
SCHEDULABILITY ANALYSIS IN STATIC REAL-TIME SYSTEMS: PRIORITY MAPPING

AND DASPCP FOR REAL-TIME CORBA

BY

RAMACHANDRA BETHMANGALKAR

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

1999

MASTER OF SCIENCE THESIS

OF

RAMACHANDRA BETHMANGALKAR

APPROVED:

Thesis Committee

Major Professor

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

1999

Abstract

The goal of this work is to consider the e�ects of limited number of available priorities on schedu-

lability analysis, implement an algorithm that maps the global priority of tasks to their run-time

priorities, in PERTS, a real-time analysis tool from Tri-Paci�c Software Inc.

PERTS assumes unlimited priorities and assigns unique priorities. But in reality, the number

of priorities available on a system, operating system, network or backplane hardware is limited.

Since there are fewer priority levels supported by the operating system than the number of

unique priorities, several of the tasks have to be mapped to the same local priority, introducing the

possiblity of priority inversion: a higher priority task being blocked by a lower priority task. The

tool should not only take this into e�ect but also do the mapping of unique task priorities possibly

from an unlimited range to the limited range supported by that system.

We will also consider enhancement to PERTS to support RT CORBA, by implementing the

Distributed A�ected Set Priority Ceiling Protocol (DASPCP) as a control access protocol for re-

sources in the system. DASPCP developed at University of Rhode Island, exploits the semantics

of object oriented paradigm. Since DASPCP provides higher potential concurrency for distributed

object-oriented systems than the existing Priority Ceiling protocols, it is an ideal resource control

protocol for CORBA systems.

The proposed OMG Real-Time CORBA standard uses the notion of global, uniform priority

assignment to threads of clients and servants in the CORBA system. RT CORBA also speci�es a

ii

Scheduling Service that uses RT CORBA primitives to facilitate enforcing various static priority

real-time scheduling policies across the RT CORBA system. Hence it is highly desirable to have

an augmented PERTS that not only analyzes RT CORBA systems but also generates output that

the scheduling service can use in making scheduling decisions. We will also look into issues to

make PERTS more suitable for analyzing Real-Time CORBA systems with emphasis on interfacing

PERTS and RT CORBA.

iii

Acknowledgments

First and foremost, I would like to thank my advisor Dr.Vic Fay-Wolfe for providing me an op-

purtunity to work under his guidance. Vic has helped me in more than one way throughout my

graduate study. The free access to excellent facilities in the real-time laboratory he extended has

helped me gain considerable practical knowledge.

My sincere thanks to Dr.Ravi for his constant support and guidance. His enthusiasm and

intelligence along with the overwhelming depth and breadth of his knowledge has been an inspiration

to me. I hope to follow his systematic way of applying knowledge in my future endeavors.

I am grateful to Dr.Sury and Dr.Yang for consenting to serve on my committee.

I am indebted to Levon Esibov, Lisa DiPippo, Greg Cooper, Sean White and rest of the real-

time research group for providing considerable inputs. I appreciate Levon's patience in answering

my innumerable queries.

I am grateful to Mr.Ben Watson and Mr.Peter Kortmann of Tri-Paci�c Software Inc. for giving

me an oppurtunity to work with them. My sincere thanks to Ben for his constant advice, critique

and encouragement.

I would like to thank Lorraine and Marge for making this department a wonderful place to study

and work.

iv

Thanks to my friends for their support and help, especially, Mithuna, Kartik, Ravi, Kanta,

Sesha, Arjun, Soyal and Tina.

Finally, I would like to thank my family for their advice, support and patience.

v

Contents

Abstract ii

Acknowledgments iv

Contents vi

List of Tables ix

List of Figures x

1 Introduction 1

2 PERTS 3

2.1 Task Graph Editor . 4

2.2 Resource Graph Editor . 8

2.3 Schedulability Analyzer . 9

2.3.1 Priority Assignment Mechanisms and Resource Access Protocols 9

2.3.2 Schedulability Analysis Regimes . 11

2.3.3 Theory Behind Schedulability Analysis . 14

3 Real-Time CORBA 17

3.1 CORBA . 17

vi

3.2 Real-Time CORBA . 18

3.3 RT CORBA Scheduling Service . 20

3.3.1 PERTS for RapidSched . 23

4 Priority Mapping 24

4.1 Problem Statement . 24

4.2 E�ect of Limited Priorities on Schedulability Analysis 26

4.3 Lowest Overlap First Priority Mapping Algorithm 27

4.3.1 The Algorithm . 29

4.3.2 Example . 31

4.3.3 Optimality . 33

5 DASPCP 38

5.1 DPCP and DASPCP . 39

5.1.1 A�ected Set Semantics . 39

5.1.2 The Priority Ceiling Protocol . 40

5.1.3 The Distributed Priority Ceiling Protocol . 41

5.1.4 A�ected Set Priority Ceiling Protocol . 45

5.1.5 Distributed A�ected Set Priority Ceiling Protocol 46

5.2 DASPCP for RT CORBA and PERTS . 50

6 Implementation 51

6.1 Implementation Plan . 52

6.2 Priority Mapping . 52

6.2.1 Enhancements to the Resource Graph Editor 52

6.2.2 Enhancements to Schedulability Analyzer . 57

6.2.3 Enhancements to PERTS Output . 64

vii

6.3 DASPCP . 65

6.3.1 Enhancements to Resource Graph Editor . 66

6.3.2 Enhancements to Schedulability Analyzer . 70

6.3.3 Enhancements to PERTS Output . 72

6.4 PERTS Interface to RapidSched . 72

7 Evaluation 75

7.1 Testing Lowest Overlap First Priority Mapping Algorithm 75

7.1.1 Resource Graph Editor GUI Enhancements 75

7.1.2 Lowest Overlap First Priority Mapping . 77

7.2 Testing DASPCP Implementation . 78

7.2.1 Resource Graph Editor GUI Enhancements 78

7.2.2 DASPCP: Prioirty Ceiling Calculation . 81

8 Conclusions and Future Work 85

8.1 Summary of Work done so far . 85

8.2 Future Work . 86

8.2.1 Priority Mapping . 86

8.2.2 Network Delay in PERTS . 86

8.2.3 PERTS and RT CORBA . 87

List of References 88

A Test Cases 91

Bibliography 105

viii

List of Tables

5.1 Priority Ceilings of Locks in DPCP Example . 43

5.2 A�ected Set Compatabilities in Example Objects . 47

5.3 Execution Priorities in DASPCP Example . 47

5.4 Priority Ceilings in DASPCP Example . 48

6.1 Sample PERTS Output Con�guration File for RapidSched 74

7.1 Multimedia Experimental Task Set . 78

7.2 Priority Ceilings in DASPCP Example . 82

ix

List of Figures

2.1 Snapshot of PERTS Task Graph Editor . 5

2.2 Snapshot of PERTS Resource Graph Editor . 8

2.3 Snapshot of PERTS Schedulability Analyzer . 11

2.4 Snapshot of PERTS Single-Node Analysis . 12

2.5 Snapshot of PERTS Multi-Node Analysis . 13

2.6 Snapshot of PERTS End-to-End Analysis . 14

3.1 CORBA Architecture . 18

3.2 Example of the RT CORBA System . 19

3.3 Example of the RT CORBA Static Scheduling Service 22

4.1 Flowchart of Lowest Overlap First Priority Mapping Algorithm 28

4.2 Lowest Overlap First Priority Mapping Algorithm Example 32

4.3 Example Priority Move . 34

5.1 A Distributed System with tasks competing for Resources 43

5.2 Time diagram for task system described in Example 5.1.3 44

5.3 Time diagram for task system described in Example 5.1.5 49

6.1 Edit Parameter Dialog Box in PERTS 3.2 . 53

6.2 Edit Parameter Dialog Box in PERTS 3.2.1 . 54

6.3 Priority Information Edit Dialog Box in PERTS 3.2.1 55

x

6.4 PERTS 3.2 Scheduler . 58

6.5 PERTS 3.2.1 Scheduler with Option to Select a Priority Mapping 59

6.6 Output of PERTS 3.2.1 with Local Priorities of Tasks 65

6.7 Edit Menu Options in PERTS 3.2 Resource Graph Editor 66

6.8 Edit Menu Options in PERTS 3.2.1 Resource Graph Editor 67

6.9 PERTS 3.2.1 Resource Graph Editor with Ability to Specify Incompatible Resources

(Object Methods) via double headed arrows . 69

6.10 PERTS 3.2.1 Scheduler with DASPCP . 71

7.1 Edit Parameter Dialog Box in PERTS 3.2.1 . 76

7.2 Priority Information Edit Dialog in PERTS 3.2.1 . 77

7.3 A Mapping Generated by the Lowest Overlap First Algorithm 79

7.4 Edit Parameter Dialog Box in PERTS 3.2.1 . 80

7.5 Resource Graph Model of the DASPCP Example . 81

7.6 Output of PERTS Analysis of the DASPCP Example: Node 1 83

7.7 Output of PERTS Analysis of the DASPCP Example: Node 2 84

A.1 PERTS Single Node Analysis Report . 97

xi

Chapter 1

Introduction

Over the last several years there has been a tremendous increase in the number of applications that

can be classi�ed under Real-time computing. In real-time computing the correctness of the system

depends not only on the logical result of the computation but also on the time at which the results

are produced.

Prototyping Environment for Real-Time Systems (PERTS), developed at the University of Illi-

nois (Urbana, IL) [3] and currently supported by Tri-paci�c Software Inc., (Alameda, CA) [1] is

an automated tool used to analyze static real-time systems. In static real-time systems all of the

information about the system is known a priori. Chapter 2 briey discusses scheduling theory and

some of the features of PERTS.

Common Object Request Broker Architecture (CORBA) [2] is a widely accepted standard for

distributed computing developed by the Object Management Group (OMG). There has been a

great demand for Real-Time extensions to CORBA. It stimulated signi�cant interest in industry

and academia leading to the birth of Real-Time CORBA in November 1998. Real-Time CORBA

is a recently developed standard by OMG that addresses real-time issues in distributed computing.

RT CORBA is a product of decades of intense research in real-time systems and distributed systems,

hitherto independent areas in Computer Science research. RT CORBA is described in greater detail

1

in Chapter 3.

The possibility of preliminary schedulability analysis of the target system is of great value to the

designer of the system. Unfortunately, PERTS does not fully support the analysis of RT CORBA

systems. After a detailed analysis of the capabilities of PERTS, we have concluded that the present

PERTS version may be modi�ed to assist the designer better, in building real-time systems. These

are discussed in Chapters 4 and 5.

In Chapter 6 we present the necessary modi�cations to PERTS and describe the Implementation.

The test cases that demonstrate the correctness of the modi�ed PERTS components are pre-

sented in Chapter 7.

Closing remarks and future work are presented in Chapter 8.

2

Chapter 2

PERTS

Real-time computing systems play a vital role in our society, and they cover a spectrum from very

simple to very complex applications. Examples of current real-time computing systems include

control of laboratory experiments, control of automobile engines, command-and-control systems,

nuclear power plants, process control plants, ight control systems, space shuttle and aircraft avion-

ics and robotics. The more complicated real-time systems are expensive to build and their timing

constraints are veri�ed with ad hoc techniques. Minor changes in system result in another round of

extensive testing. Di�erent system components are extremely di�cult to integrate and consequently

add to overall system cost. Millions (even billions) of dollars are being spent (or even wasted) by

industry and governments to build today's real-time systems. Hence availability of automated tools

like PERTS is a great boon to the real-time systems designer.

In this chapter we review PERTS 3.2 regarding its abilities to describe and analyze real-time

systems. For a complete description we refer the reader to the PERTS manual available on-line [4].

Here we concentrate only on those features that are relevant to this project.

PERTS (Prototyping Environment for Real-Time Systems) is a state-of-the-art modeling and

prototyping tool for analyzing real-time architectures for scheduling and timing bottlenecks. It

is a product of research done at the University of Illinois at Urbana-Champaign and Software

3

Engineering Institute (SEI), of the Carnegie Mellon University, Pittsburgh. PERTS uses Rate

Monotonic Analysis (RMA) and other scheduling theories. It includes an extensible library of

scheduling algorithms and resource access protocols.

In order to validate a real-time system's timing constraints and to evaluate its performance, the

system parameters must be described. The input to a tool like PERTS, is a complete description

of the system. A system is comprised of tasks, resources they use, their workloads, their timing

contraints expressed as deadlines, dependencies if any among these tasks. The output is a Yes or

No schedulability result for each task (and the whole system), priorities to be assigned to these

tasks, priority ceilings for resources and suggestions, to make the system schedulable if it is found

to be not schedulable. PERTS is organized into three di�erent modules, the Task Graph Editor,

the Resource Graph Editor and the Schedulability Analyzer. Each of these modules is described in

the following sections.

2.1 Task Graph Editor

A Task Graph describes the application system, called the task system. It includes the set of tasks

in the system that is being modeled. A task could be periodic, when it is scheduled to run after

every T (a �xed interval of time) time units, or aperiodic, otherwise. Since aperiodic tasks is

beyond the scope of our study, we will exclude their consideration in this project. A task in the

system may be dependent on other tasks in the same system. Two tasks are said to be dependent

when the completion of one is dependent on a result of the execution of the other task.

The collection of all tasks and their description is called a Task Graph. Every task and depen-

dency is characterized by a set of parameters. To describe a task graph, the user must provide a

complete set of parameters for every task and dependency in the task graph. PERTS Task Graph

Editor is a user-friendly interface to describe the tasks in the system.

4

Figure 2.1: Snapshot of PERTS Task Graph Editor

The Task Graph Editor, shown in Figure 2.1, enables the user to create and update a task

graph. It provides a graphical representation of the tasks in the system. All the tasks of a task

graph are represented by rectangular nodes, all dependencies are presented by directed edges con-

necting the appropriate nodes. A task graph is described by choosing an appropriate operation in

a menu bar and clicking on the appropriate node or edge. To describe the set of available in Editor

operations/commands, we present them in groups, as they are arranged in menu bar.

File Commands enable the user to create a new task graph (New), open an existing task graph

(Open), re-initialize already open task graph (Reopen), save current task graph (Save), save a new

copy of current task graph (Save As), print current window (Print Entire Window), create a report

of task graph information (Generate Report), launch any of the other PERTS tools or exit the task

graph editor (Quit).

5

Edit Commands enable the user to manipulate task nodes and task dependencies. A user

can add task node (Add Task), add dependency edge (Add Dependency), copy task characteristics

(Copy Task Parameters), move task nodes to the new position on a screen (Move Task), delete task

nodes or dependencies (Delete) or undo an unintentional edit command (Undo (Add or Delete)).

Parameter Commands enable the user to enter and change task parameters for each task

in the task graph. Since we are interested in the periodic tasks only, we describe here only menu

(and operations) for the periodic task parameters. It includes the options to enter and edit the

General Task Data, Optional Intervals, Non-Preemptable Sections, Resource Requirements and User

Speci�ed Priorities.

When the user clicks on the General Task Data menu bar, an edit dialog window pops up, which

enables input and edit of general task information for any task in the open task graph. General

Task Data include the following parameters (we omit here some of the parameters irrelevant to our

study):

� Task Name,

� Ready Time - the earliest time instant at which the task may begin execution,

� Relative Deadline - time frame after ready time within which the task must �nish execution

(reader can �nd in the literature a term absolute deadline, which is a sum of ready time and

relative deadline),

� Period - constant length of time between two consecutive ready times of the task,

� Phase - the time at which the task starts its �rst period,

� Active Resource - the CPU the task should run on,

� Amount of Work - the execution time for the task.

6

The General Task Data Edit Dialog allows a user to enter the appropriate task data in the

window, update the General Task Data (OK), print the screen to a �le or to a printer (Print),

cancel an operation (Cancel) and obtain help (Help).

In addition to the described General Task Data, every task is characterized by a list of Optional

Intervals, Non-Preemptable Sections and Resource Requirements. Normally, a task, once scheduled,

executes entirely. However, some tasks contain optional parts, which are speci�ed by means of

Optional Intervals. They are characterized by a Start and End Time. The task may contain more

than one Optional Interval.

In a preemptive environment a task may be preempted by another task of higher priority.

Sometimes a task should not be preempted during some certain sections of its execution called

Non-Preemptable Sections. Similar to Optional Intervals, they are characterized by a Start and

End Time. A task may contain more than one Non-Preemptable Section.

A task may require use of one or more resources during its execution. The resource requirements

are described by Resource Name, Start Time and End Time.

To edit any of the already described parameters (Optional Intervals, Non-Preemptable Sections

or Resource Requirements), the user must click on appropriate menu bar to pop up a corresponding

Edit Dialog Window. Each window contains the appropriate �elds for editing the chosen parameter,

including a summary of all attributes. A user can enter the values of parameters in the window

dialog, add new instances of a parameter (Insert), remove an instance (Delete), modify parameters

of an existing instance (Modify), update the data (OK), cancel an operation (Cancel) and seek

help(Help).

7

2.2 Resource Graph Editor

The Resource Graph describes the physical and logical resources available to the task system. It

includes all the resources of the system and their relationships. A relationship means that the

resources may be included (a-part-of type) or accessed (accessible-from type) by another resources.

A database residing at a node is an example of a-part-of relationship (where the database is a part

of the node). A database accessible from another node is an example of accessible-from relationship.

To describe a Resource Graph, the user must provide a complete description of every resource

and its relationship with other resources. Resource Graph Editor provides a user-friendly interface

to create and edit information about resources.

Figure 2.2: Snapshot of PERTS Resource Graph Editor

The Resource Graph Editor, shown in Figure 2.2, enables the user to create and update re-

sources. All resources of a resource graph are represented by rectangular nodes, all relationships

8

- by directed edges connecting the appropriate nodes (solid red for a-part-of and dashed green for

accessible-from). Similar to the task graph editor, a resource graph is described by choosing an

appropriate operation in a menu bar and clicking on the appropriate node or edge.

2.3 Schedulability Analyzer

There are two complementary techniques in evaluating the timing behavior of a real-time system:

1. Schedulability analysis based on theoretical calculations and

2. Simulation.

Schedulability analysis rigorously checks whether timing constraints can be met, but requires an

analyzable model of the system under consideration. On the other hand, the simulator provides no

guarantees; it determines whether timing constraints are violated, relying on user's speci�cation of

the worst-case con�guration. However, a simulator can deal with a more complex system than the

schedulability analyzer. This project focuses on the schedulability analyzer, which can guarantee

system schedulability. We would like to emphasize that since the schedulability analysis is based

on su�cient (not necessary) criteria, it cannot guarantee non-schedulability of a task system. If a

task system does not satisfy the schedulability criteria, it does not mean that it is not schedulable,

but instead it means that theory is unable to guarantee its schedulability.

The Schedulability Analyzer is the last of the three key PERTS components. It performs the

schedulability analysis for the systems that have been described using the task graph and resource

graph. A system is analyzed by choosing a priority assignment mechanism and a resource access

protocol.

2.3.1 Priority Assignment Mechanisms and Resource Access Protocols

The list of priority assignment mechanisms in the Schedulability Analyzer includes:

9

� Rate Monotonic (RM) [5] - which assigns higher priority to a task executing at higher rate,

� Deadline Monotonic (DM) [6] - which assigns higher priority to a task with shorter relative

deadline,

� Earliest Deadline First (EDF) [5] - which assigns a higher priority to a task with faster

approaching deadline.

There are three other Priority Assignment mechanisms currently supported by PERTS, Cyclic

Executive (CE), Harbour-Klien-Lehoczky (HKL) and Sun-Gardner-Liu (SGL), not applicable for

our study because of their limitations. CE is applicable for a system containing harmonic tasks

only, while HKL and SGL prohibit resource accesses.

The list of available resource access protocols includes:

� Priority Ceiling Protocol (PCP) [7] - which avoids deadlocks, limits blocking time and guar-

antees that the blocking time is a function of duration of critical sections only;

� Basic Inheritance Protocol (BIP) - which is similar to PCP. It is easier in implementation

than the latter, but does not limit the number of times a task may be blocked and does not

prevent deadlocks;

� Stack Based Protocol (SBP) [8] - which assigns a �xed preemption level to every task inversely

proportional to its relative deadline. It avoids deadlocks and multiple blocking, but applicable

only to Single-Node systems.

After the user speci�es a priority assignment mechanism and a resource access protocol and

chooses the appropriate text �les with that describe the tasks and resources, the system is completely

described.

10

Figure 2.3: Snapshot of PERTS Schedulability Analyzer

2.3.2 Schedulability Analysis Regimes

There are three di�erent regimes of analysis provided by PERTS: Single-Node, Multi-Node and

End-to-End.

Single-Node Analysis, shown in Figure 2.4, determines whether the node is schedulable. A task

is schedulable if it always completes its execution before its deadline; a node is schedulable if all the

tasks assigned to that node are schedulable. In addition to the report on schedulability of the node,

the Single-Node analysis reports the CPU utilization, and it provides the list of all tasks indicating

their schedulability. The user can modify the system parameters to allow what if? modeling.

Single-Node analysis may be used for systems consisting of a single node, as well as for multiple

node systems. In the latter case, the user should choose for analysis either Multi-Node or End-to-

End Analysis, described below. However, to obtain details on the particular node of the distributed

11

Figure 2.4: Snapshot of PERTS Single-Node Analysis

system the user may use the Single Node analysis.

Multi-Node Analysis, shown in Figure 2.5, examines the schedulability of multiple-node real-

time systems. To allow what if? modeling, the Multi-Node analysis interface enables modi�cation

of the binding of tasks and resources to di�erent system nodes. The binding may be either manual

or automatic, using such algorithms as best �t, �rst �t, next �t and worst �t.

The ability to analyze system architectures that have more than one node and share resources

can be critical for distributed real-time system developers. PERTS can help point out potential

overhead problems and blocking problems that may be introduced by sharing resources across the

nodes. Individual entities may be schedulable as stand-alone entities, but when put in a multiple-

node architecture with the resource sharing, they may become non-schedulable. Multi-Node analysis

12

Figure 2.5: Snapshot of PERTS Multi-Node Analysis

reports the system schedulability and then user may select individual nodes to analyze, with Single-

Node analyzer.

Both Single-Node and Multi-Node analysis dialogs o�er a node-oriented view of the system under

consideration. They do not perform any path analysis in the systems with task dependencies.

End-to-End analysis, shown in Figure 2.6, looks at the schedulability of a system with one or

more paths of execution de�ned by a series of task dependencies. The End-to-End Analysis Window

graphically represents all tasks and dependencies (similar to Task Graph Editor). Specifying any

path, the user obtains a schedulability report on that particular path. The user may choose Single-

Node Analysis for the detailed information on the particular node.

13

Figure 2.6: Snapshot of PERTS End-to-End Analysis

2.3.3 Theory Behind Schedulability Analysis

The main feature of all three analysis regimes in PERTS is the ability to guarantee the system

schedulability. In this section we describe the theory underlying this analysis. There are two

su�cient conditions for the schedulability of a real-time system. One of them is based on the

concept of Processor Utilization Bound introduced by Liu and Layland [5] and another - based on

the concept of Processor Time Demand introduced by Lehoczky et. al. [9]

14

Liu-Layland's criterion requires satisfaction of the following inequality:

C1

T1
+
C2

T2
+ : : :+

Ci

Ti
+
Bi

Ti
� i(21=i � 1)

(2.1)

where tasks are indexed in the decreasing priority order (task T1 has the highest priority on

the considered node). Cj and Tj denote the worst-case execution time and period of the task Tj .

Bi is the worst-case blocking time potentially su�ered by any job in the task Ti due to resource

contention or non-preemptive execution of lower-priority tasks. If a task Ti satis�es this condition,

it is schedulable by the RM or DM and PCP or SBP. Schedulability of all tasks of the system means

the system is schedulable.

When a �xed-priority scheduling algorithm is used with a resource access control protocol that

e�ectively bounds priority inversion, there is another more accurate schedulability condition [7, 9].

This condition is stated in terms of the worst-case cumulative demand function Wi(t) for processor

time in the interval between the release time of a task Ti and the time t units after its release. The

demand function Wi(t) is given by

Wi(t) =

i�1X

j=1

Cjd
t

Tj
e+ Ci +Bi

(2.2)

15

The demand function has three parts: the processor time demand by all tasks with priorities

equal or higher than Ti, the demand of Ti itself, and the worst-case blocking time su�ered by each

job in Ti. The job released at time t0 completes at time t0+ t, if Wi(t) = t: Consequently, whenever

Wi(t) � t, for some t smaller than task Ti's relative deadline, the task Ti is schedulable.

16

Chapter 3

Real-Time CORBA

3.1 CORBA

The Common Object Request Broker Architecture (CORBA) is an answer to the need for inter-

operability among the rapidly proliferating number of hardware and software products available

today. Simply stated, CORBA allows applications to communicate with one another no matter

where they are located or what underlying system they use. CORBA provides a uniform way for

any object to receive and respond to a request from any requester (client).

The Object Request Broker (ORB), CORBA's key component, is the middleware that establishes

the client-server relationships between objects. Using an ORB, a client can transparently invoke

a method on a server object, which can be on the same machine or across a network. The ORB

intercepts the call and is responsible for �nding an object that can implement the request, pass

the parameters, invoke its method, and return the results. The ORB facilitates the processing of

client requests. A client does not have to be aware of where the object is located, its programming

language, its operating system, or any other system aspects that are not part of an object's inter-

face. In so doing, the ORB provides interoperability between applications on di�erent machines in

heterogeneous distributed environments and seamlessly interconnects multiple object systems.

17

Figure 3.1: CORBA Architecture

The CORBA speci�cation includes: an Interface De�nition Language (IDL), that de�nes the

object interfaces within the CORBA environment; an Object Request Broker (ORB), which is the

middleware that enables seamless interaction between distributed client objects and server objects;

and Object Services, which facilitate standard client/server interaction with capabilities such as

naming, event-based synchronization and concurrency control.

To provide these capabilities, the CORBA speci�cation de�nes an architecture of interfaces

that may be implemented in di�erent ways by di�erent vendors. The architecture was speci�cally

designed to separate the concerns of interfaces and implementations. The architecture, shown in

Figure 3.1, has been described in detail in [2]

3.2 Real-Time CORBA

Real-Time distributed applications such as automated factory control, avionic navigation and sim-

ulation have demonstrated the need to extend the CORBA standard to support real-time.

18

Figure 3.2: Example of the RT CORBA System

A RT CORBA client contains a set of requests to RT CORBA servers (method calls) intermixed

with its local code. In addition to its �nal timing constraint (deadline) a client may contain a series

of intermediate timing constraints (Intermediate Deadlines), associated with di�erent method calls,

calculations and data manipulations. A intermediate deadline is speci�ed by three time parameters:

Start Time, End Time and Deadline. The start and end time describe the beginning and end of

the portion of the client code to be completed by the Deadline.

We illustrate a typical RT CORBA client in Figure 3.2. This client (residing on node1) has

a period of P1 units of time during which it makes two CORBA calls to remote CORBA servers

(s1! method1 and s2! method1). Each CORBA call has its own pre-period deadline, shown by

horizontal line (d11 for s1 ! method1 and d12 for s2 ! method1). Note that there is also some

local client code before, after, and between CORBA method calls. The �gure shows remote servers

19

only, while in general some or all servers could reside on the client's node.

The distributed CORBA architecture causes network communication between clients and servers

residing on di�erent nodes. The time that clients spend sending requests to remote servers (Network

Delay), may be signi�cant enough to make the clients non-schedulable. To model network delay

between two nodes in PERTS, a user inputs the worst case estimate of the one-way latency between

the two nodes.

3.3 RT CORBA Scheduling Service

A Special Interest Group (SIG) has been formed within the Object Management Group with the goal

of extending the CORBA standard to support real-time applications. The real-time SIG put out a

request for proposals seeking static real-time scheduling in a real-time CORBA framework. Among

other things the RFP asked for end-to-end predictability of client requests, ordered execution of

tasks and real-time control of resource allocation.

Real-Time Research group at University of Rhode Island, in association with SPAWAR Systems,

Tri-paci�c Software Inc. and others responded to the RFP. The group focused on expression and

enforcement of various �xed priority scheduling policies across a RT CORBA system.

The proposed OMG Real-Time CORBA standard [10] uses the notion of a global, uniform

priority assignment to threads of clients and servants in the CORBA system. Global Priority is a

total ordering of those threads in the system that are assigned a priority in application code (e.g

servant threads that inherit the priority of the client), but that eventually every thread will be

assigned a global priority. The programmer assigns each client thread one or more �xed, unique

global priorities from 1 to N , with 1 being the lowest and N being the highest priority. A client

may have more than one priority due to parts of its execution that have tighter timing constraints

or higher importance.

20

Fixed priority scheduling entails, whenever possible, resolving scheduling conicts by allowing

the highest global priority thread to use a resource on which the conict occurs. When, for some

reason such as consistency of a shared resource, the RT CORBA system does not resolve conicts

in priority order and causes a higher priority thread to wait for a lower priority thread, Priority

Inversion is said to occur. Analyzable real-time systems require that the priority inversion be

bounded by time.

RT CORBA standard also speci�es a Scheduling Service that uses the RT CORBA primitives

to facilitate enforcing real-time scheduling policies across the RT CORBA system. The scheduling

service abstracts away from the application some of the complication of using low-level RT CORBA

constructs such as POA policies. A POA is an object in the CORBA server that controls access to

server objects. For applications to ensure that their execution is scheduled according to a uniform

policy, such as global Rate Monotonic scheduling, RT ORB primitives must be used properly and

their parameters must be set properly in all parts of the CORBA system. A scheduling service

implementation will choose CORBA priorities, POA policies and priority mappings (from global

priorities to priorities on a speci�c system) in such a way as to realize a uniform real-time scheduling

policy.

The scheduling service uses Names (character strings) to provide abstractions of scheduling

parameters (such as CORBA priorities). The application code uses these names to specify CORBA

activites and CORBA objects. The scheduling service internally associates these names with actual

scheduling parameters and policies. This abstraction improves portability with regard to real-time

features, eases use of real-time features and reduces the chances of errors.

The scheduling service provides a schedule activity method that accepts a name and then inter-

nally looks ip a pre-con�gured CORBA priority for that name. The scheduling service also provides

a create POA method to create a POA. A call to create POA sets the POA's RT CORBA policies

to support the uniform scheduling policy that the scheduling service is enforcing.

21

The scheduling service provides a third method called schedule object, that accepts a name for

the object and internally looks up scheduling parameters for the object. The example in Figure

3.3, from the RT CORBA draft standard [10] illustrates how the scheduling service could be used

and also highlights some of the issues in creating RT CORBA clients and servers. Assume that a

CORBA object has two methods: method1 and method2. A client wishes to call method1 under

one deadline and method2 under a di�erent deadline.

0 install priority mapping(� � �);
Client
C1 sched = create scheduling service object;
C2 obj = bind to server object
C3 sched ! schedule activity("activity1");
C4 obj ! method1(params); // invoke the object
C5 sched ! schedule activity("activity2");
C6 obj ! method2(params);

Server Main

S1 sched = create scheduling service object;
S3 poa1 = sched ! create POA(� � �);
S4 obj = poa1 ! create object(params); // create object
S5 sched ! schedule object(obj, "Object1");

Figure 3.3: Example of the RT CORBA Static Scheduling Service

In Step 0, the scheduling service installs a priority mapping that is consistent with the policy en-

forced by the scheduling service implementation. For instance, a priority mapping for an analyzable

deadline monotonic policy might be di�erent from a analyzable rate monotonic policy.

The schedule activity calls on lines C3 and C5 specify names for CORBA activities. The schedul-

ing service internally associates these names with their respective CORBA priorities.

The server in the example has two scheduling service calls. The call to create POA allows

application programmer to set non real-time policies, and internally sets the real-time policies to

enforce the scheduling algorithm. The resulting POA is used in line S4 to create the object. The

second scheduling service call in line S5 allows the service to associate a name with the object. Any

22

RT scheduling parameter for this object, such as the priority ceiling, is assumed to be internally

associated with the object's name by the scheduling service implementation.

3.3.1 PERTS for RapidSched

Real-Time Research and Tri-Paci�c Software Inc. have developed RapidSched, an implementation of

the proposed real-time CORBA scheduling service. RapidSched uses a global deadline monotonic

priority assignment technique along with distributed priority ceiling resource access protocol for

�xed priority static distribured systems. The implementation has been designed to work closely

with PERTS. With PERTS, system designers enter information about their RT CORBA clients

and servers using a graphical user interface. These high level objects are automatically translated

into PERTS primitives [14]. A rate-monotonic analysis then determines whether the system is

schedulable.

If the system is schedulable, PERTS produces a �le from which the scheduling service (Rapid-

Sched in our case) can retrieve scheduling information about all tasks, GCSs 1 and resources. The

�le associates textual names of tasks, GCSs and resources with their scheduling information. This

information is later transparently retrieved by RapidSched in enforcing scheduling decisions for the

application. For more information about RapidSched, we refer the reader to [18].

PERTS 3.2 supported limited analysis of RT CORBA clients and servers. It does not address

some of the other issues such as Priority Mapping, automatic generation of the con�guration �le. In

the following chapters we discuss some of these and other issues. The possibility of using Distributed

A�ected Set Priority Ceiling Protocol (DASPCP) is discussed in Chapter 5.

1A Critical Section is a piece of code that is run on behalf of many tasks. A critical section shared by tasks

executing on di�erent nodes is called Global Critical Section (GCS).

23

Chapter 4

Priority Mapping

Schedulability analyzer tools like PERTS assume an unlimited priority range and assign unique

priorities to tasks and GCSs based on this assumption. These priorities do not correspond to the

run-time priorities supported by the operating system on which the task system is scheduled.

The designer has to decide at what priorities each task should be scheduled. Typically in

complex real-time systems, there are hundreds of tasks and it is very di�cult to assign run-time

priorities to all the tasks manually so that the system is schedulable. The problem is complicated

when the operating system's priority range is less than the number of distinct priorities of the tasks.

4.1 Problem Statement

There are two instances of the priority mapping problem:

1. When the number of tasks and GCSs with unique priorities running on a node is not greater

than the number of priorities supported by the operating system. This is a simple problem

and the solution is to simply assign actual run-time priorities to tasks while preserving the

original priority order. For example, consider a task system with �ve tasks T1; T2; T3; T4; and

T5 each assigned a priority of 10, 20, 30, 40 and 50 respectively by a tool like PERTS. The

24

operating system on which these tasks are scheduled has a priority range of 1 through 6. One

possible run-time priority assignment could be:

T1 : 1; T2 : 2; T3 : 3; T4 : 4 and T5 : 5.

2. When the number of tasks and GCSs with unique priorities running on a node is greater

than the number of priorities supported by the operating system. This problem is more

complicated and the solution is not trivial. For example, suppose there are 100 tasks, each

assigned a unique priority (say 0 through 99) by PERTS, to be run on a node with Solaris

operating system which supports only 60 (0 through 59) priority levels.

Clearly a solution to the second instance must assign same priorities to more than one task

which might cause priority inversion since most operating systems use FIFO scheduling for tasks

with same priority.

It is important to note that there are an exponential number of such mappings for any system.

Consider the number of ways to arrange n tasks into m priority groups, where m � n. The total

number of ways n tasks can be arranged into m priority groups [11] is:

N =
(n� 1)!

(m� 1)!(n�m)!

(4.1)

Formally stated, the problem is:

Suppose that in a distributed system, a processor P has m tasks and n GCSs scheduled to

be run on it. The global scheduler (like PERTS) will assign a unique priority to every task and

25

GCS in the system. Thus, on processor P , m+ n unique priorities are required. If the operating

system running on P has fewer than m+ n priorities, two or more tasks and/or GCSs will have to

execute at the same priority. This could cause priority inversion, since a task (with originally higher

priority) could be blocked by another task (with originally a lower priority) ahead of it in the FIFO

queue. This new form of blocking must be taken into account when computing the schedulability

of the system. We will also refer the original priority assigned to a task/GCS by PERTS as Global

Priority and the priority assigned to a task/GCS as a result of priority mapping is called Local

Priority. Our goal is to �nd a mapping from global to local priorities, if it exists, with the condition

that the system is Schedulable when all the tasks and GCSs are scheduled at their local priorities on

their respective nodes. A subtle point to be noted here is that a mapping algorithm must map even

the priority ceilings of resources generated by PERTS to a number in the priority range speci�ed

by the operating system on the particular node in consideration.

In the following section we present the modi�cations to the schedulability criteria and in the

subsequent sections discuss algorithms to perfrom priority mapping.

4.2 E�ect of Limited Priorities on Schedulability Analysis

The e�ect of limited priority levels available to a schedulability analyzer tool is discussed in detail

in [11] and [13]. Here we present only the results from these works.

To analyze the schedulability of a system with limited priority levels, we check how limited

priorities a�ect the time demand function introduced by Lehoczky's schedulability criterion, Equa-

tion 2.2. Assuming FIFO scheduling of tasks with same local priority and making the worst case

assumption that each task or GCS falls at the end of the FIFO queue for its priority, the modi�ed

time demand function is:

26

Wi(t) =
X

j=Alltasksofhigherpriority

Cjdt=Tje+
X

k=Alltasksofsamepriority

(Ck �Mk) + Ci +Bi � t

(4.2)

Here Ci represents execution time of task Ti, Bi is the blocking time of task Ti and Mk is a

factor de�ned as

Mk = minfdt=Tke; ng + 1g

where ng is the number of remote GCSs executed by the task Ti during a single period. The

origin of this factor is that the task Ti may wait for the end of some same priority task's execution.

It may wait once, when the task Ti is initialized and every time it releases its CPU for an execution

of a remote GCS, since a task of the same priority may get the CPU at that time period. At the

same time it may not happen more often than the frequency of the same priority task Tk; dt=Tke

We now present the Lowest Overlap First algorithm for mapping global priorities to local pri-

orities.

4.3 Lowest Overlap First Priority Mapping Algorithm

The Lowest Overlap First Priority Mapping algorithm [18], is a possible solution to the priority

mapping problem. The algorithm is based on the concept of overlapping multiple tasks and GCSs

together into a single local priority. It starts with as many priorities as the global scheduler requires

to schedule all tasks and GCSs, which means that, priorities to tasks and GCSs are already assigned

assuming an unlimited priority range so that the system is schedulable. It then scans through the

27

tasks in increasing global priority order, overlapping as many tasks and GCSs as possible without

allowing the system to become non-schedulable. On each node, it overlaps (maps two or more tasks

or GCSs with di�erent global priorities to a same local priority) as many times as necessary to end

up with the number of available priorities on that node.

 Start

Yes

No

Yes

 Assign

Decrement Counters

No

Global Priorities

Perform Analysis

Scan and Overlap

Schedulable

Counter > 0 ?
More to

Assign
Local Priorities

Done

Any

Scan ?

Keep the Overlap
Quit

Quit

More to

Backtrack ?

Backtrack

Set Counters

Schedulable?
No

Yes

No

Yes No

Yes

Figure 4.1: Flowchart of Lowest Overlap First Priority Mapping Algorithm

Figure 4.1 displays a high-level owchart of the algorithm. The details of each step are discussed

below.

28

4.3.1 The Algorithm

Though the �rst two steps are not a part of the algorithm as such, they are required before the

mapping algorithm is invoked.

Assign Global Priorities: The �rst step in the algorithm is to assign unique global priorities

to all tasks and GCSs on all nodes according to a chosen priority assignment mechanism (RM,

DM,etc.) under the assumption that the number of priorities available is umlimited.

Perform Analysis: The system is then analyzed for schedulability. If it is schedulable, we

invoke the mapping algorithm. If the system is not schedulable, we quit the mapping process since

no mapping will ever improve the schedulability of the system.

Set Counters: For every node, a counter is stored that represents the di�erence between the

number of global priorities used on the node and the number of local priorities available. This

counter can also be thought of as representing the number of priority overlaps required on the

node. Thus, initially we have COUNT = #TASK + #GCS�#LOCAL, where COUNT is the

counter, #TASK is the number of tasks on the node, #GCS is the number of GCSs on the node,

and #LOCAL is the number of local available priorities on the node.

Scan and Overlap: This is the heart of the priority mapping algorithm. The goal here is to

assign tasks and GCSs temporary local priorities, overlapping as many as necessary into the most

recently allocated local priority without making the system unschedulable. If, on any node, the

counter becomes non-positive, then no priority overlaps are necessary, and so tasks and GCSs on

that node are assigned to the next available local priority. The algorithm scans the tasks and GCSs

in increasing global priority order, regardless of which nodes they reside on.

During the mapping, tasks and GCSs have separate sets of local priorities into which they will

be mapped. We will refer to these sets as local task priorities and local GCS priorities. This is

done because, under Distributed Priority Ceiling Protocol (DPCP), [7] the GCS priorities must be

higher than the task priorities. After the mapping is complete, this distinction is eliminated, and

29

we are left with at most the number of local priorities available on the node.

When a task is chosen during the scan, if its node has a non-positive counter, it is assigned to

the next empty local task priority. By empty, we mean a priority that is not yet assigned to any

task. Otherwise, if the chosen task is the �rst (lowest global priority) task on its node, it is assigned

the lowest local task priority. If the chosen task is not the �rst on its node, it is assigned the highest

non-empty local task priority, causing an overlap.

When a task is assigned a local task priority, each of its GCSs must also be assigned some local

GCS priority on its own node. If the counter on a GCS's node is non-positive, it is assigned the

next empty local GCS priority. Otherwise, if the GCS is the �rst scanned GCS on the node, it is

assigned the lowest local GCS priority. If the GCS is not the �rst on its node, it is assigned the

highest non-empty local GCS priority. Thus, in its initial attempt at assigning local priorities to a

task and all of its GCSs, the algorithm tries to overlap all of them.

After the assignment of a task and all of its GCSs is done, the algorithm tests the schedulability

of the task, accounting for priority mapping by equation 4.2. If it is found to be schedulable, the

counters on the task's node and all GCSs' nodes are decremented, and the scan goes on to the next

higher global priority task. If the task is found to be non-schedulable, the algorithm backtracks,

trying another combination of overlaps and non-overlaps of the task and its GCSs.

After scanning through and assigning a local priority to the highest global priority task, the

algorithm goes to the next phase, if the counters on all nodes are non-positive. If there are no

more tasks to scan and there are still some positive counters, that is there are still some overlaps

required, then the algorithm backtracks to try to �nd another possible combination of overlaps and

non-overlaps of the tasks and their GCSs.

Assign Actual Priorities: The actual priority ranges available could be di�erent on every

node and so is the direction of priority (Lower the number lower the priority or vice versa). In order

to make the analysis easier, the Scan and Overlap phase assumes a particular priority direction

30

to be same on all nodes and the priority range to be [0;#LOCAL]. After a successful scan and

overlap phase, the temporary priorities assigned have to be mapped to actual range on every node.

For eg. on a node the actual range could be [35; 50], with priority direction being Lower Number

Lower Priority. But the scan phase would have assigned priorities in the range [0; 16] with priority

direction being Lower Number Higher Priority. In this example, all tasks whose temporary priority

is 0 will be assigned a permanent local priority of 50. Doing this for all tasks and GCSs in the

system priority mapping is completed.

Backtrack: The decisions about whether or not to overlap each global priority form a binary

tree. The leaves of the tree represent all of the possible combinations of overlaps and non-overlaps

in the system. The backtracking involves choosing another one of these combinations and testing its

schedulability. In general, the entire tree may be searched in order to �nd a successful combination

(one that is schedulable). After completely searching the tree, if no schedulable solution is found,

the algorithm reports that it cannot �nd a schedulable solution, and then it quits. Otherwise when

a schedulable combination is found, the counters on the appropriate nodes (those where overlaps

occurred) are decremented and the scan continues.

4.3.2 Example

We now present an example from [18] to illustrate how the priority mapping algorithm works.

Figure 4.2 shows a series of snapshots of a system of tasks and GCSs in the process of being

mapped. The required number of overlaps for each node is displayed across the top of the �gure.

The solid lines represent the tasks and the striped lines represent the GCSs. An arrow from a task

to a GCS indicates that the task originated the GCS. The curly brackets indicate a local priority

to which tasks or GCSs have already been mapped. In each part of the �gure, the tasks or GCSs

being considered are highlighted. 4.2A represents the system before any local priorities have been

mapped. In part 4.2B, the lowest global priority task is mapped to the lowest local task priority on

31

its node. Part 4.2C shows the next two lowest global priority tasks mapped into the lowest local

task priorities on their nodes, and the GCS associated with one of them is mapped to the lowest

local GCS priority on its node.

Figure 4.2: Lowest Overlap First Priority Mapping Algorithm Example

Notice that up to this point, no overlaps have been performed because each task and GCS

that has been considered has been the �rst on its node. In part 4.2D of the �gure, the indicated

task is assigned to the highest non-empty local task priority. After the schedulability is tested, the

counter on the task's node is decremented. In part 4.2E the task being considered is overlapped

into the highest non-empty local task priority, and its GCS is also overlapped into the highest

non-empty local GCS priority. Assuming that, with both the task and the GCS being overlapped,

32

the task is not schedulable, so in Figure 4.2F the algorithm has backtracked to attempt another

combination of overlaps and non-overlaps of the task and its GCS. The task remains overlapped,

but the GCS is assigned to the next lowest empty local GCS priority. Since this con�guration is

schedulable, the overlap is committed, and the counter on the task's node is decremented. Omitting

some intermediate steps, in Figure 4.2G the scan is complete, but one of the nodes has a positive

counter. So, the algorithm backtracks to the con�guration shown in part E of the �gure. Recall

that in this con�guration, when it was found not possible to overlap both the task and its GCS,

the algorithm chose not to overlap the GCS. Now, the algorithm attempts another combination

of overlaps and non-overlaps of the task and its GCS. In this case, shown in Figure 4.2H, the task

is not overlapped and the GCS is overlapped. If this task is schedulable, the algorithm scans the

next higher global priority task and continues this way until all tasks have been scanned, and each

node has a non-positive counter, or until there are no more con�gurations to try.

4.3.3 Optimality

In this section we present some of the theorems and their proofs that form the basis for the Lowest

Overlap First Priority Mapping algorithm.

A static scheduling algorithm is said to be Optimal if, for any set of tasks, it always produces a

schedule which satis�es the constraints of the tasks whenever any other algorithm can do so [12].

The Lowest Overlap First priority mapping algorithm produces a direct mapping of global to

local priorities. A direct mapping is one in which if any task (GCS) i has higher global priority

than any task (GCS) j, then task (GCS) j cannot have higher local priority than that of task

(GCS) i. That is, the mapping does not change the relative ordering of task (GCS) priorities.

Theorem 1 proves that in the class of direct mappings, the Lowest Overlap First Priority (LOF)

Mapping Algorithm is optimal. That is, if there is a direct mapping of global to local priorities

that is schedulable, then the mapping produced by LOF algorithm is also schedulable.

33

Figure 4.3: Example Priority Move

Theorem 1 For a given schedulable system of tasks and GCSs with global priority assignments,

if there is any direct priority mapping under which the system is schedulable, it is also schedulable

under the Lowest Overlap First Priority Mapping Algorithm.

Proof: The approach we take to proving this theorem is to assume that some schedulable direct

mapping exists, and to show that we can derive a Lowest Overlap First mapping from it that is

also schedulable.

Let us assume that some direct mapping of global priorities to local priorities exists for a par-

ticular node in the system. Assume also that the mapping provides schedulability of the considered

system. Let the operating system on the node have n local priorities (where n is the lowest prior-

ity). Because the mapping is direct, any task with local priority i, higher than local priority j, has

higher global priority than any task with local priority j. Take the lowest global priority task that

is assigned to local priority n � 1 (tn�1;l) and temporarily change its local priority to n. We can

think of this as moving task tn�1;l out of local priority n� 1 and overlapping it into the lower local

priority n. Figure 4.3 illustrates this move.

We now examine which tasks' schedulability might be a�ected by this move.

1. The tasks with local priority n � 1: The worst case completion time of any task with local

34

priority n� 1 will not increase because all of these tasks could previously have been blocked

under FIFO by tn�1;l, and now they cannot.

2. The tasks in local priority n: The worst case execution time of any task with local priority

n will not increase because, before the move, any task with local priority n could have been

preempted by tn�1;l. After the move, the tasks in local priority n can be blocked due to

FIFO scheduling within the same priority. The blocking time cannot be greater than the

preemption time.

3. Task tn�1;l: The worst case completion time of tn�1;l may be a�ected by the move, making

it unschedulable. However, if this were the case, the Lowest Overlap First algorithm would

not have made this overlap in the �rst place, but rather would have mapped tn�1;l to local

priority n� 1.

If task tn�1;l remains schedulable after moving it to priority n, we repeat this procedure moving

the next lowest global priority from local priority n � 1 to local priority n, as long as the moved

task remains schedulable. Clearly, if we continue this procedure for local priorities n � 2; n � 3

and so on, the resulting mapping will be the one that would have resulted from using the Lowest

Overlap First Priority Mapping Algorithm. The procedure for moving GCSs is identical with the

exception that on every move, we check the schedulability of the task that generated the GCS in

question. Since the schedulability of all tasks is not a�ected by any of these moves, the system

remains schedulable and the theorem is proven. 2

The next two theorems prove the optimality of Lowest Overlap First algorithm on Single node

systems under all conditions when scheduled under a deadline monotonic priority assignment mech-

anism.

Theorem 2 For any system residing on a Single Node and scheduled under Deadline Monotonic

priority assignment mechanism, if there is any Indirect priority mapping under which the system is

35

schedulable, it is also schedulable under a Direct mapping algorithm.

Proof: Let us assume that the alternative mapping (not LOF) does exist and provides the

schedulability of the system under consideration. Let us assume that the alternate mapping is

Indirect. Hence, there is atleast one pair of local priorities k and l (priority k is higher than l)

such that some task ti with local priority k has lower global priority than some tasks tj with local

priority l. If the system is schedulable under this mapping then it is also schedulable under a direct

mapping algorithm. It is so, because, if we set the local priority of task ti to l the system still

remains schedulable. To demonstrate this, we consider all tasks a�ected by this change. We remind

the reader that a task may become non-schedulable only if its worst case completion time increases.

1. All tasks with local priorities k other than task ti are still schedulable because their worst

case completion time only decreases.

2. All tasks with local priority l are still schedulable because their worst case completion time

does not increase.

3. All tasks with local priority less than k but greater than l are still schedulable because their

worst case completion time decreases (Earlier they could be preempted by task ti, now they

cannot)

4. While the worst case completion time of task ti increases it is still schedulable since its worst

case completion time is same as the worst case completion time of task tj , while its deadline

is not earlier than that of task tj . Since task tj is schedulable, task ti is also schedulable.

If we continue to lower the local priorities of all overprioritized tasks we would have converted

the original Indirect mapping to a Direct mapping. 2

Theorem 3 For any system residing on a single node and scheduled under Deadline Monotonic

36

priority assignment mechanism, if there is any Indirect mapping under which the system is schedu-

lable, it is also schedulable under Lowest Overlap First priority mapping algorithm.

Proof: Proof of this theorem is trivial and follows from the previous two theorems. Under the

conditions of this theorem, the system residing on a single node and schedulable under deadline

monotonic priority assignment, is also schedulable under an Indirect mapping. According to The-

orem 2 the system is also schedulable under some direct mapping. But according to Theorem 1 it

is also schedulable under the Lowest Overlap First mapping algorithm. 2

37

Chapter 5

The Distributed A�ected Set Priority Ceiling

Protocol

The advent of real-time object oriented (RTOO) systems, such as Real-Time CORBA middleware

[15] and RTOO databases [16], poses the need to control concurrent access to objects under real-time

requirements. In a real-time database system, the concurrency control technique manages concur-

rent accesses by transactions to data objects. In a CORBA system, the middleware must control

concurrent access to CORBA objects by remote clients. Concurrency control techniques for RTOO

systems must satisfy more requirements than traditional non-real-time concurrency control tech-

niques because they must also meet timing constraints. Among the most important non-real-time

requirements are that the technique provides: high concurrency to maximize average throughput;

deadlock treatment that either prevents, avoids or breaks deadlocks; and logical consistency such as

mutual exclusion or serializability, so that all constraints on the attributes of the object are met. In

real-time concurrency control there are similar requirements, along with the requirement that the

technique should support predictable execution, such as bounded blocking times for locks. Providing

predictable blocking times involves, among other things, bounding priority inversion that occurs

when a lower priority task blocks a higher priority task [7].

38

In this chapter we briey describe Distributed Priority Ceiling Protocol (DPCP) [7] and

DASPCP. We refer the reader to [19] for more information on DASPCP. We use the terms trans-

action and task interchangeably. Also the terms lock and semaphore should be treated similarly.

The context should make it clear and we hope there is no ambuiguity in the interpretation of the

meanings of these terms.

5.1 DPCP and DASPCP

In this section we describe the Priority Ceiling Protocols and compare concuurency under DPCP

and DASPCP.

5.1.1 A�ected Set Semantics

A RTOO system consists of objects, some of which manage shared resources. The model of a real-

time object we use in this discussion is derived from the RTSORAC model [16] for real-time object

oriented databases.

Our RTOO system object model extends the traditional object-oriented notion of an object

to include attributes that have a value, a timestamp and amount of accumulated imprecision.

The imprecision that is recorded accumulates due to the potential relaxation of serializability by

semantic concurrency control [16]. Objects also include constraints and a compatibility function.

The constraints can be placed on the attributes to express logical and temporal correctness of the

objects.

The user-de�ned compatibility function determines how the methods of the object may inter-

leave. It is through this function that the object designer expresses semantics of allowable concur-

rency. The exibility of the compatability function allows the object designer to specify di�erent

levels of concurrency for di�erent objects. For instance, one object may require serializability, while

39

another object may tolerate less restrictive form of correctness. To enforce serializability, the object

designer may use a�ected set semantics [17] to determine compatability. A method's Read A�ected

Set (RA) is the set of the object's attributes that the method reads. A method's Write A�ected Set

(WA) is the set of attributes that the method writes. Under a�ected set semantics, two methods

m1 and m2 are compatible if and only if:

(WA(m1) \WA(m2) = ;) ^ (WA(m1) \ RA(m2) = ;) ^ (RA(m1) \WA(m2) = ;)

(5.1)

Note that de�ning lock compatability based on these a�ected set semantics has been proven to

produce serializable object schedules [17].

A less restrictive form of correctness may be needed to express the trade-o� between temporal

and logical consistency. In such cases, the semantics of compatability between methods are based on

dynamic information, including current temporal consistency and imprecision of data. For example,

if a method m1 that reads an attribute attr is currently executing, it would violate the logical

consistency of m1's return value if another method m2 that writes attr would execute. However,

if the timing constraint on attr has been violated, i.e, it has become old, then allowing m2 to

execute would restore the temporal consistency of attr. When determining each potential allowable

interleaving of method executions, the compatability function can also examine the amount of

imprecision that could be introduced by the possible interleaving.

5.1.2 The Priority Ceiling Protocol

40

De�nition 1 (Priority Ceiling) The Priority Ceiling of a resource is de�ned [7] as the priority

of the highest priority transaction that will ever access the resource.

A priority ceiling protocol [7] uses information about the way in which transactions intend to

use the resources of the system to bind priority inversion and to prevent deadlock. It is based on

the assumption about the system that every object and every transaction in the system is known

a priori. Thus, no dynamic information may be used to determine the semantics of concurrency

control.

There are three basic steps that apply to any of the priority ceiling protocols:

� Before running, the protocol de�nes a priority ceiling for every critical section that may be

locked. The granularity of these critical sections is the core di�erence among various priority

ceiling protocols.

� At run-time, when a transaction T requests a lock, the lock can be granted only if T 's priority

is strictly greater than the ceiling of locks held by all other transactions.

� If transaction T 's lock request is denied because another transaction Tlow (a lower priority

transaction) holds a lock with priority ceiling equal to or greater than T 's priority, Tlow

inherits the priority of T until Tlow's lock is released.

Note that no checking of conict is necessary when granting a lock. This is because conict in

a priority ceiling protocol is captured in the de�nition of priority ceiling.

5.1.3 The Distributed Priority Ceiling Protocol

The DPCP handles a synchronization of task method calls, executing on distributed systems. Before

we start the description of the protocol we introduce the following de�nitions:

41

De�nition 2 (Global and Local Critical Sections:) A Semaphore that is accessed by tasks al-

located to di�erent processors (a single processor) is referred to as a global (local) semaphore. A

critical section guarded by a global semaphore is referred to as a global (local) critical section, GCS

(LCS).

First, all tasks must be bound to processors. A task T executes its non-critical-section code

and LCSs on its host processor, while its GCSs may be bound and executed on a processor(s)

di�erent than the T 's host processor. All GCS's controlled by the same semaphore SG, and the

semaphore SG itself, are bound to the same synchronization processor. A GCS, generated by task

T , is assigned a priority equal to the sum of the Base Priority Ceiling PG
1 and P , the priority

of task T . Each processor runs the priority ceiling protocol on the GCSs (considering each thread

of execution for executing a GCS as a task), the set of application tasks (if any), and the set of

global and local semaphores bound to the processor. DPCP prohibits a mixed nesting of LCSs and

GCSs.

Example of DPCP

The following example adopted from [19] is not an exhaustive demonstration of possible situations

(of blocking, preemption etc.), that may occur under DPCP. Our goal is a simple example, demon-

strating bene�ts of DASPCP relative to DPCP. For more detailed example of application of DPCP

we refer reader to the original work by Rajkumar [7].

Example 1 Consider a distributed system with 2 nodes. The application consists of 3 tasks and 2

databases (Otrack1 and Otrack2), guarded by 2 locks (L1 and L2). Task T3 is bound to the Node1,

while tasks T1 and T4 are bound to the Node2. Pi is the priority of of task Ti. We will follow the

convention P4 > P3 > P2 > P1. Let the priorities be: P4 = 4; P3 = 3; P2 = 2 and P1 = 1.

1A �xed priority, higher than the priority assigned to the highest priority task in the system

42

Node 2

T

T

T

S

1

 4

 2

 2Node 1

T3 S1

Figure 5.1: A Distributed System with tasks competing for Resources

Tasks T1, T3 and T4 execute the following sequence of steps.

�

T1 : � � �Otrack2 ! read speed � � �

T3 : � � �Otrack1 ! write speed � � �

T4 : � � �Otrack1 ! read altitude : : :Otrack2 ! read depth

Note: In our system the priority of task Ti, p(Ti), is assumed to be lower than that of Ti+1.

Object Otrack1 and its lock L1 are bound to Node1. Object Otrack2 and its lock L2 are bound

to Nodes2. The priority ceilings of each locks, and the normal execution priority of each critical

section thread are listed in Table 5.1.

Priority Ceiling of Locks
Lock Priority Ceiling

L1 (Global) 4 + 4 = 8
L2 (Local) 4

Normal Execution Priorities of Critical Sections
Task Critical Section Guarded by Execution Priority

T1 L1 4
T3 L2 3 + 4 = 7
T4 L1 4 + 4 = 8

L2 4

Table 5.1: Priority Ceilings of Locks in DPCP Example

43

����
����
����
����

����
����
����
����

����
����
����

����
����
����

���
���
���
���

���
���
���
���

���������
���������
���������

���������
���������
���������

����
����
����

����
����
����

���������
���������
���������

���������
���������
���������

���������
���������
���������
���������

����
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

T

T

T

O

O
track1

track2

3

1

4

T
Object is accessed by
T

Execution of non-critical
section code

Execution of LCS

Execution of GCS

i

i

T
4

T
3

T
1 T

4

Blocked by Lower
Priority task

1 2 3 4 5 6 7 8 9 10 110

Figure 5.2: Time diagram for task system described in Example 5.1.3

The following example demonstrates the sequence of events in the system under DPCP, presented

graphically in Figure 5.2:

� At time t0, task T1 arrives on Node2 and begins its execution. Similarly, task T3 begins

execution on Node1.

� At time t1, task T1 gets the local lock L2 on Node2 and begins execution of LCS at its normal

execution priority of P1. Task T3 locks the global lock L1 on Node1 and begins execution of

GCS at its normal execution priority of P3 + PG.

� At time t2, task T4 arrives on Node2 and preempts T1. Task T3 continues its execution of

GCS on Node2.

� At time t3, task T4 requests the global lock L1. Since the priority of T4's GCS(4 + 4 = 8) is

not greater than the priority ceiling of the held lock L1(8), T4 is blocked and T3 continues its

GCS execution at the inherited priority of P4+PG(4+4 = 8). Task T1 resumes its execution

of LCS at Node2.

44

� At time t4, task T3 completes the execution of its GCS and releases the global lock L1 and

resumes its own priority. Task T4 gets the global lock L1 on Node1 and begins execution of

GCS at its normal execution priority of P4 + PG(4+ 4 = 8). Task T3 is preempted by higher

priority T4's GCS. Task T1 continues the execution of its LCS at Node2.

� At time t5, task T4 completes the execution of its GCS and releases the global lock L1. T3

resumes its execution on Node1. T4 attempts to get the lock L2. However, the priority of

T4(4) is not greater than the priority ceiling of the held lock L2(4), T4 is blocked and T1

continues its execution with inherited priority of P4(4).

� At time t6, task T1 completes the execution of its LCS and releases the lock L2 and resumes

its own assigned priority. Task T4 locks the local lock L2 on Node2 and begins its execution.

� On completion of execution of T4 at t9, task T1 resumes its execution. T1 and T3 complete

their executions at some later times.

Note that blocking and priority inheritance occurred at time t3 and t5. Although DPCP intro-

duces new forms of blocking, Rajkumar [7], has shown that the blocking is �nite and that DPCP

prevents deadlocks.

5.1.4 A�ected Set Priority Ceiling Protocol

This section describes the A�ected Set Priority Ceiling Protocol (ASPCP), which uses the a�ected

set semantics presented in Section 5.1.1 of each method of an object to determine the compatabilities

of the methods of the object, which inturn establishes the priority ceilings for each method.

Using a�ected set semantics, a critical section requires a method lock. Thus ASPCP assigns

conict priority ceiling to each method of each object:

De�nition 3 (Conict Priority Ceiling) The conict priority ceiling of a method m is the pri-

ority of the highest priority transaction that will ever lock a method that is not compatible with

45

method m; where compatability is de�ned by a�ected set semantics.

In order to determine the priority ceilings used in ASPCP, the following four sub-steps to Step

1 in Section 5.1.2 must be performed:

1a Determine the read/write a�ected sets for each method.

1b Determine the compatabilities of the methods using the a�cted sets.

1c Determine the highest priority transaction that will access each method.

1d Calculate the priority ceiling for each method using the information from Steps 2 and 3.

At run-time, the priority ceilings are used the same way as in original PCP: The ASPCP allows

a task T to receive a lock on a method if and only if the priority of task T is strictly higher than

the conict priority ceiling of locks held by all other task.

5.1.5 Distributed A�ected Set Priority Ceiling Protocol

To increase the concurrency of the task method calls in a distributed system, DASPCP incorporates

DPCP with ASPCP. The DASPCP copies all characteristics of the DPCP except the resource access

control protocol at a processor level. While under DPCP each processor runs PCP on the GCS's,

the set of application tasks, and the set of global and local semaphores bound to the processor, the

DASPCP uses ASPCP.

The DASPCP uses the same de�nition of priority ceiling as the ASPCP, de�nition 3. The

DASPCP also uses the DPCP priority assignment so that GCS's execute at the priority of the

requesting task plus base priority ceiling PG, of the system.

Example of DASPCP

The following example illustrates the application of DASPCP and demonstrates an increased con-

currency compared to application of DPCP. Here we consider the system of tasks identical to one

46

described in Example 5.1.3. Also we have the same databases, but instead of associating a lock

with each database we provide one lock for each method of a database.

Object Otrack1

Method read speed read depth write speed write altitude
read speed Yes No Yes Yes
write speed No No Yes Yes
read altitude Yes Yes Yes No
write altitude Yes Yes No No

Object Otrack2

Method read speed read depth write speed depth
read speed Yes Yes No
read depth Yes Yes No
write speed depth No No No

Table 5.2: A�ected Set Compatabilities in Example Objects

The priority ceilings of each lock, and the normal execution priority of each critical section

thread are listed in Tables 5.3 and 5.4.

Normal Execution Priorities of Methods
Task Method Execution Priority

T1 Otrack1 ! read speed 1 + 4 = 5
Otrack2 ! read speed 1

T3 Otrack1 ! write speed 3 + 4 = 7
Otrack1 ! write altitude 3

T4 Otrack1 ! read altitude 4 + 4 = 8
Otrack2 ! read depth 4

Table 5.3: Execution Priorities in DASPCP Example

Following example demonstrates the sequence of events in our system under DASPCP, illustrated

in Figure 5.3:

� At time t0, task T1 arrives on Node2 and begins its execution. Similarly, task T3 begins

47

Object Otrack1

Method read speed read depth write speed write altitude
Highest Priority Transaction T1 T4 T3 T3
DASPCP Priority Ceiling 3 + 4 = 7 3 3 + 4 = 7 4 + 4 = 8
DPCP Priority Ceiling 4 + 4 = 8

Object Otrack2

Method read speed read depth write speed depth
Highest Priority Transaction T1 T4 T2
DASPCP Priority Ceiling 2 2 4
DPCP Priority Ceiling 4

Table 5.4: Priority Ceilings in DASPCP Example

execution on Node1.

� At time t1, task T1 gets a local lock Otrack2 ! read speed on Node2 and begins execution

of LCS at its normal execution priority of P1(1). Task T3 get the global lock Otrack1 !

write speed on Node1 and begins execution of LCS at its normal execution priority of P3 +

PG(3 + 4 = 7).

� At time t2, task T4 arrives on Node2 and preempts T1. Task T3 continues its execution of

GCS.

� At time t3, task T4 requests the global lock on Otrack1 ! read altitude. Since its GCS's

priority, P4 + PG(4 + 4 = 8), is higher than the priority ceiling of Otrack1 ! write speed,

P3 + PG(3 + 4 = 7), it gets lock on Otrack1 ! read altitude and preempts T3's GCS. Task

T1 continues the execution of its LCS at Node2.

� At time t4, task T4 completes the execution of its GCS and releases the global lock on

Otrack1 ! read altitude. Task T3 resumes the execution of itsGCS at Otrack1 ! write speed.

Task T4 requests a local lock Otrack2 ! read depth. Since its priority, P4(4), is higher than

the priority ceiling of Otrack2 ! read speed; (PC = 2), it gets lock on Otrack2 ! read depth

48

����
����
����

����
����
����

���������
���������
���������

���������
���������
���������

�������
�������
�������

�������
�������
�������

����
����
����

����
����
����

����
����
����

����
����
����

�������
�������
�������
�������

����
����
����
����

����
����
����
����

����
����
����

����
����
����

T

T

T

T

T

T

T

O

O
track1

track2

3

1

4

1

4

4

3

T
Object is accessed by
T

Execution of non-critical
section code

Execution of LCS

Execution of GCS

i

i

0 1 2 3 4 5 6 7 8 9 10 11

Figure 5.3: Time diagram for task system described in Example 5.1.5

and preempts T1.

� At time t5, task T3 completes the execution of its GCS. No changes on Node2.

� At time t7, task T4 completes its execution, as well as the execution of its LCS with Otrack2 !

read depth and releases the lock. T1 resumes its execution of LCS on Otrack2 ! read speed

on Node2. T1 and T3 complete their executions at some later times.

The main advantage of the DASPCP compared to the DPCP may be seen in Figure 5.3 and

two considered sequences of events: under DASPCP there were no blocking, while running it under

DPCP, T4 was blocked twice, once for a global and once for a local resource.

To conclude the discussion of the DASPCP we state its main properties, we refer the reader to

[14] for the proofs of these properties.

� Under DASPCP deadlocks are avoided.

� Maximum blocking time is �nite under DASPCP.

49

� Introduction of DASPCP never can decrease concurrency of the system in comparison with

DPCP.

5.2 DASPCP for RT CORBA and PERTS

DASPCP, discussed in 5.1.5, developed at University of Rhode Island, exploits the semantics of

object oriented paradigm. A�ected Set semantics use method-level locking, where a task locks

a particular method on an object. Method locking is of �ner granularity than exclusive locking,

where the task locks the entire object exclusively, thereby preventing other tasks in the system to

simultaneously access methods of the object that do not a�ect the logical consistency of the object's

data.

Since RT CORBA applications are primarily comprised of clients and servers each being imple-

mented as objects and methods on those objects, the applications can take advantage of a superior

protocol such as the DASPCP. By Examples 5.1.3 and 5.1.5 it is clear that DASPCP lowers the

priority ceilings of resources in distributed object-oriented systems than the existing Priority Ceiling

protocols. Lower the priority ceiling of a resource, greater is the potential concurrency among the

tasks accessing the resource. Higher concurrency automatically increases the chances of the tasks

meeting their their timing constraints, thereby, increasing the chance of the of the system being

schedulable. Hence DASPCP is an ideal resource control protocol for RT CORBA systems.

DASPCP needs to be incorporated in the PERTS analysis of RT CORBA systems. Prior to

DASPCP, CORBA servers were modeled as PERTS resources. With DASPCP, particular methods

of a CORBA server (not the entire server) has to be modeled as PERTS resources and each method

needs to have its own priority ceiling based on other methods of the server with which it conicts. In

the next chapter we consider the implementation issues and discuss in greater detail modi�cations

to PERTS in lieu of Priority Mapping and DASPCP.

50

Chapter 6

Implementation

This chapter presents the implementation of Lowest Overlap First Priority Mapping algorithm and

DASPCP in PERTS. The implementation was done in C++ on a Sun Sparc5 workstation running

Sun Microsystems' Solaris 2.5 operating system. Throughout this chapter we will illustrate the

new features with actual screenshots from the new PERTS version 3.2.1 and provide comparitive

screenshots from PERTS 3.2 wherever necessary.

The main limitations of PERTS 3.2 are:

1. Lack of support for mapping global priorities of tasks to local priorities on their respective

nodes.

2. There is no interface with RT CORBA Scheduling Service.

3. Need for a better resource access protocol such as DASPCP.

We hope to eliminate these limitations with the implementation strategy described below.

51

6.1 Implementation Plan

To incorporate the new features, described in the previous chapters, we address three di�erent

issues each with respect to Priority Mapping, DASPCP, and interface to RapidSched:

1. Enhancements to PERTS Resource Graph Editor, Graphic User Interface (GUI).

2. Enhancements to the Schedulability Analyzer.

3. Enhancements to the PERTS output.

In the following sections we elaborate each of these with regards to the priority mapping and

DASPCP.

6.2 Priority Mapping

6.2.1 Enhancements to the Resource Graph Editor

Priority Information: Input

PERTS Resource Graph Editor, Section 2.2, allows a user to graphically input information about

resources in a real-time system. Examples of resources are the CPU which carries out the workload

of the tasks, Databases, Files, Printers and such others. Each of these resources belongs to an entity

called a Node in PERTS. The resource graph (RG) de�nes certain parameters to be associated

with the resources as illustrated in the Edit Parameters Dialog box, Figure 6.1. The Dialog box

is activated when a user selects Edit Parameters from the options listed in the pull down menu

associated with the Edit option of the RG and clicks on a desired resource. Notice that it does not

allow a user to input the number of available priorities.

In general, priority queues can be associated with any resource and are not necessarily restricted

to the operating system alone (running on the node's CPU). Priority queues commonly exist on

52

Figure 6.1: Edit Parameter Dialog Box in PERTS 3.2

Network Switches, Backplane hardware, Hardware Bus etc. Keeping this generality in view, we

have allowed input of number of available priorities for any PERTS resource and not just the CPU.

Figure 6.2 illustrates the modi�ed Edit Parameter Dialog box. Notice the addition of a button

associated with the new paramter Priority Information.

Priority Information Edit Dialog

By clicking on the Priority Information button in the Figure 6.2 the Dialog box correponding to

the input of Priority Information 6.3 for a particular resource is activated.

Priorities are de�ned by Range(s) of Numbers and Direction. Ranges are speci�ed by specifying

a Start of Range and End of Range. All numbers within this range, inclusive of the range boundaries

are considered to be valid priorities associated with the particular resource. The important design

53

Figure 6.2: Edit Parameter Dialog Box in PERTS 3.2.1

decision to input priorities as block of numbers is consistent with reality where certain priorities are

reserved by the system and hence not available to the application programs. This naturally leads to

possibility of multiple ranges available for applications. Hence we have constructed the dialog box

in such a way that a user can input multiple ranges and PERTS stores these ranges in a list data

structure. A range is an instance of a PriorityRange Class which we de�ned for this purpose.

class PriorityRange : public PObject f

public:

int start, end;

PriorityRange(int from, int to) fstart = from; end = to;g;

PriorityRange()fg;

g;

54

Figure 6.3: Priority Information Edit Dialog Box in PERTS 3.2.1

Direction is an important attribute which is necessary to capture the two conventions adopted

by systems:

� Lower the number higher the Priority. Eg. Solaris Operating System in which 0 is the highest

priority and 59 is the lowest priority.

� Lower the number lower the Priority. Eg. Chorus Operating System in which 0 is the lowest

priority and 255 is the highest priority.

To input the Direction, the dialog box is provided with a toggle button.

To summarize, the �elds associated with the Priority Information Edit Dialog box are:

� Start of Range: specifying the beginning of a range.

� End of Range: specifying the end of a priority range.

� Scrolled List: of all previously speci�ed ranges.

� Direction: A toggle to specify direction of priorities.

The Priority Information Dialog Window contains six buttons:

� Insert - inserts new block of numbers into the list of priority ranges;

55

� Delete - deletes selected (one or more) range from the list;

� Modify - modi�es the parameters of a speci�ed range;

� OK - saves current list of priority ranges in the increasing order of start of range;

� Cancel - cancels an Insert, Delete or Modify operation and closes the Dialog;

� Help - pops up the window describing features of the Priority Information Dialog Window.

The complete description of a resource is encapsulated in the Class ResourceNode. We have

added two new members to this class:

List *priorityList;

int mappingDirection;

The �rst member priorityList is a pointer to an object of class List, containing the list

of pointers to the objects of class PriorityRange. The second new member mappingDirection

is of type int and takes a value of 0 corresponding to Lower number being lower priority or 1

corresponding to Lower number being higher priority.

Along with these members, we have introduced a method:

void DefinePriorityList(int start range, int end range);

The method inserts a new set of priority range into the priorityList, sorting it in the increasing

order of Start of Range.

Priority Information: Open, Read and Save

To maintain all the existing GUI operations after the addtion of new data members, we have

modi�ed/changed methods of some classes which we describe very briey here.

To Save/Save As the priority information along with all other attributes of a resource into a

textual �le, we have introduced two new keywords prio range and mapping dir corresponding

56

to the priority ranges and mapping direction associated with the priority infromation. The save

operation is performed by the method:

static void save resource node(GResourceNode *node, int indent, ofstream &fout);

in the �le gresgraph.cc

To Open/Reopen a resource graph with the new attributes for resources, we have modi-

�ed the resource graph Compiler to read the new �elds from the text �le description. Methods

cResourceNode and cResourceParameter of the class RG Compiler have been modi�ed to recog-

nize the new keywords prio range and mapping dir.

A new method:

int RG Compiler::Priority List(ResourceNode *resrc);

has been introduced to construct the priorityList after reading the text �le description of a

resource graph node.

The method:

static void copy priority list(ResourceNode *node);

has been added to the �le gresgraph.cc to open a resource graph.

To incorporate the new parameters into the PERTS report, Generate Report command of

the resource graph, appropriate changes have been made to the methods, generate report and

generate report node in the �le gresgraph.cc.

Appropriate descriptions have been added to the �le help.h and help.cc to reect the addtion

of new attributes to a resource.

6.2.2 Enhancements to Schedulability Analyzer

The Schedulability Analyzer described in Section 2.3, is the essence of PERTS. PERTS Engine is

comprised of the various internal classes that belong to the analyzer. Changes to the analyzer can

be classi�ed into 2 categories:

57

� Changes to the Analyzer GUI.

� Changes to the Engine.

GUI Enhancements

The Scheduler GUI shown in Figure 6.4, allows a user to specify the tasks and resources in the

system through their respective text �lenames, and carryout the analysis of the system. The

enhanced version also allows the user to select a type of Priority Mapping to be carried out, as

shown in the Figure 6.5. Currently, we provide two alternatives:

Figure 6.4: PERTS 3.2 Scheduler

� Lowest Overlap First Priority Mapping: described in Chapter 4.

� Default Mapping: in which local priority of each task is same as its global priority.

58

Figure 6.5: PERTS 3.2.1 Scheduler with Option to Select a Priority Mapping

The function:

static void sched priority mapping type select(Widget w, XtPointer client data, void

*cbs);

has been added to the �le scheduler.cc to provide a choice of mapping algorithms.

A new member, MappingType mapping type is added to the class sa system.h to store the type

of mapping.

The method:

MappingType SA System::mapping Type();

returns the type of priority mapping selected by the user.

59

Changes to PERTS Engine

Most of the additions to the PERTS engine are to the classes class SA System, class SA Node and

class SA Task. In this section we briey describe changes to these modules under two categories:

� New Data members.

� New Methods

We consider each of these categories for the above mentioned classes.

class SA System:

Class SA System provides the abstraction of a system. A system represents a collection of nodes

where tasks execute governed by a scheduling algorithm and a control access protocol. This class

is intended to serve as the root of the system class hierarchy implementing several scheduling

algorithms and resource access protocol.

The class SA System is a generic system that does not implement any global scheduling algorithm

or global control access protocol. All the nodes in the system are SA Nodes, which implement a

generic priority-driven scheduling algorithm without any control access protocol.

New Data members:

Inverse Priority List all Periodic;

// List of periodic tasks (including servers)

// in increasing priority assigned to a node

Recall from the description of the Lowest Overlap First algorithm in Section 4.3.1, that the

algorithm requires all the tasks in the system to be arranged in increasing priority order. Since the

data type Priority List, orders tasks in decreasing order of priorities, we introduce a data type

Inverse Priority List that orders tasks in the increasing priority order.

Note: The Lowest Overlap First mapping algorithm is also referred to as Compact Squeeze

algorithm in this literature.

60

MappingType mapping type;

enum MappingType fdefault priority mapping, lowest overlap first g;

The member mapping type was described earlier. The data type MappingType de�nes two possible

choices for the mapping as already mentioned.

New Methods:

We de�ne a new class called Task Node which contains a pointer to an instance of class SA Task

and also the Priority associated with that task object, in the �le sa task.h

Task Node * first all Periodic() freturn (Task Node *) all Periodic.First();g

Task Node * next all Periodic() freturn (Task Node *) all Periodic.Next(); g

Task Node * next all Periodic(Task Node *current) freturn (Task Node *)

all Periodic.Next(current); g

The above methods are iterators for the list all Periodic.

BOOLEAN compact Squeeze();

// PURPOSE : The schedulabilty analyzer assigns global priorities for

// all the tasks in the system. If the system is schedulabale, these

// global proirities have to be mapped to the priorities available

// on the task's host operating system for the system to meet scheduling

// criteria. This functions maps global priorities to local priorities

// based on the Lowest Overlap First algorithm.

BOOLEAN backtrack();

// PURPOSE: Bactrack to find another mapping in case of a failure.

int compact Squeeze Init();

// PURPOSE: Initialization steps for the compact squeeze algorithm. Set

// counters on all nodes and arrange tasks and servers in the system in

// increasing priority order.

void compact Squeeze Finish();

// PURPOSE: Perform one-to-one mapping from temporary local priorities

// assigned to tasks by the compact squeeze to the actual priorities

// specified by the user on each node.

BOOLEAN priorities Specified();

// PURPOSE: Return TRUE if priority information is specified on all nodes

// in the system FALSE otherwise.

61

Class SA Node

Class SA Node provides the abstraction of a node in the Schedulability Analyzer System. A node

is an schedulable entity of the system. This class encapsulates the scheduling algorithm and control

access protocol used to schedule the task set in the node. The class SA Node assumes a priority-

driven scheduling algorithm and no control access protocol. The second assumption implies that

resource conicts are not considered.

New Data Members:

int counter;

// PURPOSE: If the counter is positive, the number of squeezes yet to

// to be performed by the compact squeezes algorithm to map global

// priorities of tasks on this node to the local priority on the host

// system.

int num Local Priorities;

// PURPOSE: The total number of available local priorities supported

// by the host system.

int highest non empty prio;

// PURPOSE: Most recently allocated task priority.

int empty local prio;

// PURPOSE: Next available local task priority to be considered by the

// compact squeeze algorithm.

int highest non empty gcs prio;

// PURPOSE: Most recently allocated GCS priority.

int empty local gcs prio;

// PURPOSE: Next available local GCS priority.

int num tasks;

// PURPOSE: Number of periodic Tasks and Servers on this node.

int num gcs;

// PURPOSE: Number of GCS on this node.

List gcs List;

// PURPOSE: List of all global critical sections assigned to this

// node in decreasing priority order.

New Methods:

62

void generate configuration file();

// PURPOSE: Generate an output file with a list of Global to Local

// Priority Mappings for all tasks, servers, GCSs on this node.

void dec Counter() f counter-- ;g
// PURPOSE: Decrement the Squeeze counter on this node.

int counter() const f return counter;g
// PURPOSE: Return the value of the squeeze counter on this node.

int num local priorities() const f return num Local Priorities;g
// PURPOSE: Return the total number of available priorities on

// this node.

The next 3 methods are iterators for the gcs list on this node.

Critical Section *first GCS() f return (Critical Section *) gcs List.First();g
Critical Section *next GCS() f return (Critical Section *) gcs List.Next();g
Critical Section *next GCS(Critical Section * current) f return (Critical Section *)

gcs List.Next(current);g

virtual BOOLEAN test Schedulability(SA Task *inTask) fg
// PURPOSE: Perform the schedulability test of inTask on the node.

// This operation should be redefined in derived

// classes implementing scheduling algorithms and/or control access

// protocols. Required by compact squeeze priority mapping algorithm.

BOOLEAN Squeeze(SA Task *);

// PURPOSE: Map Global priority of a task to a local priority

// according to the Lowest Overlap First Algorithm.

BOOLEAN Squeeze(Critical Section *);

// PURPOSE: Map Global priority of a GCS to a local priority

// according to the Lowest Overlap First Algorithm.

void assign Local();

// PURPOSE : Assign local priorities for tasks on this nodes based on

// temporary priorities assigned by compact squeeze algorithm.

int set Counter();

// PURPOSE : Initialize the counter for compact squeeze algorithm.

BOOLEAN priorities Specified();

// PURPOSE : Check to see if the priority information is specified on

// this node.

class SA Task:

63

Class SA Task is an abstraction of a Task. It keeps all the schedulability information concerning

a PERTS task.

New Data Members:

Priority local Priority;

// PURPOSE: The priority assigned to the task after mapping global

// priority to local priority.

Priority global Priority;

// PURPOSE: The global priority of the task.

Priority corba Priority;

// PURPOSE: The CORBA priority of the task. A CORBA Priority is between

// 0 and 32K with 0 being the lowest priority.

BOOLEAN squeezed;

// PURPOSE: Whether this task caused a overlap or not, when assigned a

// local priority.

New Methods:

Priority local Priority() const return local Priority;

// PURPOSE: Returns the local priority of the task.

Priority global Priority() const return global Priority;

// PURPOSE: Returns the global priority of the task.

Priority corba Priority() const return corba Priority;

// PURPOSE: Returns the CORBA priority of the task.

BOOLEAN squeezed() return squeezed;

// PURPOSE: Returns TRUE if the task's local priority is overlapping with

// another task's local priority.

Similar additions have been made to the class, Critical Section.

6.2.3 Enhancements to PERTS Output

The GUI classes that display graphical output as shown in Figure 6.6 have been appropriately

modi�ed to display the additional task attribute, its Local Priority, which is same as the priority

assigned by a mapping algorithm.

64

Figure 6.6: Output of PERTS 3.2.1 with Local Priorities of Tasks

To incorporate the new parameters into the PERTS report, Generate Report command of

the Scheduler, appropriate changes have been made to the methods, sn generate report file in

the �le sn analysis.cc.

6.3 DASPCP

Introduction of the DASPCP slightly modi�es the mapping of the RT CORBA to PERTS, described

in Chapter 5. Namely, PERTS resources do not represent whole CORBA servers, instead they

represent the methods of the servers. The ability to specify a set of conicting methods, Section

5.1.1 (resources) for a particular method has to be added to the PERTS Resource Graph Editor and

the revision of the calculation of the priority ceiling in PERTS Schedulability Analyzer as de�nied

in the de�nition 3.

65

6.3.1 Enhancements to Resource Graph Editor

Figure 6.7, shows the Pull Down Menu options provided by PERTS 3.2 for resources in the system.

We have added additional features, shown in Figure 6.8 that allows a user to specify incompatible

methods. Incompatability is represented by double headed dashed orange arrows in the resource

graph.

Figure 6.7: Edit Menu Options in PERTS 3.2 Resource Graph Editor

Conict Resources: Input

The features provided are:

� Select any resource (a method of an object)

� Unselect an already selected resource.

66

Figure 6.8: Edit Menu Options in PERTS 3.2.1 Resource Graph Editor

� Add to the conicting set of resources (incompatability set of the method) by subsequently

clicking on another resource under the same node (because, Objects can reside on a single

node and cannot spawn node boundaries).

� Delete from the conicting set of resources by subsequently clicking on a resource that is a

part of the conicting set for this resource.

67

Methods to do the above mentioned functionality have been added to the class GResourceGraph.

They are:

void SetSelectConflict(GResourceNode *node);

// PURPOSE: Select/Unselect a resource node.

void AddConflictSet(GResourceNode *node);

// PURPOSE: Add two resource nodes to each other's conflict set.

void DelConflictSet(GResourceNode *node);

// PURPOSE: Remove two resource nodes from each other's conflict set.

We have added a new data member:

List *conflictList;

to the class ResourceNode. The data member conflictList is a pointer to an object of class

List, containing the list of pointers to the objects of class ResourceNode.

We have also provided methods to manipulate this member. They are:

int IsInConflictList(ResourceNode *node);

// PURPOSE: Check if node is already in the conflict

// list of this node.

void DelConflictNode(ResourceNode *node);

// PURPOSE: Remove node from the conflict list of this node.

void AddConflictNode(ResourceNode *node);

// PURPOSE: Add node to the conflict list of this node.

Figure 6.9, shows resource graph with double headed arrows denoting resources conicting each

other.

Conict Resources Information: Open, Read and Save

To maintain all the existing GUI operations after the addtion of new data members, we have

modi�ed/changed methods of some classes which we describe very briey here.

To Save/Save As the conicting resources information along with all other attributes of a

68

Figure 6.9: PERTS 3.2.1 Resource Graph Editor with Ability to Specify Incompatible Resources
(Object Methods) via double headed arrows

resource into a textual �le, we have introduced a new keyword conflict resrc set corresponding

to the set of conicting resources associated with the resource under consideration. The save

operation is performed by the method:

static void save resource node(GResourceNode *node, int indent, ofstream &fout);

in the �le gresgraph.cc

To Open/Reopen a resource graph with the new attribute for resources, we have modi�ed the

resource graph compiler to read the new �eld from the text �le description. Methods cResourceNode

and cResourceParameter of the class RG Compiler have been modi�ed to recognize the new key-

word conflict resrc set.

New methods provided to the class RG Compiler are:

69

int cResourceConflictList(ResourceNode *);

// PURPOSE: Parse the text file description of the resource graph

// to regognize the new keyword.

ResourceNode *GetResourceNodeByName(ResourceGraph *, char *, ResourceNode *);

// PURPOSE: Returns an object reference of type ResourceNode,

// given its textual name, the node it belongs to and the

// ResourceGraph.

int BuildConflictList(ResourceGraph *, ResourceNode *, ResourceNode *);

// PURPOSE: Constructs (or Adds if already exists) the

// conflictList for the two resources selected by the user.

int BuildConflictList(ResourceGraph *);

// PURPOSE: Builds the conflictList for all the resources

// in the resource graph.

The method:

static void copy conflict access(ResourceNode *node);

has been added to the �le gresgraph.cc to open a resource graph with the new attributes.

To incorporate the new parameters into the PERTS report, Generate Report command of

the resource graph, appropriate changes have been made to the methods, generate report and

generate report node in the �le gresgraph.cc.

Appropriate descriptions have been added to the �le help.h and help.cc to reect the addtion

of new attributes to a resource.

6.3.2 Enhancements to Schedulability Analyzer

The Schedulability Analyzer is described in detail in Section 2.3. As in the previous section, we

present the changes to the analyzer in 2 categories:

� Changes to the Analyzer GUI.

� Changes to the Engine.

70

GUI Enhancements

The Scheduler GUI shown in Figure 6.4, allows a user to specify the tasks and resources in the

system through their respective text �lenames, and carryout the analysis of the system. The

enhanced version provides DASPCP as an additional resource contention protocol. A user can

now select DASPCP with Rate Monotonic (RM) or Deadline Monotonic (DM) Priority assignment

mechanism. This is illustrated in the Figure 6.10.

Figure 6.10: PERTS 3.2.1 Scheduler with DASPCP

The function:

static void sched algorithm select(Widget w, XtPointer client data, void *cbs);

has been added to the �le scheduler.cc to provide a choice of DASPCP with other mechanisms.

71

Changes to PERTS Engine

Recall from the example 5.1.5 that the only di�erence between DPCP and DASPCP is the way

Priority Ceiling of a resource is de�ned.

Since the DPCP module is already implemented in PERTS, we have retained the same frame-

work. We have used inheritance in C++ to take advantage of the is-a nature of DASPCP with

regards to DPCP. The following new classes have been added to PERTS.

class DASPCP Node : public PCP Node fg

class DASPCP Resource : public PCP Resource fg

class DASPCP Scheduler : public PCP Scheduler fg

class RM DASPCP Scheduler : public DASPCP Scheduler fg

class DM DASPCP Scheduler : public DASPCP Scheduler fg

We have altered the method, void update SA Parameters(); in the class DASPCP Resource which

calculates the priority ceiling of a resource.

6.3.3 Enhancements to PERTS Output

To incorporate the new protocol into the PERTS report, Generate Report command of the

Scheduler, appropriate changes have been made to the methods, sn generate report file in the

�le sn analysis.cc.

6.4 PERTS Interface to RapidSched

RapidSched, see Section 3.3.1 is an RT CORBA Scheduling Service implementation 3.3 developed

at the Real-Time Research Lab in URI. It conforms to the RT CORBA 1:0 draft standard. The im-

plementation has been designed to work closely with PERTS. With PERTS, system designers enter

information about their RT CORBA clients and servers. These high level objects are automatically

72

translated into PERTS primitives [14]. A rate-monotonic analysis then determines whether the

system is schedulable.

If the system is schedulable, PERTS produces a con�guaration �le from which RapidSched can

retrieve scheduling information at run-time, about all tasks, GCSs and resources in the system and

make appropriate scheduling decisions. The �le is generated automatically by the method:

void SA Node::generate configuration file();

of the class SA Node. For every node in the system a �le is generated with the name same as the

name of the node. Currently, the information in the �le contains:

� Resources (speci�ed by their names) and their corresponding Priority Ceiling as calculated

by PERTS.

� Tasks (speci�ed by their names), their CORBA Priority see Section 6.2.2 and the Local (Run-

Time) Priority of the task on its node, which is obtained as a result of priority mapping,

discussed in Chapter 4.

� The Global Critical Sections (GCSs) and their corresponding CORBA Priority and local

priority.

Table 6.1, shows a sample PERTS output �le.

In the next chapter we present some test cases for the new PERTS features and discuss the

results.

73

PERTS Con�guaration File for RapidSched

Node Name Node1
Resource Name Priority Ceiling
Object1Method2 23
Object1Method3 20
End
Task Name Corba Priority Local Priority
ApplicationC 14 251
ApplicationC 2 9 250
ApplicationC 3 3 249
End
Extra Mappings (GCS) Corba Priority Local Priority

23 255
20 254
20 253

End

Table 6.1: Sample PERTS Output Con�guration File for RapidSched

74

Chapter 7

Evaluation

So far we have been concerned with describing a problem, its solution and presenting an implemen-

tation. However, it is equally important to verify the solution once it has been implemented. In

this chapter we will present some test cases for both Priority Mapping and DASPCP.

7.1 Testing Lowest Overlap First Priority Mapping Algo-

rithm

We will adopt a two track approach to test the LOF algorithm:

1. Test the Resource Graph Editor GUI changes for input of priority information.

2. Test the Implementation of the LOF algorithm.

7.1.1 Resource Graph Editor GUI Enhancements

Tests of the modi�ed Resource Graph Editor GUI have demonstrated presence and correctness of

all desired features. The Resource Parameters Edit Window, shown in Figure 7.1 contains a new

parameter Priority Information with an associated button. The introduction of the new �eld did

75

not a�ect others. A user can specify the Priority Information (along with previously presented in

the dialog parameters). It is mandatory to specify the priority information for the resource labeled

cpu, otherwise an error message is raised. By clicking on OK button the priority information is

saved (along with other resource parameters).

Figure 7.1: Edit Parameter Dialog Box in PERTS 3.2.1

We have tested the Priority Information Edit Dialog, 7.2 which enables a user to edit the priority

information �elds. The dialog window properly:

� Inserts a new set of priority ranges into the scrolled list of ranges already speci�ed.

� Deletes selected (one or more) ranges from the list.

� Modi�es the parameters of a speci�ed selected range.

� Saves the current list of priority ranges in the increasing Start of Range order, along with

76

Figure 7.2: Priority Information Edit Dialog in PERTS 3.2.1

the Direction of priorities.

� Closes the dialog window and

� Provides the Help window, describing features of the dialog box.

TheGenerate Report command veri�es that the priority information is included in the report.

The Save command, on a resource graph with the new feature is found to save the priority

information of all the resources, along with previous parameters. This is veri�ed by opening the

text �le description of the resource graph in a standard text processing editor.

Opening the saved text �le description with the Open/Reopen command of the resource

graph veri�es that the saved priority information is correctly read in by the resource graph.

7.1.2 Lowest Overlap First Priority Mapping

As an example, we consider the case study that is discussed in [11]. Consider a high-speed network

that connects one or more multimedia servers to multimedia workstations. We assume that the

tra�c consists of a mixture of video, audio, voice, MIDI, and large �le transfers in addition to

periodic and aperiodic network management messages. The network is scheduled using a �xed

priority algorithm, such as rate monotonic algorithm. The multimedia task set is summarized in

Table 7.1. More detailed discussion of the development of the task set can be found in [11].

77

Multimedia System
Task Type Natural Priority C (usecs) T (usecs) Local Priority

T1 Network Mgmt. 1 28 125 1
T2 CD 2 19 272 2
T3 Voice 3 1175 6000 3
T4 MIDI 4 9 12000 4
T5 JPEG1 5 1880 27000 4
T6 JPEG2 6 1880 33000 4
T7 File Transfer 7 5000 100000 4

Table 7.1: Multimedia Experimental Task Set

The analysis is carried out as follows: assuming an unlimited number of priority levels, natural

priorities are assigned to the tasks in the multimedia task set according to rate monotonic algorithm

as shown in table 7.1. Note that smaller numbers indicate higher priority. However the network

described above is limited to four priority levels and according to equation 4.2, there are N = 20

di�erent mappings that are possible for this task system. We are only interested in a mapping that

results in a schedulable system. Figure 7.3, is a screen shot of PERTS analysis of this task set.

The local priority in the �gure refers to the priority assigned by the Lowest Overlap First Priority

Mapping algorithm.

7.2 Testing DASPCP Implementation

We will adopt the same two track approach to test DASPCP:

1. Test the Resource Graph Editor GUI changes for input of conicting resources information.

2. Test the PERTS Calculation of Priority Ceilings under DASPCP

7.2.1 Resource Graph Editor GUI Enhancements

Tests of the modi�ed Resource Graph Editor GUI have demonstrated presence and correctness of

all desired features. The pull down menu under Edit option of the resource graph, shown in Figure

7.4 contains new choices: Select a Resource, Unselect a Resource, Add to Conict Set

78

Figure 7.3: A Mapping Generated by the Lowest Overlap First Algorithm

and Delete from Conict Set. The introduction of the new options does not a�ect others. A

user can specify which resources under a particular node are conicting with other resources on

the same node. Note that we mean Incompatability, as described in Section 5.1.1, when we use the

term Conicting.

We have tested the new resource graph, which enables a user to specify incompatability set for

methods of an object (modeled are PERTS resources). The resource graph properly:

� Selects a PERTS resource.

� Adds subsequently selected resources to the conict set of the resource selected previously

and vice versa. It does not permit resources residing on a node other than the selected

resource's node, to be a part of the conict set because that would amount to modeling an

Object distributed across nodes, which is beyond the scope of our study.

79

Figure 7.4: Edit Parameter Dialog Box in PERTS 3.2.1

� Deletes from the conict set a resource that is already a part of the set.

� Unselects a selected resource.

The Generate Report command veri�es that the conict set information is included in the

report.

The Save command, on a resource graph with the new feature is found to save the conict set

information of all the resources, along with previous parameters. This is veri�ed by opening the

text �le description of the resource graph in a standard text processing editor.

Opening the saved text �le description with the Open/Reopen command of the resource

graph veri�es that the saved conict set information is correctly read in by the resource graph.

80

7.2.2 DASPCP: Prioirty Ceiling Calculation

We model the Example 5.1.5, that was presented in Section 5.1.5 in PERTS and verify the correct-

ness of the Priority Ceiling calculations.

Figure 7.5: Resource Graph Model of the DASPCP Example

Figure 7.5, shows the resource graph description of the system and a complete task graph

description is presented in appendix A. An End-to-End analysis of the system was carried out

under DM + DASPCP, with priority type being set to User-De�ned Priority and priority mapping

set to Default Priority Mapping. Figures 7.6 and 7.7 show the output of PERTS analysis. For

the bene�t of the reader we reproduce the results discussed in Section 5.1.5 here, recalculating the

ceilings using the conventions adopted by PERTS. PERTS adopts the following conventions:

� Lower a number, higher the priority of the task associated with it.

� Priorities can take negative values.

81

� Priority Ceiling of a global resource is calculated as:

Priority Ceiling = Priority of highest priority task that will ever access this resource - Priority

of the lowest priority task in the system.

Note: We have retained the condition used earlier that: P4 > P3 > P2 > P1, the priority

assignment is altered to reect the PERTS convention. Hence P4 = 1; P3 = 2; P2 = 3; P1 = 4.

Object Otrack1

Method read speed read altitude write speed write altitude
Highest Priority Task N=A T3 T4 T2
DASPCP Priority Ceiling N=A 2 1� 4 = �3 2� 4 = �2
DPCP Priority Ceiling 1� 4 = �3

Object Otrack2

Method read speed read depth write speed depth
Highest Priority Task T4 N=A N=A
DASPCP Priority Ceiling 1 N=A N=A
DPCP Priority Ceiling 1

Table 7.2: Priority Ceilings in DASPCP Example

Notice that the priority ceilings of resources calculated by PERTS, shown in Figures, 7.6 and

7.7, are same as those hand calculated in table 7.2. Hence our implementation of DASPCP appears

to be correct.

82

Figure 7.6: Output of PERTS Analysis of the DASPCP Example: Node 1

83

Figure 7.7: Output of PERTS Analysis of the DASPCP Example: Node 2

84

Chapter 8

Conclusions and Future Work

In this chapter we summarize the work done so far and discuss potential future work.

8.1 Summary of Work done so far

To summarize, we have achieved the following at the end of this project :

1. Provided a clean interface to input Priority Information associated with each entity.

2. Enhanced PERTS to support mapping of global task priorities to their local priorities by

implementing the Lowest Overlap First priority mapping algorithm.

3. Enabled a user to specify incompatabilities among an Object's methods graphically.

4. Augmented PERTS Engine to incorporate DASPCP as an alternative resource control proto-

col.

5. Designed and implemented an interface between PERTS and the RT CORBA Scheduling

Service.

85

8.2 Future Work

There can be no end to advancement of human knowledge and every e�ort should be made to do

a job better if there is a way to do it. With this view in mind we outline possible future work with

regards to Priority Mapping, RT CORBA and PERTS.

8.2.1 Priority Mapping

Recall from the description of the Lowest Overlap First algorithm, Chapter 4 that the algorithm

requires a test of schedulability to be done every time a overlap of local priority is made. This

test can be very time consuming and will add a considerable overhead to the overall computation

time if the system has a large number of tasks running on a node while there are relatively fewer

number of priorities available on that node. We could do better if there is an e�cient Heuristic

Algorithm that can do the mapping faster with a high degree of succes ratio. By success, we mean

that, the system of tasks is schedulable with the mapping produced by the heuristic algorthm. In

this direction, it is worth studying the work done by Lehoczky and Sha [20]. They suggest a Grid

approach to solve the mapping problem. It is a heuristic approach but nevertheless could be of

great value to a system designer who wants the analysis done faster. The algorithm's feasibility vis

a vis its implementation in PERTS has to be studied. PERTS can then o�er a variety of Priority

Mapping solutions which is very important to the ORB vendors developing ORBs that conform to

RT CORBA 1:0 standard.

8.2.2 Network Delay in PERTS

PERTS allows a user to input a worst case estimate of the overhead due to communication across a

network su�ered by applications. The worst case estimate might actually a�ect the schedulability

result of the system. There is a need to model network tra�c better. A variety of solutions are

possible. PERTS can provide the user with a host of probability distributions of the network tra�c

86

and the user can select one that most appropriately models his/her environment. This will most

de�nitely alter the schedulability equation 2.2 and has to be studied further.

8.2.3 PERTS and RT CORBA

Recall from the discussion of RT CORBA in Chapter 3, that the RT CORBA 1:0 Scheduling Service

Interface, has a function create POA, which guarantees the application that uses this call, that all

the real-time policies listed in the draft standard will set transparently and the application does

not have to worry about it. It is easier said than done. A number of issues are involved in this,

mainly:

� We have to identify what the real-time policies are, that the RT CORBA 1:0 draft requires

an ORB to support.

� We need to study if any of these policies a�ect the schedulability of the system, if so, it has

to be appropriately taken into the schedulability analysis.

� The PERTS-RT CORBA con�guration �le presently is limited to Priority information of the

system. It has to be augmented to include all the POA features, so that, the scheduling

service transparently sets these parameters in the ORB on a call to create POA.

We hope that the reader has been bene�ted by this report and conclude with a famous quote:

We dance around the circle and suppose, the answer sits there and knows.

87

References

[1] Tri-Paci�c Software, at http://www.tripac.com

[2] Object Management Group, at http://www.omg.org

[3] Jane W.S. Liu et. al. PERTS : A Prototyping Environment for Real-Time Systems. Technical

Report UIUCDCS-R-93-1082, The University of Illinois, Urbana, May 1993.

[4] PERTS On-line Documents at http://pertsserver.cs.uiuc.edu/perts/

[5] C.L.Liu and J.W.Layland, Scheduling Algorithms for Multiprogramming in Hard Real-Time

Systems Journal of the Association of the Computing Machinery, Vol.20, No.1, pp. 46-61,

January 1973.

[6] J. Leung and J.Whitehead, On the Complexity of Fixed-Priority Scheduling of Periodic Real-

Time Tasks, Performance Evaluation 2, pp. 237-250, 1982.

[7] Liu Sha, R. Rajkumar and J.P. Lehoczky Priority Inheritance Protocols : An Approach to

Real-Time Synchronization. IEEE Transactions on Computers, Vol. 39, No 9, September 1990.

[8] T.P.Baker Stack-Based Allocation Policy for Real-Time Processes, Proceedings of 11th Real-

Time Systems Symposium, pp 191-200, December 1990.

88

[9] J.P. Lehoczky, L.Sha and Y.Ding, The Rate Monotonic Scheduling Algorithm: Exact Charac-

terization and Average Case Behavior, Proceedings of 10th Real-Time Systems Symposium,

December 1989.

[10] OMG. Realtime CORBA. Electronic document at http://www.omg.org/docs/orbos/98-10-

05.pdf

[11] Daniel I. Katcher, Shirish S. Sathaye and Jay K. Strosnider. Fixed Priority Scheduling with

Limited Priority Levels. IEEE Transactions on Computers. Vol. 44, No 9, pp. 1140-1144, Sept

1995.

[12] S.Cheng, J.A.Stankovic and K.Ramamritham, Scheduling Algorithms for Hard Real-Time Sys-

tems - A Brief Survey, IEEE Real-Time Systems Symposium 1988.

[13] Jane Liu, Real-Time Systems Rough Draft, October 1997.

[14] Levon Esibov. Support for Automated Schedulability Analysis for Distributed Real-Time Mid-

dleware. Masters Thesis. University of Rhode Island, 1998.

[15] V.F.Wolfe, L.C.DiPippo et.al, Real-Time CORBA In Proceedings of the Third IEEE Real-

Time Technology and Applications Symposium, June 1997.

[16] L.C.DiPippo and V.F.Wolfe Object-based Semantic Real-Time Concurrency Control with

Bounded Imprecision, IEEE Transactions on Knowledge and Data Engineering, vol. 9 No.1,

pp. 135-147, Jan-Feb 1997.

[17] B.Badrinath and K.Ramamritham, Synchronizing Transactions on Objects, IEEE Transactions

on Computers, vol.37, No.5, pp. 541-547, May 1988.

[18] Lisa DiPippo, Vic Wolfe, et. al. Scheduling and Priority Mapping for Static Real-Time Mid-

dleware. To be published in Real-Time Systems Journal, special issue on real-time middleware.

89

[19] Micheal Squadrito, Levon Esibov et. al. Concurrency Control in Real-Time Object-Oriented

Systems: The A�ected Set Priority Ceiling Protocols. University of Rhode Island Technical

Report. 1997.

[20] J.P.Lehoczky and L.Sha, Performance of Real-Time Bus Scheduling Algorithms, ACM Perfor-

mance Evaluation Review, Special Issue, vol.14, May 1986.

90

Appendix A

Test Cases

We present details of task and resource graph descriptions of the test cases discussed in Chapter 7.

91

Multimedia Task System

GRAPH Multimedia Task Set:
IS
TASK Netwrk Mgmt:

X COORD 91;
Y COORD 88;
READYTIME 0;
DEADLINE 125;
PERIOD 125;
MIN PERIOD 125;
MAX PERIOD 125;
PHASE 0;
WEIGHT 1;
INSTANCE 0;
LAXITY TYPE 1;
PROCESSOR Node1.CPU;
LENGTH 28;
MIN WORK 28;
MAX WORK 28;
NETWORK DELAY 0;
U PRIORITY 1;

END
TASK CD:

X COORD 57;
Y COORD 170;
READYTIME 0;
DEADLINE 272;
PERIOD 272;
MIN PERIOD 272;
MAX PERIOD 272;
PHASE 0;
WEIGHT 1;
INSTANCE 0;
LAXITY TYPE 1;
PROCESSOR Node1.CPU;
LENGTH 19;
MIN WORK 19;
MAX WORK 19;
NETWORK DELAY 0;
U PRIORITY 2;

END

92

TASK Voice:
X COORD 62;
Y COORD 238;
READYTIME 0;
DEADLINE 6000;
PERIOD 6000;
MIN PERIOD 6000;
MAX PERIOD 6000;
PERIOD DISTR 0;
PHASE 0;
WEIGHT 1;
INSTANCE 0;
LAXITY TYPE 1;
PROCESSOR Node1.CPU;
LENGTH 1175;
MIN WORK 1175;
MAX WORK 1175;
NETWORK DELAY 0;
U PRIORITY 3;

END
TASK MIDI:

X COORD 65;
Y COORD 314;
READYTIME 0;
DEADLINE 12000;
PERIOD 12000;
MIN PERIOD 12000;
MAX PERIOD 12000;
PERIOD DISTR 0;
PHASE 0;
WEIGHT 1;
INSTANCE 0;
LAXITY TYPE 1;
PROCESSOR Node1.CPU;
LENGTH 9;
MIN WORK 9;
MAX WORK 9;
NETWORK DELAY 0;
U PRIORITY 4;

END

93

TASK JPEG1:
X COORD 67;
Y COORD 377;
READYTIME 0;
DEADLINE 270004;
PERIOD 27000;
MIN PERIOD 27000;
MAX PERIOD 27000;
PERIOD DISTR 0;
PHASE 0;
WEIGHT 1;
INSTANCE 0;
LAXITY TYPE 1;
PROCESSOR Node1.CPU;
LENGTH 1880;
MIN WORK 1880;
MAX WORK 1880;
NETWORK DELAY 0;
U PRIORITY 5;

END
TASK JPEG2:

X COORD 64;
Y COORD 453;
READYTIME 0;
DEADLINE 33000;
PERIOD 33000;
MIN PERIOD 33000;
MAX PERIOD 33000;
PERIOD DISTR 0;
PHASE 0;
WEIGHT 1;
INSTANCE 0;
LAXITY TYPE 1;
PROCESSOR Node1.CPU;
LENGTH 1880;
MIN WORK 1880;
MAX WORK 1880;
NETWORK DELAY 0;
U PRIORITY 6;

END

94

TASK FTP:
X COORD 54;
Y COORD 506;
READYTIME 0;
DEADLINE 10000;
PERIOD 100000;
MIN PERIOD 100000;
MAX PERIOD 100000;
PERIOD DISTR 0;
PHASE 0;
WEIGHT 1;
INSTANCE 0;
LAXITY TYPE 1;
PROCESSOR Node1.CPU;
LENGTH 5000;
MIN WORK 5000;
MAX WORK 5000;
NETWORK DELAY 0;
U PRIORITY 7;

END
END

95

Resource Graph Description

RESOURCE GRAPH:
IS
RESOURCE Node1:

X COORD 349;
Y COORD 118;
NUMBER OF UNITS 0;
ACQUISITION TIME 0;
DEACQUISITION TIME 0;
CONTEXT SWITCH TIME 0;
PROCESSING RATE 0;
CONSUMABILITY 0;
PREEMPTABILITY 1;
CATEGORY 0;
MAPPING DIR 0;

RESOURCE CPU:
X COORD 342;
Y COORD 193;
NUMBER OF UNITS 1;
ACQUISITION TIME 0;
DEACQUISITION TIME 0;
CONTEXT SWITCH TIME 0;
PROCESSING RATE 1;
CONSUMABILITY 0;
PREEMPTABILITY 1;
CATEGORY 0;
MAPPING DIR 1;
PRIO RANGE [1, 4];

END
END

END

96

The output of the priority mapping is illustrated in Figure A.1.

Figure A.1: PERTS Single Node Analysis Report

97

Task Graph Description of DASPCP Example

GRAPH DASPCP Example:
IS
TASK Task1:

X COORD 138;
Y COORD 156;
READYTIME 0;
DEADLINE 30;
PERIOD 30;
MIN PERIOD 30;
MAX PERIOD 30;
PHASE 0;
WEIGHT 1;
INSTANCE 0;
LAXITY TYPE 1;
PROCESSOR Node2.CPU;
LENGTH 5;
MIN WORK 5;
MAX WORK 5;
U PRIORITY 4;
RESOURCE Read speed, 1, 0, 0, [3, 6];

END
TASK Task2:

X COORD 318;
Y COORD 154;
READYTIME 2;
DEADLINE 28;
PERIOD 30;
MIN PERIOD 30;
MAX PERIOD 30;
PHASE 0;
WEIGHT 1;
INSTANCE 0;
LAXITY TYPE 1;
PROCESSOR Node2.CPU;
LENGTH 5;
MIN WORK 5;
MAX WORK 5;
U PRIORITY 3;
RESOURCE Write Altitude, 1, 0, 0, [2, 4];

END

98

TASK Task3:
X COORD 472;
Y COORD 149;
READYTIME 0;
DEADLINE 30;
PERIOD 30;
MIN PERIOD 30;
MAX PERIOD 30;
PHASE 0;
WEIGHT 1;
INSTANCE 0;
LAXITY TYPE 1;
PROCESSOR Node1.CPU;
LENGTH 5;
MIN WORK 5;
MAX WORK 5;
U PRIORITY 2;
RESOURCE Write Speed, 1, 0, 0, [2, 4];
RESOURCE Read Altitude, 1, 0, 0, [1, 2];

END
TASK Task4:

X COORD 624;
Y COORD 142;
READYTIME 2;
DEADLINE 28;
PERIOD 30;
MIN PERIOD 30;
MAX PERIOD 30;
PHASE 0;
WEIGHT 1;
LAXITY TYPE 1;
PROCESSOR Node2.CPU;
LENGTH 5;
MIN WORK 5;
MAX WORK 5;
U PRIORITY 1;
RESOURCE Write Speed, 1, 0, 0, [3, 4];
RESOURCE Read speed, 1, 0, 0, [4, 7];

END
END

99

Resource Graph Description of DASPCP Example

RESOURCE GRAPH:
IS
RESOURCE Node1:

X COORD 258;
Y COORD 128;
NUMBER OF UNITS 0;
ACQUISITION TIME 0;
DEACQUISITION TIME 0;
CONTEXT SWITCH TIME 0;
PROCESSING RATE 0;
CONSUMABILITY 0;
PREEMPTABILITY 1;
CATEGORY 0;
MAPPING DIR 0;

RESOURCE CPU:
X COORD 251;
Y COORD 203;
NUMBER OF UNITS 1;
ACQUISITION TIME 0;
DEACQUISITION TIME 0;
CONTEXT SWITCH TIME 0;
PROCESSING RATE 1;
CONSUMABILITY 0;
PREEMPTABILITY 1;
CATEGORY 0;
MAPPING DIR 0;
PRIO RANGE [0, 59];

END

100

RESOURCE Read Speed:
X COORD 137;
Y COORD 314;
NUMBER OF UNITS 1;
ACQUISITION TIME 0;
DEACQUISITION TIME 0;
CONTEXT SWITCH TIME 0;
PROCESSING RATE 0;
CONSUMABILITY 0;
PREEMPTABILITY 1;
CATEGORY 0;
MAPPING DIR 0;
CONFLICT RESRC SET Write Speed;

END
RESOURCE Write Speed:

X COORD 211;
Y COORD 406;
NUMBER OF UNITS 1;
ACQUISITION TIME 0;
DEACQUISITION TIME 0;
CONTEXT SWITCH TIME 0;
PROCESSING RATE 0;
CONSUMABILITY 0;
PREEMPTABILITY 1;
CATEGORY 0;
MAPPING DIR 0;
CONFLICT RESRC SET Read Speed;
ACCESS BY LIST Node2;

END

101

RESOURCE Write Altitude:
X COORD 380;
Y COORD 406;
NUMBER OF UNITS 1;
ACQUISITION TIME 0;
DEACQUISITION TIME 0;
CONTEXT SWITCH TIME 0;
PROCESSING RATE 0;
CONSUMABILITY 0;
PREEMPTABILITY 1;
CATEGORY 0;
MAPPING DIR 0;
CONFLICT RESRC SET Read Altitude;
ACCESS BY LIST Node2;

END
RESOURCE Read Altitude:

X COORD 430;
Y COORD 283;
NUMBER OF UNITS 1;
ACQUISITION TIME 0;
DEACQUISITION TIME 0;
CONTEXT SWITCH TIME 0;
PROCESSING RATE 0;
CONSUMABILITY 0;
PREEMPTABILITY 1;
CATEGORY 0;
MAPPING DIR 0;
CONFLICT RESRC SET Write Altitude;

END
END

102

RESOURCE Node2:
X COORD 578;
Y COORD 116;
NUMBER OF UNITS 0;
ACQUISITION TIME 0;
DEACQUISITION TIME 0;
CONTEXT SWITCH TIME 0;
PROCESSING RATE 0;
CONSUMABILITY 0;
PREEMPTABILITY 1;
CATEGORY 0;
MAPPING DIR 0;

RESOURCE CPU:
X COORD 516;
Y COORD 184;

NUMBER OF UNITS 1;
ACQUISITION TIME 0;
DEACQUISITION TIME 0;
CONTEXT SWITCH TIME 0;
PROCESSING RATE 1;
CONSUMABILITY 0;
PREEMPTABILITY 1;
CATEGORY 0;
MAPPING DIR 0;
PRIO RANGE [0, 59];

END
RESOURCE Read speed:

X COORD 573;
Y COORD 283;
NUMBER OF UNITS 1;
ACQUISITION TIME 0;
DEACQUISITION TIME 0;
CONTEXT SWITCH TIME 0;
PROCESSING RATE 0;
CONSUMABILITY 0;
PREEMPTABILITY 1;
CATEGORY 0;
MAPPING DIR 0;
CONFLICT RESRC SET Write Speed Depth;

END

103

RESOURCE Write Speed Depth:
X COORD 654;
Y COORD 392;
NUMBER OF UNITS 1;
ACQUISITION TIME 0;
DEACQUISITION TIME 0;
CONTEXT SWITCH TIME 0;
PROCESSING RATE 0;
CONSUMABILITY 0;
PREEMPTABILITY 1;
CATEGORY 0;
MAPPING DIR 0;
CONFLICT RESRC SET Read Depth, Read speed;

END
RESOURCE Read Depth:

X COORD 694;
Y COORD 281;
NUMBER OF UNITS 1;
ACQUISITION TIME 0;
DEACQUISITION TIME 0;
CONTEXT SWITCH TIME 0;
PROCESSING RATE 0;
CONSUMABILITY 0;
PREEMPTABILITY 1;
CATEGORY 0;
MAPPING DIR 0;
CONFLICT RESRC SET Write Speed Depth;

END
END

END

104

Bibliography

Baker, T.P. Stack-Based Allocation Policy for Real-Time Processes, Proceedings of 11th Real-Time

Systems Symposium, pp 191-200, December 1990.

Esibov, Levon. Support for Automated Schedulability Analysis for Distributed Real-Time Middle-

ware. Masters Thesis. University of Rhode Island, 1998.

Katcher, Daniel I., Sathaye, Shirish S. and Strosnider, Jay K. Fixed Priority Scheduling with

Limited Priority Levels. IEEE Transactions on Computers. Vol. 44, No 9, pp. 1140-1144, Sept

1995.

Lehoczky, J.P., Sha, L. and Ding Y. The Rate Monotonic Scheduling Algorithm: Exact Characteri-

zation and Average Case Behavior, Proceedings of 10th Real-Time Systems Symposium, December

1989.

Liu, C.L. and Layland, J.W. Scheduling Algorithms for Multiprogramming in Hard Real-Time

Systems Journal of the Association of the Computing Machinery, Vol.20, No.1, pp. 46-61, January

1973.

Liu, Jane W.S. et. al. PERTS : A Prototyping Environment for Real-Time Systems. Technical

Report UIUCDCS-R-93-1082, The University of Illinois, Urbana, May 1993.

Liu, Jane Real-Time Systems Rough Draft, October 1997.

105

Rajkumar R., Synchronization in Real-Time Systems: A Priority Inheritance Approach, Kluwer

Academic Publishers, 1991.

Sha, Liu, Rajkumar R. and Lehoczky, J.P. Priority Inheritance Protocols : An Approach to Real-

Time Synchronization. IEEE Transactions on Computers, Vol. 39, No 9, September 1990.

Squadrito, Micheal A., Extending the Priority Ceiling Protocol Using Read/Write A�ected Sets,

M.S.Thesis, URI, 1996.

106

