the JITRT-

FO replication algorithm.

Transaction model: The following is the specification for the model of the

transaction created by the RM.

Ttype < opers(OID), period, release, deadline >

Where type specifies the type of the transaction, local or replication. opers - set of

operations on OID such as read, write etc., Period is the period of transaction, Release

is the release time of the transaction and Deadline is the deadline of transaction in

each period (relative to the period).

3.1.4) Replication Manager

The RM maps the system specifications to set of transactions. All the transactions are

of type local or replication. For a request, the replication transaction must be finished
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before the start of the local transaction so that the local transaction can read the object

from the replicated transaction. Also for an Update, the replication transaction must

execute after the local transaction is finished. Keeping this in mind Request/Update

are mapped to transactions.

3.1.4.1) Mapping Requests: Here there are two cases. The first one occurs when the

site on which requested OID is originally located is equal to the site at which request

is made and second one is when the two sites are not equal.

Case 1: If RSiteID == LsiteID

In this case Request maps to Local transaction specified as follows.

Tlocal ( opers(OID), period, release, deadline )

Where opers(OID) is a read(OID)on local site of OID, Period, Release and Deadline

are specified by Request.

Case 2: If RSiteID =/= LsiteID

In this case Request maps to two transactions, a replication transaction and then a local

transaction.

Replication transaction: Following are the parameters for the replication transaction.

Trep ( opers(OID), period, release, deadline, exec time )

opers(OID) are read(OID) on site whose site ID is RSiteID and write(OID) on site

whose site ID is LsiteID. Period is period of replication transaction. This period is in

phase and equal to the period of sensor update so that the transactions will read valid

data. Theorem 2 in Section 4.1 proves this. Release is the start of the period, exec time

is the total execution time of the replication transaction (i.e. exec time of read + exec
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time of write + network delay + preemption time). The deadline is the crucial part of

the algorithm. The algorithm carefully computes it in order to ensure that all requests

always read valid data.

Deadline Computation: This section describes the deadline computation according to

JITRT-FO algorithm.

Let d be the deadline of the replication transaction. Let N be the least common

multiple of the periods of all Requests on OID and the period of sensor update and ‘n’

be the number of replication periods that should be considered for the analysis, where

n is equal to N/period of replication transaction. We call ‘N’ the super period of

replication transaction because after that the cycle repeats. Deadline computation is

done for one full super period. The invalid interval is the interval of time during any

period of replication transaction for which the object does not have the valid value

associated with it, that is, the object is temporarily inconsistent (See Figure 3.2).

Initially the deadline is equal to period of replication transaction. Then, for each of the

n periods, there are 3 cases to consider in calculating the deadline.

Case 1: If no requests are executing in the invalid interval, the deadline is unchanged.

We need not care if there are no transactions executing in this interval, as no requests

will be reading invalid data.

Case 2: If no request has started executing before the invalid interval but a new

transaction enters at xi, where xi is any point of time in the invalid interval of ith period,

then the deadline is changed to minimum (d, xi).

Case 3: If any request has started before or at OV and continues to execute in the

invalid interval, then the deadline is changed to OV. Changing the deadline assures
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that the requests read the valid data. Note that once the deadline is changed to OV, the

computation of deadline is stopped as we have reached the minimum deadline.

Once we have considered these three cases for each of the n replication transactions

periods in the super period, the deadline is computed.

Invalid interval.

         Pi-1             Pi    OVi Pi+1

|----------|-------|---|---|---|---|----------|----------|

Ä--di-1-Å  Ä-di--Å

Figure 3.2 – Invalid Interval 1

Local Transaction: After the above replication transaction is created for a request, a

local transaction is created for each request with the following parameters.

Tlocal (opers(OID), period, release, deadline, exec time)

Where opers(OID) is read(OID) on site of siteID. period, release, deadline are

specified by Request. Exec time is execution time of opers(OID).

3.1.4.2) Mapping Updates: This section discusses in detail how the algorithm works

for Updates. Again here we consider the same two cases.

Case 1: If RSiteID == LsiteID

In this case Update maps to the Local transaction.

Tlocal (opers(OID), period, release, deadline, exec time)
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Where opers(OID) is write(OID) on  local site of OID. Period, release, deadline are

specified by Update. Exec time of transaction is the execution time of write.

Case 2: If RSiteID =/= LsiteID

In this case, Update maps to a Local transaction and then a Replication

Transaction.

Each update local transaction causes the RM to create a replication transaction with

one exception described later in this section.

Local Transaction: The local update transaction writes to the local copy and is in the

following form. This local transaction performs the read specified by the request.

Tlocal (opers(OID), period, release, deadline, exec time)

Where opers (OID) is write(OID) on the site of siteID. Period, release, deadline are

specified by the Update. Exec time of transaction is the exec time of write(OID).

Replication Transaction

The replication transaction is a copy back transaction. It reads the local copy of the

object and writes it to the main site. This replication is defined as follows.

Trep (opers(OID), period, release, deadline, exec.time)

opers(OID) are read(OID) on the site of siteID and write(OID) on the site of OID.

Period is same as above period (period of local transaction that is creating replication

transaction), release is same as deadline of the local transaction, deadline is end of the

period (to allow maximum time for the transaction), Exec time of transaction is the

sum of exec time of write(OID) and read(OID).
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Even though each local update transaction may require a replication transaction to

copy back, some unnecessary replication transactions can be eliminated. The possible

cases for eliminating the replication transactions are:

a) If more than one local transaction has the same release and deadline, then only one

of these local transactions needs to be copied back.

b) If more than one transaction has the same period and starts at the same time, only

the transaction with the least deadline (higher priority) creates the replication

transaction.

3.1.5) Mapping of Transactions to DPCP model:

In order to analyze and execute the transactions created by the RM, we map the local

and replication transactions to the DPCP model. There are two types of objects in the

database on each site. First is the local object, which is local to the particular site and

not replicated on any other site. Second type is the replicated object, which has copies

on multiple sites in the database.

After the RM translates the Requests/Updates into the set of local and replication

transactions, RM finds whether each request/update is made on a local object or on a

replicated object. Then it assigns priorities to all transactions based on deadline

monotonic algorithm. Once the transactions are assigned priorities, mapping is done

as follows.

A local object is mapped to local resource and a local transaction is mapped to local

critical section. Similarly, a replicated object is mapped to global resource. Replication

transaction accesses both local resource (local copy of object) and global resource
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(original object on remote site). So, the replication transaction has both local and

global critical section. A lock requested on the replicated object is the global lock and

the lock requested on the local object is the local lock.

The algorithm takes care of the global consistency of the objects, because the objects

are updated independently by replication transactions. For example if more than one

replication transaction tries to update the object at the same time, only one transaction

obtains the lock on that object at a time according to DPCP protocol. So, the object

will have the value written by the latest transaction. Here most of the concurrency

control issues are handled by the DPCP.

3.1.6) Execution Model

After the transactions are mapped to DPCP model as described in Section 3.1.5, they

are executed using two-phase locking and DPCP. When a transaction requests a lock,

the lock is either granted or denied based on the execution of concurrency control

protocol (DPCP). A Transaction requesting a global lock will execute in a global

critical section and that requesting a local lock will execute in a local critical section.

The transactions request and release locks according to two-phase locking to ensure

the atomicity and serializability of the replication transaction.

3.1.7) Examples: This section gives some examples to illustrate the advantages of the

JIT-RT replication algorithm for complete object.

Example 1:
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We had considered choosing the period of replication transaction to be the max

(period of sensor update, min (periods of all Requests)) so that Trep can be executed at

the maximum possible period. But we prove in Theorem 2 in section 4 that this does

not work in this algorithm because the two periods are not in phase and are not equal.

The following example illustrates why the above choice is wrong and also shows that

if both periods are not in phase the data may not always be valid, or the transactions

cannot be scheduled.

Assume there are 4 requests on a site, requesting object O1. The requests are mapped

to following four transactions.

T1(O1, 10, 7, 4, 3), T2(O1, 12, 12, 5, 3), T3(O1, 18, 12, 10, 3), T4(O1, 20, 15, 8, 3).

Let us assume that the sensor update has a period of 8 seconds. Assume OV=14 sec

after every sensor update.

Remember that the release time is the start of the period and deadline is relative to the

period. The RM analyzes the above four transactions and calculates the parameters of

Trep as follows:

Trep (O1, period, r, d)

If we use the above assumption, Period of Trep = max (8, min(10, 12, 18, 20) ) then the

period of Trep is 10. Given the JITRT algorithm, the deadline will be comnputed as

follows.

Period Release Deadline Object valid until

P1 r1=0 d=10 14

P2 r2 = 10 d = 4 (object is not valid after 14) 22

P3 r3 = 20 d = 2 30
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P4 r4 = 30 d = ? 38

Initially deadline is chosen as end of the period of Trep. In P2 d is changed to 4 as the

object becomes invalid after 14 on time line. Similarly in P3 d is changed to 2. Now d4

is 0, which is not possible. When Trep is released at 30 the object is not valid. So,

period cannot be 10. If it is 8, then the above problem does not occur. The same

example with period of Trep = 8 is explained below. The deadline is calculated as

follows.

Period Release Deadline Object valid until

P1  r1=0 d=8 14

P2 r2 = 8 d = 6 22

P3 r3 = 16 d = 6 30

P4 r4 = 24 d = 6 38

P5 r5 = 32 d = 6 46

   .    .  .

   .                        .  .

P45 r45 = 360 d = 6 374

Initially deadline is chosen as end of the period of Trep. In P2 d is changed to 6 as the

object becomes invalid after 14 on time line. After this deadline remains constant.

Final deadline of Trep = 6. The example is shown for 360 units, because for every 360

seconds the above pattern repeats. 360 is the super period.

Example 2: This example shows that the requests always read the temporally

consistent data when JIT-RT replication algorithm is applied. The example illustrates
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Case 2 of the proof of Theorem 1 in Section 4. That is when a new request is made at

Xi in the invalid interval, where OV<Xi<d

T(OID, period, release, deadline)

T1 (O1, 10, 7, 3), T2 (O1, 20, 17, 4), T3 (O1, 30, 27, 5)

Assume period of sensor update = 10. OV = 15 sec after every update. The deadline is

computed as follows.

Period Release Deadline Object valid until

P1=10  r1=0 d=10 15

P2=10 r2 = 10 d = 7 25

P3=10 r3 = 20 d = 7 35

P4=10 r4 = 30 d = 7 45

P5=10 r5 = 40 d = 7 55

   .    .  .

   .                        .  .

In the above, d = 7 in P2 even though the object is invalid between 15 and 17. Because

there are no transactions, executing between 15 and 17. Similar is the case with other

deadlines.

3.2) Just In Time Real-Time Replication – Affected Set (JITRTR-AS):

JITRT-AS is the replication algorithm based on Affect Set Semantics. This algorithm

is applicable when a Request is made on the methods of the object rather than on

complete object. The basic idea here is similar to the idea of the JITRT-FO algorithm,
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so this algorithm is based on the JITRT-FO algorithm. This section is organized as

follows. Section 3.2.1 gives the assumptions, Section 3.2.2 gives the system model,

and Section 3.2.3 describes the actual algorithm and the role of Replication Manager.

Section 3.2.4 explains the mapping of transactions to DASPCP model.

3.2.1) Assumptions: All the assumptions in the JITRT-FO algorithm are also the

assumptions in JITRT-AS algorithm except that attributes take the place of objects

here. Apart from those, there are some additional assumptions described below.

1) Replication Manager (RM) has special access to read() and write() operations for

each attribute. In this algorithm, RM replicates the attributes of the object instead

of full objects. This keeps the replication transaction independent from the method

requests.

2) The system may require run-time support for the replication of attributes.

3.2.2) System Model:

1) The distributed system consists of N sites.

2) Each object on local DB of each site is recognized by unique OID and also has the

following parameters:

Object - < OID, Attributes, Methods >

OID is unique object ID. Each attribute has its own value. Methods have set of reads

and writes on attributes of object with OID.

3) Each Attribute has the following parameters.

Attribute - <OID, Value, Time, AV >
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OID is object identifier to which this attribute belongs; Value is the present value of

the attribute; AV is Attribute Validity of the Attribute.

4) Application Requirements are specified as method invocations with following

parameters:

Request (OID, Method, Period, release, deadline, LsiteID)

LsiteID is the site at which method request is originated. Here Request is made on the

method, whereas Request in JITRT-FO was made on the object.

3.2.3) Transaction Creation:

Given a system specified by the above model, JITRT-AS algorithm creates replication

transactions to ensure the availability of data like JITRT-FO. The algorithm produces

a model with two types of transactions, local transaction and replication transaction. A

transaction is a local transaction if all of its operations like read() and write(), execute

on the same site as the site on which request is made. A transaction is a replication

transaction if at least one of its operations executes on a remote site. Unlike JITRT-

FO replication, JITRT-AS replication creates replication transactions on the attributes

of an object rather on full object. So, JITRT-AS algorithm is similar to JITRT-FO

algorithm but the same thing what JITRT-FO algorithm does on object, is done on an

attribute of an object by JITRT-AS algorithm. If a request is made on method A that

has read affected set or write affected set {X, Y, Z}, then according to JITRT-AS

replication algorithm, three replication transactions are created, first transaction on X,

second on Y and third on Z.

Transaction model: The following are the parameters of the transaction.



33

Ttype < method(OID), period, release, deadline >

Where type is the type of transaction (local or replication), method is the method on

the which transaction takes place. The method has set of operations on attributes of

object OID.

For a request on a method, the replication transactions on the attributes (affected set of

the requested method) must be finished before the start of the local transaction so that

the local transaction can read the valid attributes copied on the local site by the

replication transactions. But this is going to be difficult as there is no specific order of

operations on attribute in a method. So, the basic idea is to keep replication

transactions independent from the method transactions.

Keeping this in mind request can be mapped to transactions.

3.2.4) Replication Manager:

The Replication Manager maps the requests to local and replication transactions. As

discussed above, JITRT-AS algorithm is similar to JITRT-FO algorithm but the same

thing what JITRT-FO algorithm does on object, is done on the attributes of an object

by the JITRT-AF algorithm. There are actually 2 cases. Case 1 occurs when site on

which requested method on OID is originally located is equal to the site at which

request is made and Case 2 occurs when site on which requested method on OID is

originally located is not equal to the site at which request is made.

Case1: If RSiteID == LsiteID

In this case a request maps to a local transaction with the following parameters,

Tlocal (method(OID), period, release, deadline)
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Where method(OID) has set of opers(OID) to be executed on local site of OID,

opers(OID) can be reads and writes on the attributes of OID. Period, release, deadline

are specified by Request. The local transaction is simply an execution of the specified

method.

Case 2: If RSiteID =/= LsiteID

In this case a request maps to a replication transaction and a local transaction.

Replication transaction:

The replication transaction is created in a different way than that of the local

transaction. There are three steps in creating the replication transactions on the

attributes of an object.

i) The RM reads the Read Affected Set (RAS) and the Write Affected Set (WAS) of

the requested method from the specification.  RAS of the method is the set of

attributes that a method reads and WAS of the method is the set of attributes that a

method writes [6].

ii) For each attribute in the RAS of the requested method, the RM creates a

replication transaction on that attribute according to the JITRT-FO replication

algorithm for requests. That is, calculate parameters of the replication transaction

according to JITRT-FO algorithm by replacing the object with the attribute. The

only difference between this algorithm and JITRT-FO is that, for each method, the

RM finds all the requests on that method and creates a replication transaction for

each attribute in that method. The deadline computation is based on the requests

on this method only. Here, if more than one method reads the same attribute then
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each method separately creates a replication transaction on that attribute. For

example if method A and method B are reading the attribute X, then there will be

two separate replication transactions for X. First replication transaction on X is

based on all the requests on method A and second replication transaction is based

on all requests on method B. Since the attribute is replicated separately by each

method, this makes sure that all requests read the valid data.

iii)  For each attribute in the WAS of the requested method, the RM creates a

replication transaction on that attribute according to the JITRT-FO algorithm for

updates.

Local Transaction: Following are the parameters for a local transaction.

Tlocal (Method(OID), period, release, deadline, exec time)

Where Method(OID) has set of opers(OID)on site of siteID. Opers(OID) can be reads

and writes on the attributes of OID. Period, release, deadline are specified by Request.

Exec time is the execution time of the method.



36

Chapter 4

Analysis

This chapter describes the analysis of the algorithms developed in chapter 3. Analysis

of the algorithms is done by stating and proving some theorems below for JITRT-FO

replication algorithm. Before proceeding to theorems we would like to define some of

the terms that will be used in the theorems.

Def 4.1) Temporal Consistency: In real-time databases data is not always permanent.

Sometimes the data is temporal, meaning the data becomes invalid (determined by the

application) after certain interval of time. The data is considered temporally consistent

at some point of time if it is valid at that point of time otherwise temporally

inconsistent.

4.1) Theorems:

Theorem 1: All requests will always access temporally consistent data.

Proof: Consider a replication transaction TO that copies object O. Let di be the

deadline of TO in its ith period as computed by JIT-RT replication algorithm. Let

OV be the point in time in the ith
 period after which the copy of object O becomes

invalid and let Pi be the period of TO.

O is temporally in consistent in the ith period in the interval between OV and d (see

figure below). This interval is known as the invalid interval (See Fig 4.1). Thus we

must prove that no request executes in the invalid interval.
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Invalid Interval

|------------|-------------|---------|

Pi                 Pi+1

    OV            d

Figure 4.1 Invalid Interval 2

Recall from the JIT-RT replication algorithm that there are three possible cases

considered when the deadline of TO is computed (Section 3.1.3). We re-examine

those cases to prove that no request executes in the invalid interval.

Case 1) No requests execute in the invalid interval. Clearly, in this case no

requests read the invalid data.

Case 2) Some requests starts at time Xi such that OV < Xi < di. The JIT-RT

algorithm changes d to Xi, reducing the size of the invalid interval and making the

replication transaction finish before any requests read the data. Thus any such

requests will read valid data in this case.

Case 3) Some requests execute throughout the invalid interval. In this case, some

requests start before or at OV and finishes at or after deadline, d, then the JIT-RT

replication algorithm computes d to be OV. By doing this, we are removing the

invalid interval. Thus all the requests read the valid data.

In all the cases, we have proved that the requests read the valid data. Thus all

requests always read temporally consistent data. 
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Theorem 2: The period of TO must be in phase and equal to the period of sensor

update transaction for object O in order for all requests to read valid data using

our algorithm.

 Proof: To prove that the period of replication transaction and the period of sensor

update must be in phase, let us consider a contradictory situation; assume they are not

in phase.  i.e. assume periods PTo for replication transaction TO and for PSUo for sensor

update trasanction SUO are not in phase. This implies that the two above periods are

not equal (If the two periods are equal, then they are always in phase).

Here we consider the two cases. One is that PTo > PSuo and the second case is PTo <

PSuo. We prove that it is not possible to construct a replication transaction with the

above two cases. We also prove that when both the periods are equal and all requests

intuitively read valid data.

Case 1: PTo > PSuo:

As discussed in Theorem 1, the object is invalid only in the invalid interval and the

deadline of TO can be changed to OV according to Theorem 1. Now consider the

calculations of deadlines (di) in each period of replication transaction.

Initially d = end of the first period. In each successive period, deadline is calculated

based on whether there are any requests in the invalid interval. The minimum deadline

in any period is OV. So, once the deadline in any period becomes OV then the

calculation of deadline is stopped and the final deadline is taken as OV. It can be

observed from the Fig 4.2 below that, as i increases, since PTo > PSuo, d decreases and

at some point (for some ‘i’), d becomes 0 or less than 0.
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       |--------|--------|--------|--------|--------|--------|--------|--------|--------| (SUO)

           P1                 P2             P3              P4             P5              P6              P7              P8             P9             P10

 OV2  OV3    OV4  OV5     OV6

  Ä----d1---->    Ä--d2-Å      Äd3->            <d4>        d5=?

 |-----------|-----------|----------|----------|-----------|-----------| (TO)

 P1        P2                     P3                    P4                    P5                    P6                    P7

Figure 4.2 - Deadline Assignment 1

Thus we cannot guarantee that all the requests will read the valid data all the time.

Case 2: PTo < PSuo:

From the figure 4.3, it can be observed that, since both the periods are not in phase,

there may be a case (d4 in figure 4.3) where we cannot choose a deadline that will

satisfy all requests reading valid data.

       |--------|--------|--------|--------|--------|--------|  (SUO)

           P1                 P2             P3              P4             P5              P6              P7

 OV2  OV3    OV4  OV5     OV6

  Ä--d1-><d2>     Äd3-->  d4=?    

             |------|------|------|------|------|------|------| (TO)

P1            P2            P3            P4            P5            P6           P7

Figure 4.3 - Deadline Assignment 2

In the second case also we cannot guarantee that a requests will always read the valid

data.

 Now let us see how it is intuitive that if PTo = PSuo, we do not come across the

problem of deadline becoming 0. It can be observed from Fig 4.4 that, between the

start of every TO and OVi there is always some constant time (as shown in figure 4.4),

which means they do not coincide at any time. So, deadline can never be 0 in this case
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and all the requests read the valid data (because deadline assignment is according to

JIT-RT algorithm).

       |--------|--------|--------|--------|--------|--------|--------|--------|--------|  (SUO)

           P1                 P2             P3              P4             P5              P6              P7              P8             P9             P10

 OV2 OV3    OV4     OV5     OV6

          Äd1-Å     Äd2-Å    Äd3--Å   Ä-d4-Å    Äd5-Å

      |--------|--------|--------|--------|--------|--------| (TO)

         P1          P2              P3              P4             P5              P6              P7

d2 = d3 = d4 =….=constant =/= 0

Figure 4.4 Deadline Assignment 3

Thus it is proved that the period of TO must be in phase and equal to the period of

sensor update transaction for object O in order for all requests to read valid data. 

Theorem 3: The deadline assignment, according to the JITRT algorithm, is

necessary and sufficient for ensuring the temporal consistency of data.

Proof:

Sufficient condition: Theorem 1 proves that the data objects read by all the requests

are always temporally consistent, which means that the deadline assignment is

sufficient for ensuring the temporal consistency of data.

Necessary Condition:

Theorem 1 considers all the three cases while computing the deadline and proves that

all the requests always read the valid data.

To prove that the deadline assignment of replication transaction, TO, according to our

algorithm is necessary, lets us take the contradictory situation. That is let us assume
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there exists a deadline assignment of a replication transaction by some algorithm,

other than JITRT algorithm, greater than the deadline assigned by JITRT algorithm.

As discussed above, the object is invalid in ith period only in the invalid interval. The

minimum deadline assigned by JITRT algorithm is OV in ith period. If there exists a

deadline of TO > OV, then there exists some invalid interval between OV and d, in

which the transactions executing in this interval read invalid data, which contradicts

the definition of temporal consistency in real-time systems. So, any assignment of

deadline is always less than or equal to the deadline assigned by our algorithm.

This implies that the deadline assignment by our algorithm is a necessary condition to

ensure the temporal consistency of data read by the transactions.

Even though the above theorems are proved for JITRT-FO replication algorithm, they

are also true for JITRT-AS algorithm. This is intuitive because, JITRT-AS algorithm

is similar to JITRT-FO algorithm except that JITRT-FO algorithm replicates the full

object whereas JITRT-AS algorithm replicates the attributes of the object. All the

method requests also read the valid attributes, as the attributes are replicated according

to JITRT-FO algorithm by replacing object with the attributes of the object. As far as

Theorem 2 is concerned, the period of the replication transaction on an attribute of

object O, TO must be in phase and equal to the period of sensor update transaction for

the same attribute of object O in order for all requests to read valid data.
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Chapter 5

Implementation Methodology:

The JIT-RT algorithms (both JIT-RTR-FO for entire object access and JIT-RTR-AS

for method access) have been implemented to illustrate their “goodness”. We assume

the deadline-monotonic assignment of priority and mapping the model to DPCP or

DASPCP for concurrency control. Fig 5.1 shows the architecture of the over all

system. The portion in dotted circle shows where our algorithms fit in the overall

system. All the results of testing are presented in section 6.

The algorithm is implemented as follows:

The Replication Manager (RM) reads the Requests and Updates from the system

specifications and stores them internally in the data structures for faster access.

Presently the RM reads the data from the text file (as shown in figure 5.1) and stores

the data in reference based linked lists. Then the RM analyzes and creates the

transactions based on the JIT-RT algorithms. It then generates a configuration file in a

specific format so that this file serves as an input to RapidRMA [29]. RapidRMA is a

convenient tool, developed by Tripacific Inc, to find the schedulability of the tasks,

given the required real time parameters. The parameters in the configuration file used

by RapidRMA are period, release time, deadline, execution time, priority assignment

algorithm, type of real-time system (hard deadline etc.), etc. The sample configuration

file is shown in Appendix C. After the RM creates the transactions, RapidRMA takes

the parameters and analyzes them to determine the schedulability of the system (see

figure 5.1). If the tasks are not schedulable, the system specifications should be
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changed (input file should be modified) and the modified data is inputted to RM again

until the tasks are schedulable. If the tasks are found to be schedulable, RapidRMA

generates a configuration file, which serves as input to the scheduling service. The

scheduling service reads the configuration file generated by RapidRMA and schedules

the transactions and runs, for example, on a RT-CORBA server.
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Figure 5.1 - System Execution
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Chapter 6

Testing

This section presents the tests that were performed and the results obtained for each

test. We performed the test suites that compared our algorithm with two replication

strategies. The first strategy, called Full Rep, produces full replication in which all the

objects are replicated on all the sites and the second strategy, called No Rep, is with no

replication in which the request on a remote object will execute a remote transaction.

6.1) Test Generation:

Figure 6.1 depicts the generation of tests. A Generator class has been created that

creates the objects, requests, sensor updates, updates randomly and writes them into a

text file that serves as an input to Replication Manager. A Driver class runs the

Generator that actually creates an input file and then runs the

ReplicationManager. The RM executes the algorithm and creates the

transactions according to JITRT algorithm (for both Full Object and for Affected Set)

and writes the results into two separate files. These files are used as input files to a

schedulability tool like RapidRMA [29]. The ReplicationManager also takes the

requests and updates from the same input file created by the Generator and creates

the transactions using Full Rep and No Rep strategies and writes the results to separate

files.

In each of the test we performed, we specified the execution time for read to be 1 unit

and execution time for write to be 2 units. One unit of the network delay is added to

the remote transactions.



45

Figure 6.1 – Test Generation

6.2) Performance measures:

The performance measures we used are of two types. The first measure is the system

schedulability percentage and second measure is the task schedulability percentage.

System schedulability measures the overall schedulability of the system, in which all

the tasks in all nodes are schedulable. Task schedulability measures the schedulability

of the tasks in the system. So if the system is not schedulable, task schedulability

shows how close the system is to being schedulable. We have chosen system

schedulability percentage measure, because our system is hard-deadline real-time

system in which the system becomes un-schedulable even if a single task is un-

schedulable. We have chosen task schedulability percentage measure, because this

measure shows how close the system is towards the schedulability.

In each test suite, we have compared the results of JITRT-FO with the results obtained

with NoRep and FullRep algorithms. The results of each test are averaged from 15

trials. We have chosen 15 trials because we found this number to be optimal after

doing statistical analysis to find out the error % with this number of trials. We have

ReplicationManager
generates

Generator
Input File

JITRT

No Replication

Full Replication

generates

Output files
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done the analysis using Statistical Analysis Software (SAS) and found the error % to

be less than 5%, which is reasonably acceptable.

6.3) JITRT-FO Testing

6.3.1) Test Suites:

Initially testing is performed for baseline test. Next the testing is performed on three

other test suites by changing one of the parameter ranges in each test suite. This

section explains in details how the base case and the three test suites are performed.

6.3.1.1) Baseline Testing:

The base case testing is done using the parameter ranges shown in Table 6.1. The

Driver class runs the Generator and the ReplicationManager 15 times (15 trials) for the

base case and creates separate output files for each trial. Once all the files are created

RapidRMA is run on these files to find the schedulability of the system for each trial.

Then the percentage of the schedulability of the system for JITRT replication, NoRep

and FullRep algorithms are compared and tabulated.

Parameter Range
Period 150 – 400

No of Objects 7 – 12
No of sites 5 – 12

No of Reqs/Object 3 – 6
percentage of Updates 50

Table 6.1 Parameter Ranges for Baseline Testing (JITRT-FO)

In table 6.1, we have chosen the period to be between 150 and 400, because this range

best showed the differences among the results using three strategies. Choosing above

400 gave lot of leeway for the schedulability and we found the schedulability using

three strategies (JITRT replication, NoRep and FullRep) to be more than 90%. This
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does not illustrate any goodness of the JITRT replication algorithm. Choosing period

less than 150 gave schedulability below 30% for all three strategies. For similar

reason, the number of objects is chosen to be between 7 and 12, number of sites is

chosen between 5 and 12 and number of requests is chosen to be between 3 and 6 and

percentage of updates is chosen to be 50. The percentage of updates denotes the

percentage of updates from the sum of number of updates and requests. The results are

shown in Section 6.3.2.

6.3.1.2) Test Suite 1 – Effect of Period

This test is performed to show the effect of period on the schedulability of transactions

executed by our algorithm. This test suite actually performs the tests with three

different ranges of periods keeping all the ranges of other parameters same as the

above base case. The three different ranges of the period are chosen such that the

results clearly illustrate the goodness of the JITRT-FO algorithm.

The three ranges of period are given in table 6.2.

Short 100 – 250

Medium 250 – 350

Long 400 – 600

Table 6.2 Ranges of Period for Test Suite 1

6.3.1.3) Test Suite 2 – Effect of Number of Objects

This test is performed to show the effect of number of objects on the schedulability.

This test suite actually performs the tests with three different ranges of number of
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objects keeping all the ranges of other parameters same as the above base case. The

two different ranges of the number of objects are chosen to be less than, greater than

the range of number of objects in base case. The third range is chosen to be similar but

not the same as the range of number of objects in the base case.

The three ranges for number of objects are given in table 6.2.

Short 2 – 7

Medium 7 – 10

Long 10 – 16

Table 6.3 Ranges of number of objects for Test Suite 2

6.3.1.4) Test Suite 3 – Effect of Percentage of Updates

This test is performed to show the effect of percentage of updates, with respect to total

number of transactions, on the schedulability. This test suite actually performs the

tests with three different values for percentage of updates keeping all the ranges of

other parameters same as the base case.

The three values of update percentages are given in table 6.4.

Short 0

Medium 45

Long 100

Table 6.4 value of percentage of updates for Test Suite 3
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6.3.2) Results

This section explains the results obtained in each test suite described above, including

baseline testing.

6.3.2.1) Baseline Testing: The schedulability of the system for the three strategies is

shown in Figure 6.2. It can be observed that the schedulability percentage for FullRep

algorithm is always less than that for JITRT replication. This is because FullRep

algorithm consists of more transactions in the system than the other two replication

strategies, for the same requests and updates.

80%
87%

53%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

JITRT-FO NoRep FullRep

S
ch

ed
 %

Figure 6.2 – System Schedulability for Baseline Testing

It is found that the schedulability percentage for NoRep is found to be slightly more

than that for JITRT replication. This is because the NoRep algorithm has fewer

transactions than the JITRT-FO algorithm because JITRT-FO creates a replication

transaction for each update.  However the JITRT replication guarantees that the

objects read by the requests are always valid whereas NoRep does not guarantee
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temporal consistency. That is, even if the data on the remote site may be valid at the

time it reads, it may become invalid within the period of network delay.

We have also compared the results using task schedulability percentage. The results

(Figure 6.3) were found to be similar to the system schedulability percentage. High

percentage schedulability for JITRT-FO and NoRep shows that the system, even if it

is not schedulable, is nearer to schedulability.

JITRT-FO Results for Base Case (Task Sched)

93%
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Figure 6.3 – Task Schedulability for Baseline Testing

6.3.2.2) Test Suite1 – Effect of Period: The results for test suite 1 are explained in

this section. This test suite illustrates the effect of period on the results. The results for

all three ranges are shown in Figure 6.4. System schedulability percentage for all three

strategies is found to be less than that for base case. As we expected, the figure

illustrates that increase in the period increased the schedulability percentage of the

system.
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The task schedulability results (Figure 6.5) were found to be similar to the results

obtained for system schedulability percentage, but the percentage of schedulability is

found to be higher.
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Figure 6.4 – System Schedulability Results on Effect of Period
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Figure 6.5 – Task Schedulability Results on Effect of Period

6.3.2.3) Test Suite2 – Effect of Number of Objects: The results for test suite 2 are

explained in this section. This test is performed to illustrate the effect of number of

objects on the system schedulability.

The results for all three ranges are shown in Figure 6.6. In general we found that

decrease in the number of objects increased the schedulability percentage of the

system, because decreasing the number of objects decreases the number of

transactions.
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Figure 6.6 – System Schedulability Results on No of objects

Figure 6.7 details the results obtained for task schedulability. All the results look

similar to that of system schedulability but the task schedulability percentage for each

case is higher than that for system schedulability percentage.
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Figure 6.7 – Task Schedulability Results on Effect of No of objects
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6.3.2.4) Test Suite3 – Effect of Update percentage: The results for test suite 3 are

explained in this section. This test suite is chosen to illustrate the effect of update

percentage on the system schedulability. The system schedulability results for all three

ranges are shown in Figure 6.8.

In general we found that that the decrease in the update percentage increased the

schedulability percentage of the system. This is true, because updates are more costly

than requests and each update creates a new replication transaction in JITRT-FO

algorithm. Increase in the update percentage decreased the schedulability percentage

of the system, which is as expected.

Figure 6.9 details the results obtained for task schedulability. All the results look

similar to that of system schedulability but the task schedulability percentage for each

case is higher than that for system schedulability percentage.
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Figure 6.8 – System Schedulability Results on effect of update percentage
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Figure 6.9 – Task Schedulability Results on Effect of update percentage

6.4) JITRT-AS Testing

This section describes the testing we have done using JITRT-AS algorithm.

6.4.1) Test Suites:

All the tests we have performed are similar to the tests performed on the JITRT-FO,

except that some different parameters are used here. Here also we have performed

baseline testing and a test suite. We have performed only one test suite because the

results were looking similar to that of the JITRT-FO. We have compared JITRT-AS

algorithm results with the results obtained from NoRep and FullRep (of attributes)

algorithms.

6.4.1.1) Baseline Testing:

We have used the parameters and the ranges for the parameters shown in Table 6.5.
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Parameter Range
Period 150 – 400

No of Sites 7-10
No of objects 6 – 12
No of Reqs 3 – 6

No of Attributes 5 – 9
RAS 2 – 5
WAS 1 – 3

No of Methods 3 – 6

Table 6.5 Parameter ranges for baseline testing (JITRT-AS)

The baseline testing was performed similar to the baseline testing in JITRT-FO. We

have used the results obtained for NoRep algorithm and FullRep (of attributes)

algorithm to compare with JITRT-AS algorithm. We have chosen the above ranges,

because the results obtained with these ranges illustrate the goodness of JITRT-AS

algorithm. The results for baseline testing and other three strategies are shown in

Section 6.4.2.

6.4.1.2) Test Suite 1 – Effect of WAS

This test is performed to show the effect of WAS, on the schedulability of transactions

executed by our algorithm. This test suite actually performs the tests with three

different ranges (see Table 6.6) of WAS keeping all the ranges of other parameters

same as the above base case. The three different ranges for WAS are chosen such that

the results clearly illustrate difference in the schedulability percentage.
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Short 100 – 250

Medium 250 – 350

Long 400 – 600

Table 6.6 – Ranges of WAS for test suite 1

6.4.2) Results

6.4.2.1) Baseline Testing:

The results obtained for baseline testing are shown in Figure 6.10. It is found that the

schedulability percentage for NoRep is found to be 87%, which is slightly more than

that for JITRT replication (73% schedulability) but JITRT replication guarantees that

the objects read by the requests are valid when needed, where as no replication

algorithm does not guarantee temporal consistency of data when needed. It is also

found that the schedulability percentage for JITRT-AS algorithm is significantly

greater than the schedulability percentage for full replication algorithm (53%).
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Figure 6.10 – System Schedulability for Baseline Testing



58

We have also compared the results using task schedulability percentage (Figure 6.11).

The results were found to be higher than the system schedulability percentage but

schedulability percentage for JITRT-FO is found to be always less than the

schedulability using FullRep. Task schedulability percentage using NoRep algorithm

is slightly higher than the JITRT-FO but NoRep does not guarantee the validity of data

when needed.
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Figure 6.11 – Task Schedulability for Baseline Testing

6.4.2.2) Test Suite1 – Effect of WAS:

Here three tests were performed by varying the ranges of the WAS and choosing all

other parameter ranges same as that of the base case. The results were found to be

similar to that of the results of the JITRT-FO algorithm. Figure 6.12 shows the results

of the test suite1. From the figure it can be observed that increase in the WAS has

decreased the system schedulability. This is expected because the probability for a task

to be schedulable is more when the WAS for a method is smaller. We have also

performed the task schedulability test. The results are similar to the system
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schedulability results. Figure 6.13 gives the details of results for task schedulability.

WithRep
NoRep

FullRep

high

medium

low

87%
93%

60%

80% 80%

60%
53% 60%

33%

0%
10%
20%

30%

40%

50%

60%

70%

80%

90%

100%

high

medium

low

Figure 6.12 System Schedulability Results on Effect of WAS
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6.5) Effect of number of remote requests and updates on JITRT-FO

This section describes the testing performed to show the effect of number of remote

transactions on the algorithm. Till now all the tests have shown that the schedulability

% for NoRep is slightly more than the JITRT algorithm. This test shows that JITRT-

FO algorithm is better than the NoRep algorithm when there are more remote requests

or updates.  The following are the results obtained with all the parameters same as

baseline testing for JITRT-FO except that all the requests are remote requests. The

results shows that the schedulability % of JITRT-FO is 80%, which is reasonably high

compared to 60% schedulability for NoRep algorithm. This shows that JITRT-FO

algorithm plays an important role when there are more remote transactions.

Figure 6.14 Test with all remote requests (JITRT-FO)
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Chapter 7

Conclusion

This chapter discusses the conclusion of the thesis work. We have developed two

versions of the replication algorithm that does replication in distributed real-time

object-oriented databases. The first version, called JITRT-FO, is based on requests

made on the full object and the second version, called JITRT-AS, is based on requests

made on the methods of an object. We have also proven that replication of data

according to the JITRT algorithms makes the requests read valid data when needed.

We have implemented the algorithms on a full object and on affected sets and we have

performed some tests to indicate the goodness of the algorithms. The results of the

tests performed on the JITRT algorithm were compared with the results obtained with

no replication and with full replication. The results showed that the percentage

schedulability of the system with our algorithm is better than the percentage

schedulability with the full replication algorithm. Even though the percentage

schedulability of the system with our algorithm is usually less than the percentage

schedulability of the system with the no replication algorithm, the no replication

algorithm does not guarantee that all requests read valid data when needed, while ours

does. This is crucial in the kinds of real-time applications for which our algorithms

were designed.

The JITRT algorithm that we have developed plays an important role in distributed

hard real-time applications where the validity of data is important, because our
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algorithm performs replication only when and where needed. This reduces the

overhead on the system and makes the data available locally.
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Chapter 8

Future Work

While the JITRT algorithm provides a good technique of replicating the data in

distributed real-time systems, there is further work that can be done to enhance the

current research, and to extend it to other areas.

1) Dynamic case: The present algorithm is designed for static system in which all

the requests, number of sites and number of objects are known a priori and will

not change once the system starts executing. Considering and developing the

replication algorithm for the dynamic case in which the requests can come

when the system is running, would be more challenging because the algorithm

needs to change the strategy when the requests come and go at runtime.

2) Heterogeneous Databases: Currently the algorithm assumes that the system

has all the DBMS same. It would be interesting to consider that each site has a

different DBMS, because the replication methodology may be different at

different DBMS and communication of one DBMS with other becomes more

complex.

3) Multiple Objects: It would be interesting to see how the algorithm works by

relaxing some assumptions like each object may be originated from more than

one site. The replication algorithm can copy the object that is nearer to the

requesting site. This reduces the network delay.

4) Real Data: We have presently tested the algorithm with the dummy data. So it

would be interesting to test the performance of the algorithm with the real data.
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5) Concurrency control protocols: Presently our algorithm is modeled to fit

with DPCP and DASPCP, but it would be interesting to see how it can be

mapped to other concurrency control protocols.

6) Real Transactions: Instead of using just requests and updates, one can use the

real transactions and design the algorithm.
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Appendix A:

Implementation  details of JITRT-FO:

The details of the implementation of the JITRT-FO replication algorithm are discussed

in this section. The implementation details involve the implementation of the

Replication Manager (RM), which does the majority of the work involved in the

algorithm and many other classes that are used by RM.

Overview of this implementation:

The implementation can be summarized as follows:

Replication Manager (RM) takes the parameters of the Requests and Updates from

system specifications (in our case they are text files). RM also reads the list of sites

and the objects, the location of each object (original copy), sensor update parameters

from the different text files. RM then analyzes the parameters of the requests and

updates and creates local transactions on each site for each object, and all required

replication transactions on each site. After creating all the transactions, RM sends the

transactions parameters into a configuration file in a specific format. This file is

actually an input to Rapid RMA that does the schedulability analysis of the created

transactions.

RM uses many classes to do the above task. Each class is explained in the next sub-

section.

Detailed Explanation:

Input File:

Following is format for the input file used by the Replication Manager.
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This file consists of all the Required parameters in the below format. Each line

represents a separate data. The file has different sections.

Assumptions:

1) Each set of parameters are separated by the line that has * on it.

2) Commented line should start with #

3) The first field should always be in the ascending order.

The first part represents the set of objects that are participating in the system. The data

format for this is (OID, value, time, OV). Order of OID is 1,2,3,4…..

The next part is the set of sites present in the system. This data consists of list of

siteID’s used by requests and updates. Order of siteID is 1,2,3….

The next section consists of list of OID and the siteID at which each object is located.

Format is (OID, siteID). The order of the OID should be 1,2,3…..

The next section lists the sensor updates for each object. The format of the

parameters is (OID, period, release, deadline). The list should be in the ascending

order of OID.

The next set of data lists the requests with the format (OID, period, release, deadline,

siteID).

Here release should always be > (OV + release of sensor transaction on object OID).

So, when entering the parameters in the file, it is the users responsibility to check this

condition. Requests should be in the increasing order of OID. SiteID and OID used

should be present in the above given lists of objects and sites.

The last section consists of the list of all update parameters in the format shown

below. (OID, period, release, deadline, siteID)



71

Each line represents an update.

Classes: Class Replication Manager uses number of other classes to create the

transactions and generate a configuration file. The detailed explanation of each class is

given below.

1) ListReferenceBased: This class is reference based linked list that can

store the list of Objects of type Object. This has many public and private

methods. Method get(int x) retrieves element at index x. isEmpty() returns

true if the list is empty else returns false. size() returns the present size of

the list. add(Object x) adds the object at the end of the

list.

2) Node: The above class uses this class. Node represents a node in the list. This

actually stores the object and has the pointer to the next Node.

3) ListOutOfBoundException: This is a java Exception class. This is

thrown when the user tries to access an object that is not there in the list.

4) RequestParameters: This class has the public attributes in each attribute

is a parameter of each request. RM reads parameters of each request from file

and creates an instantiates an object that stores these parameters. So, each

instance represents a request here. This class has two constructors (default

constructor and the constructor that initializes the attributes specified by

arguments).

5) UpdateParameters: This class is very similar to RequestParameters but

this stores the attributes of the Updates instead of Requests. The parameters are

read from the input file.
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6) RTObject: This class represents a real-time object. This has 4 attributes

(OID, value, time, OV) that are the attributes of an RT object. value

is the value of the object at time. OV is the object validity of the RT object after

which the object’s value becomes invalid.

7) RTTransaction: This class represents a real-time transaction. RM uses this

when creating the transactions (local and replication). This class has attributes

(transID, OID, type, period, release, deadline,

execTime, oper1, siteID1, oper2, siteID2). TransID is the

unique transaction ID. OID is the object ID on which transaction is taking

place. period is period of transaction. Release is release time of transaction.

deadline is relative deadline of transaction with respect to period. type is

type of transaction (local or replication). A replication transaction can have

two operations. ExecTime is the total execution time of the transaction. Oper1

is the first operation of Trep and siteID1 is the siteID on which oper1

executes. Oper2 is the second operation of Trep and siteID2 is the siteID on

which oper2 executes. If ‘type’ is local then oper2 and siteID2 will have

invalid values.

8) SensorUpdates: This class stores the parameters of the sensor updates, as

attributes, read from the input file.

9) SitesNObjects: This class has two attributes OID, object ID, and siteID,

site ID on which the object OID is local to. The values are read from the input

file.
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10)  ReplicationManager: Class ReplicationManager is the one that

does the actual work of the algorithm. This class has many methods. Each

method does a separate task. All the methods are explained below in the order

of the execution. initializeRTObjects() reads the parameters from the

input file and creates the RTObject objects for each set of parameters and

stores them in a referenced based list.

readSites() reads the list sites from the input file and stores them in a

referenced based list.

readSitesNObjects() reads the list of sites and objects from the input

file and stores the set of OID and siteID in a list.

readSensorUpdates() reads the parameters of the sensor updates and

stores the parameters in a list.

readRequests() reads the parameters of each request from the file and

stores the parameters of each object on each site in a separate list. All the lists

are stored in a double dimensional array. Lists in each row are sorted by their

siteID. Lists in each column are sorted by their OID (i.e. the list in the first row

& first column stores parameters of all the requests on first objects and first

site).

readUpdates() reads all the update parameters and stores in a similar way

to requests. Then two double dimensional arrays of type list are created. The

first one, requestTransactions, stores the lists in which transactions

(local and replication) of requests are stored. The second one,
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updateTransactions, stores lists in which transactions of updates are

stores.

createReqLocalTransactions() creates all the local transactions of

requests. Here all the created transactions are of type RTTransaction.

createReqReplicationTransactions() creates the replication

transactions for all the requests. A replication transaction is created for all the

requests on each object on each site (i.e. for list in the double dimensional

array), provided the requested object resides on the remote site. As discussed

above the replication transaction is created based on the time line. So an array

of integers of size equal to super period represents the time line. Initially all the

integers are initialized to 0. Then the local transactions increments the integer

at ith element in the array if any local transaction is executing at time i. For

example let us assume that a local transaction executes from 15 to 22. Then all

the elements from 15 to 22 on the timeline are incremented by this local

transaction. That means, if ith element in the array is greater than 0, it indicates

that some transactions are executing at time i. So,

createReqReplicationTransactions() checks the timeline and

creates replication transaction according to the proposed algorithm such that

the replicated object is always valid.

Similarly createUpdateLocalTransactions() creates all the local

transactions of the updates and createUpdateReplication-

Transactions() creates the replication transactions for updates according

to the JITRT algorithm.
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After the ReplicationManager has finished doing the task, all the local and

replication transactions are stored in the arrays of linked lists.

Other private methods are used by the above-mentioned methods to do the

required tasks. For example getSuperPeriod() calculates the super

period, the period for which the analysis is done for creating the replication

transactions.

getSiteID(int OID) returns the siteID to which object OID is local to.

getFinalDeadline(RTTransaction trans) returns the final

deadline of the replication transaction trans.
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Appendix B:

Implementation details of JITRT-AS Algorithm:

Since this algorithm is based on the JITRT-FO algorithm, this implementation is

mostly similar to the above one. The only difference is that there are no separate

requests and updates in this case. There are only requests on methods of an object

instead of requests on the entire object. The method itself can have set of read and

write operations with in it.

There is an input file, which has all the required parameters in it. The format of the

input files is explained below. The assumptions for this input file are similar to the one

for the input file for the first implementation. The file consists of the different sections

in which each section represents a separate set of data.

The first section consists of list of attributes and its parameters. The format is

(AttributeID value OV). These attributes are general attributes that are not

associated with any objects initially. Each object should have set of attributes only that

are listed here.

The next section has the list of methods and its parameters. The format for this is

(methodID, set of (oper,AttributeID), separated by $). Here ‘oper’ has two values 0

and 1. 0 represents read and 1 represents write. Again this list of methods are general

methods that are not associated with any object at this stage. But in the objects section,

each object lists the methods. Each method should be present in this list.

The next part represents the set of objects that are participating in the system. The

data format for this is (OID attributes[] methods[]). Order of OID is 1,2,3,4…..
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The next part is the set of sites present in the system. This data consists of list of

siteID’s used by requests and updates. Order of siteID is 1,2,3….

The next section consists of list of OID and the siteID at which each object is located.

Format is (OID, siteID). The order of the OID should be 1,2,3…..

The next section lists the sensor updates for each object. The format of the

parameters is (OID, period, release, deadline). The list should be in the ascending

order of OID.

The last set of data lists the requests on methods on an object with the format (OID,

MID, period, release, deadline, SiteID).

Here release should be > max(OV of all attributes of MID) + max(release of sensor

updates). So, when entering the parameters in the file, it is the users responsibility to

check this condition. Requests should be in the increasing order of OID. SiteID and

OID used should be present in the above given lists of objects and sites.

Classes:

Class Replication Manager uses number of other classes to create the transactions and

generate a configuration file. Most of the classes are similar to the classes

implemented in the first implementation; also it has some extra classes. The detailed

explanation of each class is given below.

1) ListReferenceBased: This class is reference based linked list that can

store the list of Objects of type Object. This has many public and private

methods. Method get(int x) retrieves element at index x. isEmpty() returns

true if the list is empty else returns false. size() returns the present size of
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the list. add(Object x) adds the object at the end of the

list.

2) Node: The above class uses this class. Node represents a node in the list. This

actually stores the object and has the pointer to the next Node.

3) ListOutOfBoundException: This is a java Exception class. This is

thrown when the user tries to access an object that is not there in the list.

4) RequestParameters2: This class has the public attributes. Each attribute

is a parameter of each request. RM reads parameters of each request from input

file and creates an instantiates an object that stores these parameters. So, each

instance represents a request here. This class has two constructors (default

constructor and the constructor that initializes the attributes specified by

arguments).

5) RTAttribute: This class represents a real-time attribute. This has all the

parameters of a real-time attribute. The parameters are (OID, ID, value, OV).

OID is the object ID to which this attribute is associated. ID is the unique ID of

the attribute. Value is the present value of the attribute. Here an attribute will

have value rather than an object. OV is the object validity after which the

attribute becomes invalid.

6) RTMethod: This class represents an RTMethod which is the method of an

RTObject. This has the parameters (MID, OID, set of Opers). MID is the

unique ID for the method. OID is the object ID to which the method is

associated. Set of Opers is an array of opers this methods consists.
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7) RTObject2: This class represents a real-time object. This has 3 attributes

(OID, attributeID[], methodID[]) that are the attributes of an RT

object.

8) RTTransaction2: This class represents a real-time transaction. RM uses

this when creating the transactions (local and replication). This class has

attributes (transID, OID, MID, AttributeID, type, period,

release, deadline, execTime, oper1, siteID1, oper2,

siteID2). TransID is the unique transaction ID. OID is the object ID on

which transaction is taking place. MID is the methodID on which the

transaction is taking place. This is used only by the local transactions.

AttributeID is the attribute ID on which the transaction is taking place.

This is used only by the replication transaction. period is period of

transaction. Release is release time of transaction. deadline is relative

deadline of transaction with respect to period. type is type of transaction

(local or replication). A replication transaction can have two operations.

execTime is the total execution time of the transaction. Oper1 is the first

operation of Trep and siteID1 is the siteID on which oper1 executes. Oper2

is the second operation of Trep and siteID2 is the siteID on which oper2

executes. If ‘type’ is local then oper2 and siteID2 will have invalid values.

9) SensorUpdates: This class stores the parameters of the sensor updates, as

attributes, read from the input file.
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10) SitesNObjects: This class has two attributes OID, object ID, and siteID,

site ID on which the object OID is local to. The values are read from the input

file.

11) ReplicationManager2: Class ReplicationManager2 is the

core class of the implementation. This class has many methods. Each method does

a separate task. All the methods are explained below in the order of the execution.

InitializeRTAttributes() reads the parameters for each attribute

from the input file and stores them in a linked list for future use.

initializeMethods() reads parameters of the methods from the input

file and initializes the methods in a linked list.

initializeRTObjects() reads the parameters from the input file and

creates the RTObject objects for each set of parameters and stores them in a

referenced based list.

readSites() reads the list sites from the input file and stores them in a

referenced based list.

readSitesNObjects() reads the list of sites and objects from the input

file and stores the set of OID and siteID in a list.

readSensorUpdates() reads the parameters of the sensor updates and

stores the parameters in a list.

readRequests() reads the parameters of each request from the file and

stores the parameters of each object on each site in a separate list. All the lists

are stored in a double dimensional array. Lists in each row are sorted by their

siteID. Lists in each column are sorted by their OID (i.e. the list in the first row
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& first column stores parameters of all the requests on first objects and first

site).

Variable requestTransactions stores the lists in which transactions

(local and replication) of requests are stored.

createLocalTransactions() creates all the local transactions of

requests on methods. Here all the created transactions are of type

RTTransaction. createReplicationTransactions() creates the

replication transactions for all the requests. A replication transaction is created

for all the requests on each object on each method and on each attribute on

each site (i.e. for list in the double dimensional array), provided the requested

object resides on the remote site. As discussed above the replication

transaction is created based on the time line data. An array of integers of size

equal to super period represents the time line. Initially all the integers are

initialized to 0. Then the local transactions increments the integer at ith element

in the array if any local transaction is executing at time i. For example let us

assume that a local transaction executes from 15 to 22. Then all the elements

from 15 to 22 on the timeline are incremented by this local transaction. That

means, if ith element in the array is greater than 0, it indicates that some

transactions are executing at time i. So,

createReplicationTransactions() checks the timeline and creates

replication transaction according to the proposed algorithm such that the

replicated object is always valid.
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After the ReplicationManager2 has finished doing the task, all the local

and replication transactions are stored in the double dimensional array of

linked lists.

Other private methods are used by the above-mentioned methods to do the

required tasks. For example getSuperPeriod() calculates the super

period, the period for which the analysis is done for creating the replication

transactions.

getSiteID(int OID) returns the siteID to which object OID is local to.

getFinalDeadline(RTTransaction trans) returns the final deadline

of the replication transaction trans.
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Appendix C

Sample configuration files generated by JITRT algorithms:

This appendix shows the sample configuration files generated by JITRT replication

algorithms. RapidRMA uses this sample configuration file as an input. The

configuration file consists of all the data required by RapidRMA for analysis. There

are two types of files. First one has the extension .rg that consists of information about

the resources. Second type has the extension .tg that consists of information about the

tasks. The following is the tg file.

GRAPH Flight_Control:
IS
    TASK Tracking:
        %This is the highest priority task in the system.  Of special
note, it specifies absolute phasing, relative phasing (ready time),
and a pre-period deadline.
        X_COORD           85;
        Y_COORD           260;
        READYTIME         5;
        DEADLINE          80;
        DROP_DEADLINE     85;
        PERIODICITY       0;
        PERIOD            85;
        MIN_PERIOD        85;
        MAX_PERIOD        85;
        PERIOD_DISTR      0;
        PHASE             10;
        WEIGHT            1;
        INSTANCE          0;
        ORIN              0;
        OROUT             0;
        ERROR_CUMULATION  0;
        LAXITY_TYPE       1;
        PROCESSOR         Node_1.CPU;
        LENGTH            10;
        MIN_WORK          10;
        MAX_WORK          10;
        WORK_DISTR        0;
        U_PRIORITY        -1;
        RESOURCE          Bus, 1, 0, 0, [1, 3];
        RESOURCE          Sensor, 1, 0, 0, [5, 8];
    END

    TASK Generating:
        %This is a normal periodic task.
        X_COORD           238;



84

        Y_COORD           107;
        READYTIME         0;
        DEADLINE          230;
        DROP_DEADLINE     230;
        PERIODICITY       0;
        PERIOD            230;
        MIN_PERIOD        230;
        MAX_PERIOD        230;
        PERIOD_DISTR      0;
        PHASE             0;
        WEIGHT            1;
        INSTANCE          0;
        ORIN              0;
        OROUT             0;
        ERROR_CUMULATION  0;
        LAXITY_TYPE       1;
        PROCESSOR         Node_1.CPU;
        LENGTH            25;
        MIN_WORK          25;
        MAX_WORK          25;
        WORK_DISTR        0;
        U_PRIORITY        -1;
        RESOURCE          Bus, 1, 0, 0, [10, 20];
        RESOURCE          Memory, 1, 0, 0, [15, 18];
    END

    TASK Controlling:
        %This is a normal periodic task.
        X_COORD           232;
        Y_COORD           396;
        READYTIME         0;
        DEADLINE          350;
        DROP_DEADLINE     350;
        PERIODICITY       0;
        PERIOD            350;
        MIN_PERIOD        350;
        MAX_PERIOD        350;
        PERIOD_DISTR      0;
        PHASE             0;
        WEIGHT            1;
        INSTANCE          0;
        ORIN              0;
        OROUT             0;
        ERROR_CUMULATION  0;
        LAXITY_TYPE       1;
        PROCESSOR         Node_1.CPU;
        LENGTH            40;
        MIN_WORK          40;
        MAX_WORK          40;
        WORK_DISTR        0;
        U_PRIORITY        -1;
        RESOURCE          Memory, 1, 0, 0, [20, 35];
    END

    TASK Displaying:
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        %This is a lower priority, periodic task.  Of special note,
it specifies a non-preemptable section which may cause blocking in
higher priority tasks.
        X_COORD           447;
        Y_COORD           397;
        READYTIME         0;
        DEADLINE          330;
        DROP_DEADLINE     330;
        PERIODICITY       0;
        PERIOD            330;
        MIN_PERIOD        330;
        MAX_PERIOD        330;
        PERIOD_DISTR      0;
        PHASE             0;
        WEIGHT            1;
        INSTANCE          0;
        ORIN              0;
        OROUT             0;
        ERROR_CUMULATION  0;
        LAXITY_TYPE       1;
        PROCESSOR         Node_1.CPU;
        LENGTH            90;
        MIN_WORK          90;
        MAX_WORK          90;
        WORK_DISTR        0;
        U_PRIORITY        -1;
        NPS               [5, 8];
        RESOURCE          Bus, 1, 0, 0, [10, 15];
        RESOURCE          Memory, 1, 0, 0, [20, 30];
        RESOURCE          Memory, 1, 0, 0, [40, 50];
        RESOURCE          Panel, 1, 0, 0, [65, 85];
    END

    TASK Updating:
        %This is a normal periodic task.
        X_COORD           442;
        Y_COORD           106;
        READYTIME         0;
        DEADLINE          125;
        DROP_DEADLINE     130;
        PERIODICITY       0;
        PERIOD            125;
        MIN_PERIOD        125;
        MAX_PERIOD        125;
        PERIOD_DISTR      0;
        PHASE             0;
        WEIGHT            1;
        INSTANCE          0;
        ORIN              0;
        OROUT             0;
        ERROR_CUMULATION  0;
        LAXITY_TYPE       1;
        PROCESSOR         Node_1.CPU;
        LENGTH            15;
        MIN_WORK          15;
        MAX_WORK          15;
        WORK_DISTR        0;
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        U_PRIORITY        -1;
        RESOURCE          Memory, 1, 0, 0, [6, 8];
    END

    TASK Diagnosing:
        %This is the lowest priority, periodic task in the system.
Of special note, it specifies two distinct non-preemptable sections
which may cause blocking in higher priority tasks.  Also, under a
user-specified priority scheduling analysis, this task will become
the highest priority task due to its user-specified priority encoded
within it.
        X_COORD           647;
        Y_COORD           276;
        READYTIME         0;
        DEADLINE          525;
        DROP_DEADLINE     550;
        PERIODICITY       0;
        PERIOD            525;
        MIN_PERIOD        525;
        MAX_PERIOD        525;
        PERIOD_DISTR      0;
        PHASE             0;
        WEIGHT            1;
        INSTANCE          0;
        ORIN              0;
        OROUT             0;
        ERROR_CUMULATION  0;
        LAXITY_TYPE       1;
        PROCESSOR         Node_1.CPU;
        LENGTH            60;
        MIN_WORK          60;
        MAX_WORK          60;
        WORK_DISTR        0;
        U_PRIORITY        10;
        NPS               [10, 30];
        NPS               [40, 50];
        RESOURCE          Bus, 1, 0, 0, [5, 10];
    END

END.

The following is the rg file.

RESOURCE_GRAPH:
IS

    RESOURCE Node_1:
        %This is the parent node.  It owns the five resources below
it.  Tasks specify this node when they want to gain access to its
resources.
        X_COORD              429;
        Y_COORD              111;
        NUMBER_OF_UNITS      0;
        ACQUISITION_TIME     0;
        DEACQUISITION_TIME   0;
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        CONTEXT_SWITCH_TIME  0;
        PROCESSING_RATE      0;
        CONSUMABILITY        0;
        PREEMPTABILITY       1;
        CATEGORY             0;

        RESOURCE Bus:
            %This is a passive resource shared by tasks in the
system.
            X_COORD              278;
            Y_COORD              310;
            NUMBER_OF_UNITS      1;
            ACQUISITION_TIME     0;
            DEACQUISITION_TIME   0;
            CONTEXT_SWITCH_TIME  0;
            PROCESSING_RATE      0;
            CONSUMABILITY        0;
            PREEMPTABILITY       1;
            CATEGORY             0;

        END

        RESOURCE Panel:
            %This is a passive resource shared by tasks in the
system.
            X_COORD              184;
            Y_COORD              309;
            NUMBER_OF_UNITS      1;
            ACQUISITION_TIME     0;
            DEACQUISITION_TIME   0;
            CONTEXT_SWITCH_TIME  0;
            PROCESSING_RATE      0;
            CONSUMABILITY        0;
            PREEMPTABILITY       1;
            CATEGORY             0;

        END

        RESOURCE Sensor:
            %This is a passive resource shared by tasks in the
system.
            X_COORD              612;
            Y_COORD              313;
            NUMBER_OF_UNITS      1;
            ACQUISITION_TIME     0;
            DEACQUISITION_TIME   0;
            CONTEXT_SWITCH_TIME  0;
            PROCESSING_RATE      0;
            CONSUMABILITY        0;
            PREEMPTABILITY       1;
            CATEGORY             0;

        END

        RESOURCE Memory:
            %This is a passive resource shared by tasks in the
system.
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            X_COORD              493;
            Y_COORD              312;
            NUMBER_OF_UNITS      800;
            ACQUISITION_TIME     0;
            DEACQUISITION_TIME   0;
            CONTEXT_SWITCH_TIME  0;
            PROCESSING_RATE      0;
            CONSUMABILITY        0;
            PREEMPTABILITY       1;
            CATEGORY             0;

        END

        RESOURCE CPU:
            %This is the active resource shared by tasks in the
system.  Computational processing occurs using this resource.
            X_COORD              375;
            Y_COORD              309;
            NUMBER_OF_UNITS      1;
            ACQUISITION_TIME     0;
            DEACQUISITION_TIME   0;
            CONTEXT_SWITCH_TIME  1;
            PROCESSING_RATE      1;
            CONSUMABILITY        0;
            PREEMPTABILITY       1;
            CATEGORY             0;

        END

    END
END.
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