
Towards Priority Ceilings in Object-Based Semantic Real-Time

Concurrency Control�

Michael Squadrito and Lisa Cingiser DiPippo and Victor Fay Wolfe

Bhavani Thuraisingham Department of Computer Science

MITRE Corporation University of Rhode Island USA

Bedford, MA USA

thura@mitre.org fsquadrit,dipippo,wolfeg@cs.uri.edu

Abstract

This paper shows how priority ceiling techniques
can be added to object-based real-time semantic con-
currency control. The resulting protocol provides more
potential concurrency for real-time object-oriented
databases than previous priority ceiling techniques,
while alleviating priority inversion and deadlock prob-
lems of previous object-based semantic concurrency
control techniques. It is also a natural extension of
priority ceiling techniques to objects in general.

1 Introduction

In real-time databases real-time concurrency con-
trol must synthesize two sets of traditional require-
ments: those for real-time and those for concurrency
control. Among the requirements imposed by real-
time applications are those for fast execution and/or
predictable execution. Among the requirements im-
posed by concurrency control is the need to enforce
logical consistency constraints in the database.

A popular form of real-time concurrency control has
been to augment lock-based concurrency control with
priority inheritance techniques. In [1] a protocol is
presented that augments exclusive locking with prior-
ity ceiling support. The priority ceiling protocol limits
the priority inversion (a lower-priority task blocking
a higher-priority task) to at most the time one lower
|||||||-

� This work has been sponsored by: The MITRE Corpo-
ration, The U.S National Science Foundation, The U.S. O�ce
of Naval Research and the U.S Navy Research and Develop-
ment Labs (NRaD) Distributed Hybrid Database Architecture
project.

priority transaction holds one lock. This feature facil-
itates predictability by allowing better schedulability
analysis of the entire system [1]. The protocol also
prevents deadlock that could result from the locking.
In [2] a similar protocol is presented that augments
read/write locking with a form of priority ceiling. This
protocol also limits priority inversion to the time one
lower-priority transaction holds a lock, and it prevents
deadlock. In addition, it has the extra advantage of
increasing concurrency by using read/write locking in-
stead of the exclusive locking in the original priority
ceiling protocol. The increased concurrency is impor-
tant for faster execution in real-time databases.

In this paper we explore the next step in allow-
ing still more concurrency when priority ceiling tech-
niques are used in real-time object-oriented databases.
We show this by describing how priority ceiling spec-
i�cation and enforement can be added to object-based
real-time semantic concurrency control techniques [3].
The resulting protocol provides more potential concur-
rency for real-time object-oriented databases than pre-
vious priority ceiling techniques and alleviates priority
inversion and deadlock problems of previous object-
based semantic concurrency control techniques. It is
also a natural extension of priority ceiling techniques
to controlling concurrent access to objects in general.

Section 2 outlines our previous work on object-
based semantic real-time concurrency control. It
describes our model of a real-time object-oriented
database, our semantic locking concurrency control
technique, and the priority inversion and deadlock
problems that it can have. Section 3 shows how prior-
ity ceilings can be added to a restricted version of the
semantic locking technique that is based on a�ected
sets [4]. The resulting protocol is called the A�ected
Set Priority Ceiling Protocol. Several examples in Sec-
tion 3 illustrate the relation of our new protocol to ex-

isting priority ceiling protocols. Section 4 summarizes
and indicates areas where further work is needed.

2 Object-Based Semantic Real-time
Concurrency Control

For the past three years our research group at
the University of Rhode Island has been perform-
ing research in real-time object-oriented databases.
This work has included speci�cation of the RTSO-
RACmodel [5] for real-time object-oriented databases,
and the speci�cation, implementation, and analysis of
an associated semantic locking technique for concur-
rency control [3, 6]. The semantic locking technique
allows the designer of individual objects to determine
the allowable level of concurrency within an object,
based on the semantics of the object. These semantics
may require the relaxation of serializability. A criti-
cal issue in the �eld of real-time databases involves
the conicting requirements of logical and temporal
consistency. In order to maintain the logical consis-
tency of the data and/or transactions, transactions
may be blocked and miss their deadlines, or they may
not be able to write data within the data's timing con-
straints. On the other hand, by allowing a transaction
to preempt a conicting transaction in order to write
time-constrained data, the logical consistency of the
data or of the transactions may be compromised. The
semantic locking technique allows the object designer
to explicitly express this trade-o� between logical and
temporal consistency.

2.1 RTSORAC Model.

The RTSORAC model [5] incorporates features
that support the requirements of a real-time database
into an extended object-oriented model. It has three
components that model the properties of a real-time
object-oriented database: objects, which represent
database entities, relationships which represent aggre-
gations of objects, and transactions, which represent
executable entities that invoke operations on the ob-
jects.

The RTSORAC model extends the traditional
object-oriented notion of an object to include at-
tributes that have a value, a timestamp and an amount
of accumulated imprecision. The imprecision that is
recorded accumulates due to the relaxation of serial-
izability by the semantic locking concurrency control
technique [6, 7]. RTSORAC objects also include con-
straints and a compatibility function. The constraints

can be placed on the attributes to express logical and
temporal correctness of the object.

The user-de�ned compatibility function determines
how the methods of the object may interleave. It
is through this function that the object designer ex-
presses the semantics of allowable concurrency. The
exibility of the compatibility function allows the ob-
ject designer to specify di�erent levels of concurrency
for di�erent objects. For instance, one object may re-
quire serializability, while another object may tolerate
a less restrictive form of correctness. To enforce se-
rializability the object designer may use a�ected set
semantics [4] to determine compatibility. A method's
Read A�ected Set (RA) is the set of the object's at-
tributes that the method reads. A method's Write
A�ected Set (WA) is the set of the object's attributes
that the method writes. Under a�ected set semantics,
two methods m1 and m2 are compatible if and only if:

(WA(m1) \WA(m2) = ;)^

(WA(m1) \RA(m2) = ;)^

(RA(m1) \WA(m2) = ;)

A less restrictive form of correctness may be needed
to express the trade-o� between temporal and logical
consistency. In such a case, the semantics of compat-
ibility between methods are based on dynamic infor-
mation, including current temporal consistency and
imprecision of data. For example, if a method m1

that reads an attribute a is currently executing, it
would violate the logical consistency of m1's return
value if another method m2 that writes a were to exe-
cute. However, if the timing constraint on a has been
violated, i.e. it has become old, then allowing m2 to
execute would restore the temporal consistency of a.
When determining each potential allowable interleav-
ing of method executions, the compatibility function
can also examine the amount of imprecision that could
be introduced by the possible interleaving.

2.2 Semantic Locking Technique.

Our semantic locking concurrency control tech-
nique is based on the RTSORAC model and uses se-
mantic locks to determine which transactions may in-
voke methods on an object [3]. The semantic locking
technique uses a set of temporal consistency and logi-
cal consistency preconditions and the object's compat-
ibility function to determine if a requested semantic
lock should be granted.

When a transaction invokes a method m, the tech-
nique �rst tests the logical consistency preconditions

to ensure that m does not introduce too much im-
precision into the data or the calling transaction. It
also tests a temporal consistency precondition to en-
sure that the m will not read data that would become
temporally invalid during its execution. If both pre-
conditions are true, the technique accumulates the im-
precision that might be introduced by m, and checks
the compatibility function to determine if m is com-
patible with all other active methods. It also checks
that m is compatible with all methods of higher pri-
ority that are blocked. If any incompatibilities are
found, m is blocked and placed in a priority queue.
Otherwise, any imprecision that results from allowing
m to interleave with the currently active methods is
accumulated, and m is allowed to execute.

We have shown that our semantic locking tech-
nique can bound the imprecision that is accumu-
lated due to non-serializable method interleavings. In
[6] we proved that under certain general restrictions,
the technique maintains a correctness criterion called
Object-Oriented Epsilon-Serializability, a specializa-
tion of Epsilon-Serializability [7] for the RTSORAC
model.

We conducted performance tests in which we com-
pared two versions of our semantic locking technique
with other object based concurrency control tech-
niques (exclusive locking, read/write locking and com-
mutative locking) [8]. We looked at the semantic lock-
ing technique where temporal consistency was cho-
sen over logical consistency in the trade-o� (we re-
fer to it as the semantic-temporal technique). We also
looked at the semantic locking technique where logical
consistency was chosen over temporal consistency in
the trade-o� (referred to as the semantic-logical tech-
nique).

We used two measures of performance in our tests.
We �rst measured how many deadlines were missed by
each of the techniques. We also measured the amount
of data temporal inconsistency seen by each transac-
tion. Our semantic techniques generally met more
deadlines than the other object-based techniques. We
saw the di�erence best in cases where methods were
short, and transactions had a medium number of
method invocations. Furthermore, the semantic tech-
niques generally caused transactions to access less
temporally inconsistent data than the traditional tech-
niques.

2.3 Improvements to The Semantic Lock-
ing Technique.

Our semantic locking concurrency control tech-
nique provides valuable insights into concurrency con-

trol in a real-time object-oriented database including:
expression of the trade-o� between logical and tem-
poral consistency, increased concurrency for meeting
more transaction deadlines, and bounding impreci-
sion. However, the original technique su�ers from un-
bounded priority inversion and the possibility of dead-
lock, both of which can a�ect the system's predictabil-
ity and its ability to meet timing constraints.

When a new method is invoked, the technique
checks to make sure that the new method invocation is
compatible with all blocked method invocations with
higher priority. This check avoids a source of prior-
ity inversion by ensuring that the new (lower priority)
method invocation will not block a waiting higher pri-
ority method invocation. However, there are other
sources of priority inversion that are not handled by
the technique. For instance, assume a transaction T1
with priority 1 has invoked a method m1 that is cur-
rently running. If another transaction T5 with priority
5 (assume higher number = higher priority) invokes
m2, which is incompatible with m1, then the higher
priority transaction is blocked by the lower priority
transaction. Furthermore, medium priority transac-
tions, those having priority between 1 and 5, will be
able to execute while T5 is blocked because they have
higher priority than T1. This is a classic instance of
unbounded priority inversion. The problem of dead-
lock is also not addressed by the semantic locking tech-
nique.

3 Priority Ceiling in Semantic Locking

To address the problems of priority inversion and
deadlock in the semantic locking technique, we use an
extension to the priority ceiling protocols [1, 2] that
have been proven to limit priority inversion and pre-
vent deadlock. The priority ceiling protocols summa-
rized in Figure 1 di�er in the amount of concurrency
that they allow. Our protocol, based on a�ected set se-
mantics, allows more potential concurrency than those
of [1, 2] in a real-time object-oriented database. How-
ever, the protocol does not allow for the full arbitrary
semantics of the semantic locking technique.

In this section we present two previous priority ceil-
ing protocols, along with our a�ected set priority ceil-
ing protocol. We use an example to demonstrate how
our protocol can potentially provide more concurrency
than the previous protocols.

Locking Concurrency Priority Ceiling Protocol

exclusive least Basic Priority Ceiling Protocol [1]
read/write j Read/write Priority Ceiling Protocol [2]

r/w a�ected set [4] # A�ected Set Priority Ceiling Protocol (this paper)
semantic most (future work)

Figure 1: Locking and Priority Ceiling Techniques

3.1 Previous Priority Ceiling Protocols.

A priority ceiling protocol is based on a major as-
sumption about the system in which it is running. Ev-
ery object and every transaction in the system must be
known a priori in order to gain all of the information
needed to execute the protocol. Thus, no dynamic
information may be used to determine concurrency
control.

There are three basic steps to any of the priority
ceiling protocols:

1. Before running, the protocol de�nes a prior-
ity ceiling for each critical section that may be
locked. The granularity of these critical sections
is the core di�erence among the various priority
ceiling protocols.

2. At run-time, when a transaction T3 requests a
lock, the lock can be granted only if T3's priority
is strictly higher than the ceiling of locks held by
all other transactions.

3. If transaction T3's lock request is denied because
T1 (a lower priority transaction) holds a lock with
priority ceiling equal to or greater than T3's pri-
ority, T1 inherits the priority of T3 until T1's lock
is released.

Note that no checking of conict is necessary when
granting a lock. This is because, conict in a priority
ceiling protocol is captured in the de�nition of the
priority ceiling.

Each of the protocols that we describe below follow
these basic steps. The di�erence among them arises
in how conict is de�ned among locks and thus, how
priority ceiling is de�ned. We will describe how prior-
ity ceiling is de�ned in each protocol, and present an
example that illustrates how our a�ected set priority
ceiling protocol can provide more concurrency.

The Basic Priority Ceiling Protocol. In the ba-
sic priority ceiling protocol [1], exclusive locks are
placed on entire objects. Thus, the critical section
in this version of the protocol is an object lock. The
priority ceiling of a lock is de�ned as the priority of

the highest priority transaction that will ever use this
lock. A transaction T can lock a critical section only
if it passes the following test:

The priority of transaction T must be strictly higher
than the priority ceiling of locks held by all other trans-
actions.

The following example will be used throughout the
remainder of this paper. Consider four transactions,
T1, T2, T3, and T4 in ascending order of priority,
where the transaction's subscript represents its prior-
ity, sharing two objects OA andOB. For this example,
the transactions will execute as follows:

T1 : ... lock(OB) ... lock(OA) ...

release locks ...

T2 : ... lock(OA) ... lock(OB) ...

release locks ...

T3 : ... lock(OA) ... release lock ...

T4 : ... lock(OA) ... lock(OB) ...

release locks ...

Using this information, the priority ceiling of OA
is equal to the priority of T4, and the priority ceiling
of OB is equal to the priority of T4, because T4 locks
both OA and OB. The following sequence of events
represents one possible concurrent interaction of these
transactions:

1. Transaction T1 locks OB. (The lock is granted.)

2. T2 preempts T1 and attempts to lock OA. (The
priority of T2 is not greater than the priority ceil-
ing of OB.)

3. T2 is blocked and T1 resumes at priority 2.
(Deadlock is avoided. Priority inversion is lim-
ited.)

4. T3 preempts T1 and attempts to lock OA. (The
priority of T3 is not greater than the priority ceil-
ing of OB.)

5. T3 is blocked and T1 resumes at priority 3.(Pri-
ority inversion is limited.)

6. T4 preempts T1 and attempts to lock OA. (The
priority of T4 is not greater than the priority ceil-
ing of OB.)

7. T4 is blocked and T1 resumes at priority 4.

After Event 7), transaction T1 continues until it
releases all of its locks. At that time T4 will be al-
lowed to lock object OA, and complete. The example
shows that any transaction with a priority less than
T4 attempting to acquire a lock will be blocked by the
priority ceiling of the lock held by the lower priority
transaction T1. This means that T4 will be blocked
as long as T1 holds its locks.

One drawback of this protocol for real-time systems
is that locking an entire object is very restrictive and
can unnecessarily inhibit concurrency that is impor-
tant to the fast execution that is often needed in real-
time databases.

The Read/Write Priority Ceiling Protocol. In
a database that allows select, insert, and update func-
tionality, a division can be made between read and
write operations. Instead of acquiring an exclusive
lock on an entire object, a transaction can request
read and write locks. Bounding priority inversion and
preventing deadlock with read/write locking has been
addressed by the read/write priority ceiling protocol
[2].

In the r/w priority ceiling protocol, since each ob-
ject can allow both readers and writers, each object
requires two static priority ceilings, and one dynamic
priority ceiling that are de�ned as follows:

1. The write priority ceiling is set equal to the high-
est priority transaction that will ever write the
object.

2. The absolute priority ceiling is set equal to the
highest priority transaction that will ever read or
write the object.

3. The r/w priority ceiling is set at run-time. If a
transaction is allowed to read an object, the r/w
priority ceiling is set equal to the write priority
ceiling. If a transaction is allowed to write an
object, the r/w priority ceiling is set equal to the
absolute priority ceiling.

In the read/write priority ceiling protocol, a critical
section is a read/write lock. A transaction T can lock
a critical section only if it passes the following test:

The priority of transaction T must be strictly higher
than the r/w priority ceiling of locks held by all other
transactions.

Object OA

Abs PC 4
Write PC 3

Object OB

Abs PC 4
Write PC 2

Figure 2: Example Read/Write Priority Ceilings

Once again, consider the four transactions, T1, T2,
T3, and T4, sharing two objects OA and OB. How-
ever, we can now use the additional information of
which transactions are reading and which are writing.
The transactions will execute as follows:

T1 : ...read_lock(OB)...read_lock(OA)...

release locks...

T2 : ...write_lock(OA)...write_lock(OB)...

release locks...

T3 : ...write_lock(OA)...release lock...

T4 : ...read_lock(OA)...read_lock(OB)...

release locks...

Figure 2 depicts the static priority ceilings for each
object.

The following is an example of how the transactions
might be executed:

1. Transaction T1 read locks OB. (r/w priority ceil-
ing of OB = write priority ceiling of OB = 2.)

2. T2 preempts T1 and attempts to write lock OA.
(The priority of T2 is not greater than the r/w
priority ceiling of OB.)

3. T2 is blocked and T1 resumes at priority 2.
(Deadlock is avoided. Priority inversion is lim-
ited.)

4. T3 preempts T1, and attempts to write lock OA.
(The priority of T3 is greater than the r/w prior-
ity ceiling of OB = 2.)

5. T3 is granted the write lock on OA. (r/w priority
ceiling of OA = absolute priority ceiling of OA =
4.)

6. T4 preempts T3 and attempts to read lock OA.
(The priority of T4 is not greater than the r/w
priority ceiling of OA = 4.)

7. T4 is blocked and T3 resumes at priority 4.

The above schedule allows more concurrency than
the schedule produced by the basic protocol, while still
preventing deadlock. Although this protocol allows
more concurrency, it loses e�ectiveness when individ-
ual methods performed on the object can both read

Object OA

read speed write speed read altitude write altitude
read speed YES NO YES YES
write speed NO NO YES YES
read altitude YES YES YES NO
write altitude YES YES NO NO

Object OB
read speed read depth write speed depth

read speed YES YES NO
read depth YES YES NO

write speed depth NO NO NO

Figure 3: Example Compatibility Tables

and write an object. If each method writes some piece
of information in the object, all locks on the object
would be write locks. In this case, this protocol would
provide no more concurrency than the basic priority
ceiling protocol.

Thus, so far we have seen that the basic priority
ceiling protocol works by placing a single ceiling on
an entire object, thereby placing an exclusive lock on
that object. The r/w priority ceiling protocol places
two ceilings on an object, thus possibly allowing many
readers to an object at any given time and only one
writer. We now continue this pattern in the next sec-
tion when we de�ne priority ceilings for locking tech-
niques in object-oriented databases.

3.2 A�ected Set PC Protocol.

The previous priority ceiling protocols place a pri-
ority ceiling on an entire data object and therefore
allow less potential concurrency than semantics-based
techniques, such as that described in Section 2, that
use locks on methods of database objects.

Our A�ected Set Priority Ceiling (ASPC) protocol
[9] uses the a�ected sets [4] of each method of each
object to determine the compatibilities of the meth-
ods of an object. Our previous semantic locking tech-
nique (Section 2) uses a�ected set information, but
also allows the object designer to specify additional
conditions under which methods may execute concur-
rently. Because priority ceiling protocols are based on
static information, establishing priority ceilings where
arbitrary semantics are allowed is not straightforward.
Thus, the approach in this paper focuses on a�ected
set semantics.

Using a�ect set semantics, the critical section is a
method lock. Thus, the ASPC protocol assigns a con-

ict priority ceiling to each method of each object.
The conict priority ceiling of a method m is the pri-
ority of the highest priority transaction that will ever
lock a method that is not compatible with method m

(based on a�ected set semantics - see Section 2).
The ASPC protocol allows a transaction T to re-

ceive a lock on a critical section if and only if:
The priority of T is strictly higher than the conict

priority ceiling of locks held by all other transactions.
We further expand upon the previous example to

illustrate the bene�ts of our ASPC protocol. Consider
two database objects:

Object OA :

Attr speed;

Attr altitude;

method read_speed(); /*RA = speed */

method write_speed(); /*WA = speed */

method read_altitude(); /*RA = altitude */

method write_altitude(); /*WA = altitude */

Object OB :

Attr speed;

Attr depth;

method read_speed(); /*RA = speed */

method read_depth(); /*RA = depth */

method write_speed_depth();

/*WA = speed, depth */

For simplicity these objects were de�ned to have dis-
tinct read and write methods; however, methods are
not restricted to this behavior. Notice that object OA
has separate methods to write each attribute (Attr),
while OB has a method that writes to two attributes.

Object OA

method ! read speed write speed read altitude write altitude
Highest Priority Transaction T1 T3 T4 T3

Conict Priority Ceiling 3 3 3 4

Object OB

method ! read speed read depth write speed depth
Highest Priority Transaction T1 T4 T2
Conict Priority Ceiling 2 2 4

Figure 4: Example A�ected Set Priority Ceilings

Each object is analyzed to determine the read/write
a�ected set for each of its methods, as shown by the
RA and WA annotations. Figure 3 (previous page) dis-
plays the method compatibilities for objects OA and
OB, based on a�ected set semantics.

Next, the protocol examines the transactions that
access the methods. Assume the following transac-
tions:

T1 :...method_lock(OB, read_speed)...

method_lock(OA, read_speed)...

release locks

T2 :...method_lock(OA, write_speed)...

method_lock(OB, write_speed_depth)...

release locks

T3 :... method_lock(OA, write_speed)...

method_lock(OA, write_altitude)...

release locks

T4 :...method_lock(OA, read_altitude)...

method_lock(OB, read_depth)...

release lock

The conict priority ceilings for the methods in our
example are displayed in Figure 4.

The following represents one possible concurrent
execution of these transactions.

1. Transaction T1 method lock(OB, read speed).
(The lock is granted.)

2. T2 preempts T1 and attempts method lock(OA,
write speed). (The priority of T2 is not greater
than the conict priority ceiling of OB, method
read speed.)

3. T2 is blocked and T1 resumes and inherits prior-
ity 2. (Deadlock is avoided.)

4. T3 preempts T1 and attempts method lock(OA,
write speed). (The priority of T3 is greater
than the conict priority ceiling of OB, method
read speed.)

5. T3 is granted the method lock.

6. T4 preempts T3 and attempts method lock(OA,
read altitude). (The priority of T4 is greater
than the conict priority ceilings of OB, method
read speed and OA, method write speed.)

7. T4 is granted the lock and continues to comple-
tion.

Once T4 completes, T3 will resume and eventually
release its locks. After T3 completes, T1 will resume
and after releasing the method lock(OB; read speed),
will revert back to priority 1. This allows T2 to pre-
empt and run to completion. Finally, T1 will com-
plete. Note that in this example, the ASPC protocol
allows two more locks to be granted than the basic
protocol and one more than the read/write protocol.
Furthermore, the blocking time for the high priority
transaction, T4, is reduced. In the example of the
basic protocol, T4 is blocked as long as the lower pri-
ority transaction T1 holds its locks. With the ASPC
protocol, T4 is not blocked at all.

This example provides intuition for the e�ectiveness
of the ASPC protocol. It indicates that the �ner gran-
ularity ceilings can provide more concurrency than the
other protocols, and that blocking time for high prior-
ity transactions can be reduced. This possible reduc-
tion in blocking time is the result of the potentially
shorter critical sections (method locks vs. object or
read/write locks) of the ASPC protocol. A formal
proof for deadlock prevention and bounding priority
inversion in the previous priority ceiling protocols ap-
pear in [1, 2]. We are developing similar proofs show-
ing deadlock prevention and priority inversion bounds
in the ASPC protocol [9].

4 Conclusion

The ASPC protocol incorporates priority inversion
bounds and deadlock prevention into the semantic
locking technique with the semantics restricted to af-
fected sets. It is also an important step towards ap-
plying priority ceiling techniques to real-time object-
oriented databases. Furthermore, the generality of the
ASPC protocol makes it a natural step in extending
priority ceiling techniques to control concurrent access
to objects.

There are several drawbacks to the ASPC protocol
for real-time databases. First, like all priority ceiling
techniques, it requires a substantial amount of static,
a priori information about the system. It is this ex-
tra static information that allows priority inversion
bounding and deadlock prevention, but it can be a
prohibitive assumption for dynamic real-time systems.
Second, the ASPC protocol enforces serializability of
methods, which may be overly restrictive for real-time
databases. Finally, the ASPC protocol does not ad-
dress temporal consistency nor does it explicitly han-
dle the trade-o� between temporal and logical consis-
tency.

The extension of the ASPC protocol to allow the
full semantics of the semantic locking technique, which
can address each those drawbacks, is complicated.
The fundamental problem is that priority ceiling pro-
tocols rely on static knowledge to determine ceilings,
while full semantic conditions, such as current tem-
poral consistency status, are dynamic in nature. The
ASPC protocol is a compromise that allows more con-
currency than previous priority ceiling techniques, and
solves the deadlock and priority inversion problems of
the semantic locking technique. To bound priority in-
version and prevent deadlock in full semantic locking,
further research is required.

References

[1] L. Sha, R. Rajkumar, and J. Lehoczky, \Priority in-

heritance protocols: An approach to real-time synchro-

nization," IEEE Transactions on Computers, vol. 39,

pp. 1175{1185, Sept. 1990.

[2] L. Sha, R. Rajkumar, S. Son, and C. Chang, \A real-

time locking protocol," IEEE Transactions on Com-

puters, vol. 40, pp. 793{800, July 1991.

[3] L. B. C. DiPippo and V. F. Wolfe, \Object-based

semantic real-time concurrency control," in Proceed-

ings of IEEE Real-Time Systems Symposium, Decem-

ber 1993.

[4] B. Badrinath and K. Ramamritham, \Synchronizing
transactions on objects," IEEE Transactions on Com-

puters, vol. 37, pp. 541{547, May 1988.

[5] J. Prichard, L. C. DiPippo, J. Peckham, and

V. F. Wolfe, \RTSORAC: A real-time object-oriented

database model," in The 5th International Conference

on Database and Expert Systems Applications, Sept.

1994.

[6] L. C. DiPippo and V. F. Wolfe, \Object-based seman-

tic real-time concurrency control with bounded impre-

cision," IEEE Transactions on Knowledge and Data

Engineering. To appear.

[7] K. Ramamritham and C. Pu, \A formal characteriza-

tion of epsilon serializability," IEEE Transactions on

Knowledge and Data Engineering. To appear.

[8] L. C. DiPippo, Object-Based Semantic Real-Time Con-

currency Control. PhD thesis, Department of Com-

puter Science, The University of Rhode Island, 1995.

[9] M. Squadrito, \Extending the priority ceiling proto-
col using read/write a�ected sets," Master's thesis,

Department of Computer Science, The University of

Rhode Island, 1995.

