
Real-Time CORBA Development at MITRE, NRaD, Tri-Paci�c and

URI�

Gregory Cooper cooper@cs.uri.edu University of Rhode Island, USA

Lisa Cingiser DiPippo cingiser@cs.uri.edu University of Rhode Island, USA

Levon Esibov esibov@cs.uri.edu University of Rhode Island, USA

Roman Ginis ginis@linus.mitre.org MITRE Corporation, Bedford, MA USA

Russell Johnston russ@nosc.mil U.S. Navy NRaD, San Diego, CA USA

Peter Kortman peter@tripac.com Tri-Paci�c Software, Alameda, CA USA

Peter Krupp pck@mitre.org MITRE Corporation, Bedford, MA USA

John Mauer mauer@mitre.org MITRE Corporation, Bedford, MA USA

Michael Squadrito squadrit@cs.uri.edu University of Rhode Island and MITRE, USA

Bhavani Thuraisingham thura@mitre.org MITRE Corporation, Bedford, MA USA

Steven Wohlever wohlever@mitre.org MITRE Corporation, Bedford, MA USA

Victor Fay Wolfe wolfe@cs.uri.edu University of Rhode Island and MITRE, USA

Abstract

This paper describes Real-Time CORBA results and
work in progress stemming from a collaborative e�ort
involving researchers at MITRE, NRaD, Tri-Paci�c
Software and The University of Rhode Island.

1 Introduction
This paper is a summary of the Real-Time CORBA

development being performed by a team fromMITRE
Corporation, the US Navy NRaD facility, The Univer-
sity of Rhode Island (URI), and Tri-Paci�c Software
with support from Iona Technologies. Our team mem-
bers from each of these organizations are leaders in
the Object Management Group's Real-Time Special
Interest Group (SIG), the group that is establishing
the standard for Real-Time (RT) CORBA. In addi-
tion, our team has performed collaborative research
and development of techniques to implement real-time
capabilities within the CORBA framework.

This paper presents a brief overview of RT CORBA
in Section 2. Section 3 then summarizes two parts of
our project - a \static" RT CORBA system imple-
mented on the widely-available ILU ORB from Xe-
rox Parc, and a \dynamic" RT CORBA system im-
plemented as an extension to the commercial Orbix
system from Iona Technologies. Section 4 then de-
scribes our work in progress, which features an exten-
sion to the commercial PERTS real-time analysis tool

�This work is partially supported by the U.S. O�ce of Naval

Research grant N000149610401.

for analyzing real-time behavior of RT CORBA sys-
tems, an \open ORB" approach to allow con�guring
middleware to meet RT needs, and applications of RT
CORBA to military programs.

2 Real-Time CORBA
RT CORBA is being de�ned by the OMG RT SIG.

The essence of its de�nition is:

RT CORBA deals with the expression and
enforcement of real-time constraints on end-
to-end execution in a CORBA system.

There are two main categories of RT CORBA re-
quirements: requirements on the operating environ-
ment (operating systems and networks); and require-
ments on the CORBA run-time system. Requirements
on the operating environment include: synchronized
clocks, bounded message delay, priority-based schedul-
ing, and priority inheritance in synchronization prim-
itives. Requirements on the CORBA run-time sys-
tem include: transmittal of real-time and quality-of-
service requirements with CORBA requests, schedul-
ing based on a global uniform notion of priority, prior-
ity queueing at all CORBA services, real-time events
that are prioritized and carry the time of their oc-
currence, priority inheritance in CORBA synchroniza-
tion, and real-time exceptions. The requirements are
fully described in the RT SIG's whitepaper [4] and
summarized in the RT CORBA overview presented at
the IEEE Real-TimeApplications Symposium in June
of 1997 [8].



In September 1997, the �rst Request For Proposals
(RFP) to establish the standard for �xed priority RT
scheduling was approved by the RT SIG and other
governing parties of the OMG. The RFP can be found
on the OMG's Web site at www.omg.org. The RFP for
dynamic RT scheduling is close to completion and is
expected to be released within six months. Based on
the expected responses to the RFPs from companies
that have actual products, the RT CORBA standard
will be established by the OMG.

3 Our RT CORBA Development

Our team took two approaches to developing tech-
niques for RT CORBA systems: a �xed priority sys-
tem implemented using the ILU ORB from Xerox
Parc, which was done primarily at MITRE; and a
dynamic scheduling system implemented using Or-
bix from Iona, which was done primarily at URI and
NRaD and has been transitioned to Tri-Paci�c and
Iona. The e�orts were coordinated and several team
members worked on both projects.

3.1 Dynamic RT CORBA

Our dynamic RT CORBA system is designed to
meet the requirements of the RT SIG whitepaper. It
is implemented on Sparc workstations running Solaris
2.5 (with POSIX threads) using Iona Technology's Or-
bix 2.0.1MT(multi-threaded) as the CORBA baseline.
All of our prototype software assumes an operating en-
vironment that is compliant with the POSIX real-time
operating system standard. This environment satis�es
most of the RT CORBA white paper operating envi-
ronment requirements. Figure 1 shows a CORBA-
style diagram of our RT CORBA system.

Our Dynamic RT CORBA system consists of a
new CORBA service for Global Priority, and modi-
�cations of existing CORBA services for Real-Time
Events, and Real-Time Concurrency Control. Our RT
CORBA system also includes several new CORBA In-
terface De�nition Language (IDL) types for expressing
real-time parameters, along with library code that is
added to clients and to servers. Together these com-
ponents allow timed distributed method invocations
(TDMIs) [7]. A TDMI is a client's invocation on a
CORBA server that expresses real-time constraints for
the CORBA run-time system to enforce.

Timed Distributed Method Invocations. A
TDMI includes a structure with attributes that cur-
rently include importance, deadline, and period, but
other real-time and quality-of-service parameters can
also be added. Our RT CORBA run-time system at-
taches this structure to the client's TDMI request so

that the CORBA run-time system can use it to en-
force the TDMI requirements at all places in its end-
to-end path. For instance, the CORBA Name Service
would queue requests based on priority derived from
this structure, and the CORBA server would execute
the invoked method based on priority derived from
the structure. All parts of our RT CORBA run-time
system examine this structure to acquire information
necessary to enforce the expressed real-time require-
ments by doing things such as establishing priority and
setting alarms.

Once the real-time parameters are established, our
RT CORBA run-time system uses library code to en-
force the implied constraints by setting a dynamic
transient priority for the TDMI and by setting op-
erating system alarms to detect when crucial times,
such as deadlines, have arrived. A transient priority is
a single integer that is derived by our new RT CORBA
Global Priority Service based on the information in the
TDMI structure. The Global Priority Service ensures
that the transient priority is meaningful relative to all
other transient priorities in the RT CORBA system as
described next.

Global Priority Service and Distributed Real-

Time Scheduling. Real-Time scheduling is per-
formed by the our CORBA run-time system in coop-
eration with other components, such as the local real-
time operating systems' schedulers. This scheduling
is based on a transient priority. The transient priority
is only valid while the TDMI is active. That is, the
client and all execution on its behalf assume the tran-
sient priority during the execution of the TDMI, but
the client resumes a previous priority when the TDMI
completes. Schedulers and queues throughout the
distributed RT CORBA system, such as RT POSIX
priority-based operating system schedulers, use these
transient priorities to order all execution that is asso-
ciated with a TDMI.

The transient priority for each TDMI is established
by our RT CORBA Global Priority Service. This ser-
vice uses a uniform function (uniform for all clients
and servers in the system) to compute transient prior-
ity as a function of the attributes in the structure asso-
ciated with the TDMI. The function implementation
in our prototype orders priorities based on the impor-
tance attribute �rst, and then based on the deadline
attribute - essentially establishing a global earliest-
deadline-�rst within importance level priority assign-
ment throughout our RT CORBA system. Changing
the calculation of transient priorities based on other
scheduling policies, such as global rate-monotonic pri-



Extended Services: Priority and Scheduling service, Global time service, Realtime Event 
service, Realtime Concurrency Control service.

Object Services : naming, events, life cycle, persistence, transactions, concurrency, relationships, 
externalization, object licensing, properties, object query.

ORB
Clock synchronization
Bounded message delay
Exception handler

Stub
IDL
Stub

ORB
Interface

IDL
Skeleton

Object
Adapter

+
Client

time
constraints

time constraints

Realtime Objects

Figure 1: Our Dynamic Real-Time CORBA System

ority assignment, is facilitated by the function's cen-
tral implementation in the RT CORBA Global Prior-
ity Service.

The implementation of the Global Priority Service
in our prototype is accomplished through a combina-
tion of library code and a RT Daemon process running
on each node. The library code calculates the tran-
sient priority. The RT Daemon on each node maps
the transient priority to the priorities available on the
local real-time operating system. In our prototype,
which uses RT Solaris operating systems with 60 lo-
cal priorities, the RT Daemon must map the (wide)
range of transient priorities into the 60 local priori-
ties. The mapping is done by using a statistical model
of the likely deadlines and calculating transient pri-
orities such that TDMIs are probabalistically evenly
distributed among the local priorities. For example, if
there were 60 TDMIs on a Solaris node, the mapping
would ensure the highest probability of each TDMI
being at a unique priority.

Additionally, the RT Daemon enforces aging of
transient priorities. Aging is the process of increas-
ing priority as time goes on, which is necessary in dy-
namic earliest-deadline-�rst scheduling. The RT Dae-
mon keeps track of the transient priorities on its node.

The RT Daemon increases a TDMI's transient prior-
ity if, due to the passage of time, the TDMI's prior-
ity is too low (in an EDF ordering of priorities) com-
pared to a newly-arrived TDMI. The aging facility can
be \turned o�" for real-time scheduling policies that
do not require aging, such as a static rate-monotonic-
based policy.

RT Exceptions. Our RT CORBA run-time sys-
tem also augments the CORBA exception mechanism
to handle real-time exceptions. These exceptions are
derived from the attributes set in the TDMI struc-
ture such as a deadline and/or a period. Our proto-
type implements the mapping of deadline exceptions
to CORBA exceptions by catching the signal sent by
the POSIX alarm that was set for deadline and then
raising the CORBA exception in library code.

Real-Time Event Service. The current CORBA
event service allows for the exchange of named events
in the CORBA system. For instance, a client might
synchronize with another client by waiting for it to
generate a CORBA event. Our RT CORBA system
has implemented a modi�ed RT Event Service that
prioritizes the delivery of events and delivers the time



that the event occurred. Prioritized events are based
on the transient priorities of the producers and con-
sumers and are important to maintain global real-time
priority scheduling. Delivery of the (global) time of
the event occurrence is important to allow events to be
used to establish timing constraints relative to them.

RT Concurrency Control Service The existing
CORBA standard speci�es a Concurrency Control
Service that is used to maintain consistent access to
servers. Our prototype RT CORBA system includes a
RT Concurrency Control Service that implements pri-
ority inheritance [3]. When a TDMI requests a lock on
a resource from the RT Concurrency Control Service,
the TDMI transient priority is compared to those of
all TDMI's holding conicting locks on that resource.
Conicting clients with lower priorities are raised to
the requesting TDMI's priority, and the requesting
TDMI is suspended. Whenever a lock is released, the
releasing TDMI resets its priority to that of the high-
est priority TDMI it still blocks (this is possible since
clients can hold several locks of di�erent types). If it
no longer blocks any higher priority TDMIs, then the
releasing TDMI is reset to its original priority. Finally,
the highest priority blocked TDMI that can now run
is allowed to obtain its lock and continue execution.

3.2 Fixed Priority RT CORBA

Team members from MITRE developed a RT
CORBA system on networked Intel-based comput-
ers under the LynxOS 2.4 real-time operating system,
with a baseline CORBA system derived from SYLU,
a Python implementation of Xerox's ILU ORB devel-
oped by Scott Hassan at Stanford University [6, 1].
SYLU is the only CORBA ORB with complete source
code available that will execute on a real-time oper-
ating system. Our e�ort �rst identi�ed requirements
for the use of real-time CORBA in command and con-
trol systems. Our real-time ILU ORB provides a dis-
tributed scheduling service supporting rate-monotonic
and deadline-monotonic techniques. The resulting in-
frastructure combines a POSIX-compliant real-time
operating system, a real-time ORB, and an ODMG-
compliant real-time object-oriented database [1].

We are currently incorporating �xed priority tech-
niques into the Orbix version of our RT CORBA sys-
tem as well. This system assumes periodic CORBA
clients, intermediate TDMI deadlines within the pe-
riod, and known execution time of CORBA services.
The Global Scheduling Service will assign �xed static
priorities based on a Deadline Monotonic policy. All
synchronization in the RT CORBA system will use
the Distributed Priority Ceiling protocol (DPCP) [3].

These policies were chosen to facilitate real-time anal-
ysis of the RT CORBA system as described in Section
4.

4 Current Work

The versions of RT CORBA from Section 3 have
been delivered to vendors including Lockheed/Martin,
Iona, and Tri-Paci�c for full development into RT
CORBA products. This section briey describes our
current research and development of RT CORBA.

4.1 Open ORB

A part of our current approach, centered at
MITRE, is to design an open RT CORBA system us-
ing a meta-object and design pattern approach where
the CORBA run-time system itself is made of object
components (meta-objects) that can be con�gured to
tailor the system to various real-time requirements.
A major criticism of existing commercial middleware
is that it dictates particular implementation decisions
that may not be appropriate for all applications. Some
aspects of the middleware may not deliver the required
performance or may lack the necessary functionality.
For example, we found that the current commercial
CORBA implementations fail to ful�ll many military
real-time requirements. Because the middleware is of-
ten implemented as a black box, it allows little or no
exibility in adapting it to the application.

A conceptual diagram of our approach is shown in
Figure 2. Note the existence of meta-objects in the
ORB that allow its con�guration to meet real-time
requirements.

Another key part to our approach is the develop-
ment of a reective ORB, which monitors its own be-
havior and performance and changes based on that
information. We are developing an adaptive system
that is also reective, such that it would be capable of
adapting dynamically with the changes in real time.
For example, if a selection of resources of di�erent
quality were available (e.g. a set of radars), a reec-
tive system would be able to choose di�erent radars
depending on the application as well as additional user
constraints imposed on a speci�c operation (e.g., tim-
ing constraints on getting current information about
a contact). In our system there would be a metalayer
(set of meta-objects) whose job it is to monitor the
rest of the objects in the system to determine whether
or not they are meeting their QoS requirements. De-
pending on the result, the metalayer might choose a
di�erent set of objects (that represent groups of re-
sources) to handle certain tasks, sacri�cing something
(time vs. quality) in order to get back a result within
its speci�ed parameters.



Figure 2: An Open RT CORBA System With a Meta-
Object Architecture

The use of meta-object protocols and reective
techniques will make our open ORB tailorable to de-
manding real-time and fault-tolerance requirements.
The components of the system are the ORB, services
such as scheduling and data management and the ap-
plication frameworks. Each component consists of var-
ious subcomponents and protocols. The idea is to
switch the subcomponents and protocols without dis-
rupting the operation of the system. For example, one
could switch the scheduling protocols or the transport
protocols or even the application components.

Our model consists of objects in the ORB, dis-
tributed objects (CORBA objects) and CORBA Ser-
vices. We classify these objects into three levels, called
metalevels. All the objects in the implementation of
the ORB, services and facilities are meta-objects of
metalevel 1. Objects in the ORB and distributed ob-
jects that control the execution of baselevel objects
and metalevel 1 objects (through a meta interface)
are meta-objects of metalevel 2. Consider, an exam-
ple with Protocol substitution in a CORBA ORB. If
Protocol is an object inside the ORB, it is a metalevel
1 object according to the de�nition above. A met-
alevel 2 object for the Protocol could be an object that
controls which instance of Protocol is currently active
- e.g. Sun RPC or HTTP. Another example could
be the following: an object inside the Concurrency
Control service is a metalevel 1 object. An object
that controls which CC algorithm is used in a partic-
ular situation (e.g. priority ceiling, two-phase locking,

Figure 3: A Meta-Object Switchable CORBA Naming
Service

etc.) would be a metalevel 2 object. The enumera-
tion of metalevels is useful for establishing the control
relationship between sets of objects. Figure 3 shows
a conceptualization of how a meta-object switch can
be used to switch from a typical �rst-come CORBA
Naming Service to a Real-Time Load Balancing Nam-
ing Service.

We will integrate our earlier work on both static
and dynamic real-time CORBA systems into this open
ORB framework to allow exible middleware that can
be con�gured to the many shades of real-time.

4.2 RT CORBA PERTS Analysis Tools

We are modifying the PERTS Real-time analysis
tool from Tri-Paci�c Software (see [5]) to perform
analysis for RT properties, such as whether a static RT
CORBA system is schedulable. PERTS was originally
developed at the University of Illinois and commercial-
ized by our team members at Tri-Paci�c to perform a
rich set of schedulability analyses on RT systems. Our
initial version of PERTS for RT CORBA will analyze
�xed priority global RT CORBA scheduling, following
the capabilities speci�ed in the OMG RFP for �xed
priority RT CORBA.

The PERTS RT CORBA tool will provide a graphic
user interface to input characteristics of the RT
CORBA system including periods of RT CORBA
clients, intermediate client TDMI deadlines, network
delay, context switch time, characterization of RT
CORBA servers, execution time of CORBA meth-
ods, and execution time of client code. Originally
the RT CORBA PERTS tool will assume the use
of Distributed Priority Ceiling Protocol (DPCP -
called \MPCP" in PERTS) for synchronization in
the CORBA system and global Deadline Monotonic
scheduling in the CORBA Scheduling Service, both of
which we are implementing into our static RT CORBA



system in parallel. The tool will indicate whether the
RT CORBA system is schedulable and, if so, pro-
duce priority assignments that can be used by the RT
CORBA Scheduling Service.

4.3 RT CORBA Applications

Another important part of our current work is to
evaluate the new RT CORBA technology on actual
military applications. At MITRE, we have used the
static RT CORBA system in a target tracking applica-
tion from the US Airforce AWACS system. At NRaD,
we are currently using the dynamic RT CORBA sys-
tem in the JFLEX and C2MUV military planning
applications [2] to coordinate distributed real-time
planning among various parties from various military
branches.

5 Conclusion
This paper has presented a summary of past and

current work being done by a collaboration of re-
searchers at MITRE, NRaD, Tri-Paci�c Software, and
the University of Rhode Island. We described static
and dynamic prototype RT CORBA systems that
we have developed using techniques such as a new
CORBA Global RT Scheduling Service. Many of
the results of our e�orts are reected in the cur-
rent Whitepaper and Request For Proposals that have
come from the OMG RT Special Interest Group.

Our new e�orts in open ORB design and RT
CORBA PERTS analysis tools reect the next step
for us, for the RT CORBA development by vendors,
and for standardization at the OMG. Lessons from
our two initial prototypes have led to the meta-object
approach in our open ORB design so that we have
a framework to incorporate both static and dynamic
real-time components in a systematic way. The open
approach also allows for other con�gurations, like the
insertion of new RT network protocols, that better al-
low system designers to tailor their systems to the wide
range of requirements found in complex real-time ap-
plications. Our initial RT CORBA e�orts also allowed
us to identify the features of RT CORBA that were
feasible to implement while still allowing analysis by
our modi�ed PERTS tool. By designing RT CORBA
and its analysis tool in parallel, we expect to achieve
a real-time middleware solution that is supported by
commercial vendors and, in many useful cases, has an-
alyzable real-time behavior.

Web Sites. Additional Information on these
projects can be found at:

� http://www.cs.uri.edu/rtsorac

� http://atticus.nosc.mil/dhda

� http://www.tripac.com

References
[1] E. Bensley, P. Krupp, et. al. Object-oriented

approach for designing evolvable real-time com-
mand and control systems. In Proceedings of the
Workshop on Object-Oriented Real-Time Depend-
able Systems, Feb. 1996.

[2] http://da5id.nosc.mil

[3] Ragunathan Rajkumar. Synchronization in Real-
Time Systems: A Priority Inheritance Approach.
Kluwer Academic Publishers, Boston, MA, 1991.

[4] The Realtime Platform Special Interest Group
of the OMG. CORBA/RT white paper. ftp
site: ftp://ftp.osaf.org/whitepaper/Tempa4.doc,
Dec 1996.

[5] http://www.tripac.com

[6] B. Thuraisingham, P. Krupp, A. Schafer, and V.
Wolfe. On Real-Time Extensions To The Com-
mon Object Request Broker Architecture. In Pro-
ceedings of the Object Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA)
Workshop on Experiences with CORBA. Oct.
1994.

[7] V. Wolfe, J. Black, B.Thuraisingham, and P.
Krupp. Towards Timed Distributed Method Invo-
cations. In The Proceedings of the Fourth Interna-
tional High Performance Computing Conference.
December 1995.

[8] V Fay Wolfe, L. Cingiser DiPippo, R. Johnston R.
Ginis, M. Squadrito, S. Wohlever and I. Zykh Real-
Time CORBA In Proceedings of the Third IEEE
Real-Time Applications Symposium; June 1997.


