
1
TOWARDS UNIFYING DATABASE

SCHEDULING AND

CONCURRENCY CONTROL: A

FRONTIER APPROACH

Gregory Jones*,
Lisa Cingiser DiPippo**, Victor Fay Wolfe**

* Naval Undersea Warfare Center, Newport, RI

** Department of Computer Science, University of Rhode Island, Kingston, RI

1 INTRODUCTION

Real-time databases have numerous applications, including commodities trad-
ing, military command and control, patient monitoring, air tra�c control, and
exible manufacturing. All of these applications require that data be processed
in such a way that the data and output of the database remains logically consis-
tent . They also require that deadlines imposed on database operations are met
(temporal consistency) . Thus, the ultimate goal of scheduling and concurrency
control for real-time databases is to maintain both temporal and logical consis-
tency of the transactions and of the data. In situations, such as overload, where
both temporal consistency and logical consistency cannot be met, a transac-
tion scheduler may have to sacri�ce one requirement for the other and make
a trade-o� between the two. For example, suppose that a transaction tread
is reading some sensor data in a real-time database, and another transaction,
tupdate, needs to update that data in order to maintain the temporal consis-
tency of the data and/or the transaction. If tupdate were allowed to execute, the
logical consistency of tread would be violated, but if tupdate were blocked, the
temporal consistency of the sensor data or of tupdate could be violated. Thus,
one requirement must be traded-o� for the other.

Most previous work in real-time database concurrency control indexconcur-
rency control and scheduling has focused on combining variations of traditional
concurrency control techniques with real-time scheduling techniques [1]. These
solutions typically attempt to meet temporal consistency requirements while
maintaining serializability of transactions. Work described in [2], presents a
semantic concurrency control technique for real-time object-oriented databases

1

2 Chapter 1

that allows the database designer to express the trade-o� of logical consistency
for temporal consistency for each object [3]. These results are limited to con-
currency control that assumes simple real-time transaction scheduling. In all
of this previous work, concurrency control and scheduling are handled inde-
pendently. We believe that a uni�ed approach to scheduling and concurrency
control will better enforce the often conicting requirements of temporal and
logical consistency.

Commonly, when two criteria, such as temporal consistency and logical consis-
tency, are to be considered for producing optimal results, a secondary criteria

approach is used [4]. Such an approach attempts to optimize one criteria, say
logical consistency; then within the set of optimal schedules for logical con-
sistency, the schedule which maximizes temporal consistency is chosen. Most
current real-time database concurrency control techniques do just that. A more
exible approach is bi-criteria scheduling [5], where an attempt is made to max-
imize both measures without preference toward either one. This approach leads
to a set of e�cient schedules , i.e., schedules such that no improvement can be
made to one performance measure, without a reduction in the other [5]. Sev-
eral bi-criteria scheduling techniques for manufacturing systems appear in the
literature [6, 7]. However, these methods only consider temporal constraints,
for example maximum tardiness and the number of deadlines missed, and not
logical consistency.

In this paper, we develop a scheduling model for uni�ed database scheduling
and concurrency control that supports a bi-criteria scheduling approach. Tech-
niques based on this model handle logical consistency, temporal consistency,
and the trade-o� between them. The database system designer expresses the
trade-o� of logical and temporal consistency based on semantics of the sys-
tem, mapping both logical consistency and temporal consistency to a common
metric called value . Temporal consistency is mapped to a value function that
expresses the value of completing a transaction at a certain time. We extend
the model of transaction scheduling based on value functions, which was �rst
developed by Locke [8] and later enhanced by Clark [9] and Jensen [10]. In
our model, logical consistency is mapped to a value penalty table that expresses
the penalty value associated with the violation of desired orderings of database
operations, such as serialization orderings. Our model also includes a frontier

plot of all possible schedules of tasks with temporal value on one axis and value
penalty on the other. The scheduler chooses the point on the frontier that best
meets the system requirements for temporal and logical consistency.

Given our general model for unifying concurrency control and scheduling in a
real-time database, our approach towards a solution is incremental. We begin

Unifying Scheduling and Concurrency Control 3

with a very restricted version of the model, which lends itself to an elegant
algorithmic solution. From there, we remove some restrictions and extend the
solution accordingly. While the ultimate goal is value-based uni�ed database
concurrency control and scheduling, the solutions to these smaller problems
have two bene�ts: (1) they may lead us toward our �nal solution, and (2) they
provide solutions for a range of applications for which the restricted models are
su�cient.

Section 2 of this paper outlines our general scheduling model. In Section 3 we
present two restricted versions of the model and discuss algorithmic solutions.
We also motivate the restrictions by describing applications for which each of
the restricted models is su�cient. Section 4 concludes with a summary and a
discussion of the applicability and scalability of our work.

2 GENERAL SCHEDULING MODEL

Our scheduling model consists of transactions that are decomposed into tasks.
Associated with each task is a value function to capture temporal consistency
(temporal value). In addition, there is a system-wide value penalty table to
capture logical consistency (logical value). The model also incorporates a fron-
tier which represents the synthesis of temporal value and logical value in a
two-dimensional graphical form. Finally, the model includes a scheduler that
chooses a schedule on the frontier that maximizes value as some combination
of temporal value and logical value in the system.

Transactions and Tasks. We de�ne a transaction as an executable database
entity that manipulates the data of the database through a partially ordered
set of tasks. A task is an atomic, non-preemptable database action or process.
That is, a transaction is a collection of related tasks, as de�ned by the database
user, to perform a complete database access, such as a query or an update.

Temporal Consistency. Temporal consistency requirements of tasks are
expressed in our model through value functions that de�ne the value of com-
pleting a task at any instant of time [8]. Figure 1 depicts several examples
of value functions. Value function (a) depicted in the �gure implies a �rm

deadline . That is, there is no value to the system for completion of the task
after its deadline. Value function (b) implies a soft deadline . Here, the task
has a deadline, but completion after the deadline is still acceptable, although
with less value to the system. Value function (c) has no associated deadline,

4 Chapter 1

Figure 1 Temporal Value Functions

instead value to the system decreases in a non-linear fashion with later comple-
tion times. In general, value functions may have any arbitrary shape. However,
issues of scheduler complexity and the requirement that the value function map
to some practical requirement may restrict functions to several broad classes.

All tasks need not have an associated value function. If a value function is not
explicitly de�ned for a task, then a constant value of zero is assumed as the
default value function for that task. We assume the value function to be non-
negative, bounded, and de�ned for all time within the schedulability interval .
The schedulability interval is the interval from the earliest time the task could
be scheduled to complete, to the latest time the task could be scheduled to
complete. Given the value functions for a set of tasks, we de�ne the temporal
value of a schedule of those tasks to be the sum of all of the values accrued by
each of the tasks based on the time at which it completed in the schedule.

Many applications lend themselves to value metrics. For instance, �nancial
applications involving time-valued transactions [11] are naturally modeled with
value functions that relate their pro�tability to the time at which they are
executed.

We have chosen to use value functions for our model since they can express more
information about timing requirements than a simple deadline. This additional
information will be useful in relaxing timing constraints. For example, a soft
deadline can be missed, but a �rm deadline should not be. Value functions
also can express the desirability of completing a task early, something that a
deadline cannot. The fact that deadlines can be modeled indicates that the
use of value functions need not be complicated. However, if more information

Unifying Scheduling and Concurrency Control 5

than a deadline is known about the temporal requirements of the task, a value
function can capture that information.

Logical Consistency. Logical consistency in our model is expressed through
a system-wide partial ordering of tasks along with a value penalty assessed for
violation of each ordering. The value penalty quanti�es the loss of logical
precision due to out-of-order execution of database operations. It is expressed
by the designer in a value penalty table , which associates a value deduction
with each ordering relation among tasks.

We express partial ordering using the "�" operator to order task pairs, where
A � B conveys that task A occurs before task B. Note that because partial
ordering is transitive, the user is responsible for specifying value penalties for
constraints that result transitively. This can be done by explicitly specifying
the penalties, or by de�ning a rule for assigning transitive penalties.

The "�" notation that we have chosen to express logical consistency is sim-
ple, well understood and useful for a wide range of orderings. However, it is
not su�cient to express such conventional concurrency control techniques for
enforcing logical consistency such as two-phase locking. For such techniques,
more complex notations are available [12] which extend the partial ordering
notation to express any arbitrary ordering. Since any pessimistic concurrency
control simply enforces some allowable set of task orderings, an extended partial
ordering notation can be used to express any [pessimistic] concurrency control
scheme, including orderings required by locks. However, in this paper, the
simpler notation for partial ordering is su�cient to illustrate our concept.

To illustrate our expression of logical consistency, consider a serialization or-
dering of tasks in a database transaction. If a read task, r, must occur before
a write task, w in the serialization order, our model expresses this requirement
as the precedence constraint r � w. Our model also associates a value penalty
with violation of these constraints. One possible technique for establishing
penalties is to use the di�erence between the data values written by w and the
data value read by r as the penalty for violating r � w. If the data value was
20 and w is writing 25, then the penalty would be 5. Such a technique for
accumulating penalties as imprecision in data is detailed in [2].

Given the value penalties associated with each ordering, we can determine an
overall penalty to the system due to the logical inconsistency in a schedule.
The sum of all value penalties accrued in a schedule is referred to as the log-
ical value of the schedule. Work that has been done in Epsilon Serializability

6 Chapter 1

[13] and semantic locking with bounded imprecision [2] provides techniques for
determining how to accumulate the lost value due to violation of serializability
when the data involved is in a metric space, such as in a �nancial application.

In general, temporal values and precedence penalties do not necessarily reect
any real quantities; hence, they do not have associated units. Rather, these
values and penalties reect the designer's quanti�cation of the relative impor-
tance of each ordered task pair and timing constraint. In some applications,
we may be able to make a direct mapping from the semantics of the data to
the value penalty. For instance, in a �nancial application, a task might have
a monetary value that it should yield when it is executed. Penalties for out-
of-order execution of tasks might be expressed in monetary units which reect
increased risk or lower rate of return.

Frontier. Considering the problem of temporal constraints alone, Locke's
Best E�ort Heuristic [8] has been shown to provide good results in maximizing
temporal value. However, it is not necessarily true that logical constraints will
be met, indeed, such constraints, should they exist, are not accounted for by the
Best E�ort Heuristic. Alternatively, logical constraints can be met by �nding
a schedule in which no precedence orderings are violated. If each precedence
relationship is associated with a penalty, then an optimal schedule in regard
to logical consistency is a schedule with no penalties. Such a schedule exists
provided there are no cycles in the precedence graph. However, �nding such an
optimal logically consistent schedule does not consider temporal consistency.
When both temporal and logical constraints are to be considered with equal
weight, a bi-criteria scheduling approach may be appropriate.

Given the performance measures of temporal value and logical value, an e�cient

schedule is one for which no other schedule exists that is at least as good in both
measures, and strictly better in one. If, for a set of tasks, these two measures
of performance (temporal value and logical value) are plotted on orthogonal
axes for all possible schedules, then the resulting scatter plot de�nes a frontier
at the maximum limits of performance. The frontier is simply the line drawn
through all e�cient schedules.

Figure 2 is an example of a frontier plot given some set of tasks with value
functions and precedence orderings. The complete solution space can be found
by an exhaustive enumeration of all schedules. Each schedule is a point on the
graph represented by its temporal value on the x-axis and its logical value on
the y-axis. Note that any point on the plot may be generated by more than

Unifying Scheduling and Concurrency Control 7

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18

Time Performance

Lo
gi

ca
l V

al
ue

data

frontier

a b

c

d

e

f

Figure 2 Typical Frontier Plot

one schedule because more than one schedule can result in the same logical
value and temporal value. In Figure 2, the set of schedules represented by
points fa, b, c, d, e, fg de�ne the set of e�cient schedules and also the frontier.
From the set of e�cient schedules, a trade-o� must be made to choose the best
one. Schedule a in Figure 2 is a schedule for which the logical constraints are
given greatest importance, while in schedule f temporal constraints are given
greatest importance. The other schedules on the frontier each represent some
compromise between the two. The decision of which schedule is best depends on
the requirements of the speci�c application and the equivalence de�ned between
the units of temporal and logical value. For example, in Figure 2, if the units
for temporal performance and logical value are considered equivalent, then the
best schedules are represented by points d and e, which are the points furthest
from the origin. Each of these schedules yields the greatest overall value of
29 (by summing their respective x and y coordinates). However, if the unit
for logical value is weighted to be twice as important as the unit for temporal
value (double the values along the y axis of Figure 2), then point b is the best
schedule with a total value of 45 (36 logical + 9 temporal).

Scheduler. The scheduler in our model determines a schedule for all tasks.
For now, we assume that all tasks are known a priori and thus scheduling is
static.

8 Chapter 1

The goal of the scheduler is to choose a point on the frontier (i.e. a schedule)
that provides the desired temporal and logical value to the system. That is,
the scheduler will make the trade-o� between logical and temporal consistency.

General Formal Model. The above description lays out the parts of the
model in a somewhat informal way in order to relate it to real-time database
concurrency control and scheduling. Here we de�ne a formal description of the
general model.

The model consists of a set of partially ordered tasks, 1; 2; :::;N . For every task
i = 1; 2; :::;N there is a value function fi(�) where � represents the completion
time of the task. Each task i also has an associated set Si of successor tasks
. For every task j 2 Si, there is a Qij that represents the penalty incurred if
j is scheduled before i. Also for every j 2 Si, there is an associated indicator
variable, Iij that takes the value 0 if i is scheduled before j and 1 if j is scheduled
before i. Given this model, the scheduling goal is to maximize total temporal
value and minimize total penalty. That is:

max(
NX

i=1

fi(�i))

and

minNi=1

NX

j=1

IijQij

where �i is the actual completion time of task i. Clearly, a schedule that is
optimal for one performance measure (minimizes penalties, for example) may
not be optimal for the other performance measure (termporal value). However,
if a frontier of e�cient schedules can be constructed, then a trade-o� can be
made to choose a best schedule.

3 AN INCREMENTAL APPROACH

Given the complexity of the general problem that we have proposed to solve,
our approach is to investigate solutions to smaller, more restrictive problems
and take steps towards making these solutions more general. Algorithms exist
which provide optimal solutions for these simpler models, and in spite of their

Unifying Scheduling and Concurrency Control 9

simplicity, they do cover a broad range of applications, though not as broad as
our general model.

This section describes two restricted versions of our general model along with
algorithms for solving the scheduling problems given the restrictions. While
each of these models does not apply to as wide a range of applications as our
full model, we describe simpli�ed database applications for which each of the
models is su�cient.

3.1 Problem 1: Makespan vs. Penalty

We have developed a formulation of the bi-criteria scheduling problem in which
individual tasks do not have deadlines. We describe the model for this problem
in terms of the restrictions that are placed on the general model described in
Section 2. We then de�ne the formal model for this problem, followed by an
algorithmic solution.

Restrictions There are three basic restrictions that we have made on our
general model for the purposes of this solution:

1. Individual tasks do not have deadlines. The temporal value function
for each task is a constant (zero). The temporal measure of performance is
makespan, that is, the total time required to complete all scheduled tasks.
Thus, there is no temporal penalty for changing the order of tasks in a
schedule.

2. An overall deadline is speci�ed for the entire schedule. This dead-
line is used to de�ne the point on the frontier that should be chosen.

3. If a task is scheduled after all of its successor tasks , it is not

executed. A successor task of a task A is one that is expressed on the
right-hand-side of a precedence constraint, where A is on the left-hand-
side. The reason for this restriction is that we assume that there is no
value in executing a task if all of its successor tasks have already executed.
Eliminating tasks from the schedule has the bene�t of decreasing overall
makespan, which is the measure of temporal value in this restricted model.

As an example, consider a set of real-time database tasks (reads and updates).
Each task has an associated processing time, and some of them are involved in
precedence constraints. Table 1 lists each task along with its processing time.

10 Chapter 1

Task Description Time

1 Read1 4
2 Read2 2
3 Update1 3
4 Read3 5
5 Read4 4
6 Update2 3
7 Update3 2

Table 1 Example Task De�nitions

Precedence Penalty

1�3 10
2�3 8
3�4 4
4�6 4
4�7 5
5�7 5

Table 2 Example Precedence and Penalties

Table 2 displays the precedence orderings and associated penalties. To visually
depict the dependencies de�ned by the precedence constraints, Figure 3 shows
a network representation of these tasks and precedence constraints. Recall that
transitivity of the precedence operator is not implied.

The precedence constraints and associated penalties de�ned for this example
are based on the semantics of the application. For instance, Read1 and Read2
are both speci�ed to occur before Update1. This is due to the fact that Update1
involves writing data read by Read1 and Read2. Because for both of these read
tasks, Update1 is the only successor task, if the read is scheduled after the up-
date, it will not be executed. The penalties associated with the two precedence
constraints are di�erent to reect the fact that Read1 is more important to ex-
ecute (i.e. less likely to be removed from the schedule) than Read2. Along with
the precedence constraints and penalties, the user speci�es an overall deadline
by which the schedule must be completed.

Unifying Scheduling and Concurrency Control 11

1

2

3 4

5

6

7

Figure 3 Example Task Network Diagram

Restricted Formal Model 1

We use our general formal model of Section 2 to formally model the �rst re-
stricted problem. Consider a partially ordered set of tasks, 1; 2; : : : ; N: For each
task i = 1; 2; :::N , there is a set of successor tasks Si such that task i precedes
task j for all j 2 Si. Furthermore, for each j 2 Si there is a penalty Qij � 0
if task i is scheduled after task j. Each task has a known processing time,
ti > 0: An indicator variable, Zi takes the value 1 if all successor tasks of task
i are scheduled before it and 0 otherwise. Thus, the makespan for the entire
schedule of tasks is

Pi=N

i=1 ti(1 � Zi). The maximum makespan is
Pi=N

i=1 ti;

and the minimum makespan is zero. Also, the maximum penalty possible isPi=N

i=1

P
j2Si

Qij and the minimum penalty is zero.

The problem can then be stated as follows: Given a common deadline T by
which the entire schedule must be completed, it is necessary to determine the
set of precedences that will have to be violated to meet this timing constraint.
This can be formulated as

min
i=NX

i=1

X

j2Si

IijPij (1.1)

subject to:

i=NX

i=1

(ti(1� Zi)) � T (1.2)

12 Chapter 1

Iij 2 f0; 1g (1.3)

Solution. By the assumptions of the model, any tasks that are scheduled to
execute after all successor tasks will be processed in zero time, i.e. those tasks
will be deleted. If we consider all possible schedules, we can calculate the sum
of penalties as a result of tasks executing out of order. We can also calculate
the makespan of the schedule, which is a�ected by out of order tasks that may
not be executed.

While exhaustive enumeration provides a solution, we observe that this problem
is similar to the well known knapsack problem [14]. In the knapsack problem, we
seek to �ll a container (knapsack) of limited weight capacity (or volume) with
a series of objects. Each object has a weight and a value. The goal is to �ll the
knapsack such that total value is maximized without exceeding the capacity.
If we begin with a schedule that requires all tasks to be deleted (i.e. an empty
knapsack), then this schedule has the shortest makespan, but also the highest
penalty. If we then accept a slightly longer makespan, the question arises as
to just what task or tasks of the deleted set should be executed (by scheduling
it prior to all successor tasks), such that the makespan is less than or equal
to the longer makespan, and the reduction in penalty is maximized. We then
again increase the allowable makespan, and again choose tasks to �ll the time
with the maximum reduction in penalty. Through this process we are solving
successive knapsacks, each of a slightly larger size. While at �rst, this appears
to be unacceptably tedious, dynamic programming [14] provides a solution to
a knapsack of given size by using the solutions of smaller knapsacks. Thus, by
using dynamic programming to solve the problem for the maximummakespan
(all tasks included), we will solve the problem for all shorter makespans in the
process, and hence de�ne the frontier.

The dynamic programming algorithmprovides an optimal solution to the knap-
sack problem by starting with a knapsack of size 0. For this knapsack size, the
solution is simply the null set of tasks. For a knapsack of size 1, choose from
the set of deleted tasks with processing time of 1 (or less), the single task as-
sociated with the greatest penalty. If no task can be found, then the solution
for 1 is the same as for 0.

For a knapsack of size 2, we consider a solution using either of the two previous
solutions (knapsacks of size 0 and 1) and use the best one. In either case, add
a single task such that a) the task hasn't been used in the previous solution,
b) the total makespan is equal or less than the speci�ed deadline T (knapsack
size), and c) the task has the greatest penalty if there is a choice.

Unifying Scheduling and Concurrency Control 13

In general, for knapsack of size K, we try to add a single task which meets
conditions a, b and c above, for each previous solution for knapsacks of size
K-1, K-2, : : :0. Of these K possibilities, choose the best one (that is, the one
with the greatest total penalty reduction). If no solution can be found for K,
then the solution for K is the same as the solution for K-1.

The graph of Figure 4 shows the solution points for all possible schedules of the
tasks in our real-time database example of Tables 1 and 2. Each point represents
a makespan and penalty for one or more schedules. Of speci�c interest are
the points connected by a series of lines. These are the points established by
dynamic programming that de�ne the frontier. In this restricted model, \good"
logical performance involves minimizing penalty, and \good" temporal penalty
involves minimizingmakespan. Thus, each point on the frontier is one for which
there are no other points with a lower penalty and a shorter makespan. It is
among these frontier points that the best schedule exists. The point that is
ultimately chosen is determined by the user's requirements in the particular
application.

In our example, if the speci�ed deadline is 10, then the subset of frontier points
that can be chosen are (10,24), (9,26), (7,28), and (5,36). While these points
meet the deadline, they su�er in database precision as evidenced by the high
penalties. If the database user requires exact precision in the database, then
he must be willing to wait for the entire schedule to complete, and miss the
speci�ed deadline. Table 3 shows the frontier points of our example, and lists a
schedule of tasks which results in the shown performance measures. Recall that
each frontier point can be generated by several di�erent schedules For purposes
of illustration, we show only one schedule for each point.

While the restrictions described by this version of the model may seem to be
rather limiting, there are real applications for which this model is su�cient.
For example, consider a contact classi�cation application on a submarine. The
goal of such an application is to detect unknown contacts in the vicinity of
the submarine and attempt to classify them based on sensor and other data
collected about the contact. The actual classi�cation involves reading data
from a real-time database, calculating a best guess at the type of contact, and
displaying a result to the user. So, there are precedence constraints between
each of the database reads and the calculate task. It may be the case that
some data to be read is more valuable than other data and so this would be
reected in the associated penalties. Clearly in this example, the sooner the
classi�cation is made, the more time the commander has to react in case the
contact turns out to be unfriendly. On the other hand, the more data that

14 Chapter 1

0

5

10

15

20

25

30

35

40

0510152025

Makespan

P
en

al
ty

Schedules

Frontier

Figure 4 Example Frontier

Schedule Makespan Penalty
(1 2 3 4 5 6 7) 23 0
(1 2 4 3 5 6 7) 20 4
(1 2 3 4 6 7 5) 19 5
(1 2 4 3 6 7 5) 16 9
(1 2 5 6 7 4 3) 15 13
(1 2 3 6 7 4 5) 14 14
(1 2 6 7 4 3 5) 11 18
(2 3 1 6 7 4 5) 10 24
(1 6 7 4 3 2 5) 9 26
(2 6 7 4 3 1 5) 7 28
(6 7 4 3 1 2 5) 5 36

Table 3 Frontier Points For Sample Problem

Unifying Scheduling and Concurrency Control 15

is read, the more accurate will be the estimate of classi�cation. We can also
see that there is no reason to perform a read after the calculations have been
performed. This example indicates the trade-o� that must be made between
logical consistency and temporal consistency in the context of this restricted
model.

3.2 Problem 2: Independent Transactions

with Deadlines

Tomove closer to the general scheduling problem that we want to solve, consider
a model that allows deadlines on transactions, and some precedence constraints
within transaction tasks, but does not allow for any precedence constraints
between transactions. The restrictions that this model places on the general
model are listed below.

Restrictions:

1. Temporal value functions express deadlines only. The measure of
temporal consistency for this model is maximum tardiness of tasks. This
measure was chosen because an earliest deadline �rst priority assignment
scheme is known to be optimal for minimizing maximum tardiness. Ac-
cordingly, value functions are restricted to a unit step function: value 1
prior to and at the deadline and value 0 after the deadline.

2. Only the �nal task in a transaction has a deadline. While transac-
tions are made up of several tasks, only the �nal task of the transaction
has a deadline. This equates to a total deadline on the entire transaction,
which is quite often the case in many real-time database applications.

3. Precedence orderings can only be expressed between non-deadline
tasks and the deadline task within a transaction. Furthermore,
a non-deadline task may only be expressed as a predecessor to a single
deadline task. This restriction enforces independence among transactions.
Thus, there are no precedence constraints between tasks from di�erent
transactions.

This model brings us closer to the more general model than the previous re-
stricted model. Consider several transactions, each with an independent dead-
line. Each transaction has one or more tasks, and these tasks can interleave in

16 Chapter 1

such a way that maximum tardiness is minimized. When there is not enough
time to execute all tasks, low value predecessor tasks are moved to the end
of the schedule so that transactions can meet deadlines, but at the cost of
executing the predecessor task out of order.

Restricted Formal Model 2. Formally, the model for the second restricted
problem consists of a set of partially ordered tasks, 1,2,..,N where each task i =
1; 2; :::; N has an associated processing time ti, and an associated completion
time ci. There is a subset of these tasks, D, where the number of tasks in D is
M � N . Each task i in D has an associated deadline, di. Another set of tasks,
Pi represents the set of predecessor tasks to task i 2 D. For each task j 2 Pi,
there is a penalty Qji for scheduling task i before task j. Also associated with
each task j 2 Pi is an indicator variable Iji which takes the value 0 if j is
scheduled before i and 1 if i is scheduled before j.

The set of deadline tasks D and the predecessor task sets Pi are disjoint. That
is we have:

8i2DD \ Pi = ;

Also, no task is a predecessor of more than one deadline task:

8i6=jPi \ Pj = ;

Finally, we assume that the tasks are ordered by their deadlines. So we have
di � dj if i � j.

Given this model, the scheduling goal is to minimize both maximum tardiness
(maxi2D(ci � di)) and penalty incurred (

P
j2D

P
i2Pj

IijQij).

Solution. This problem is a multiple knapsack problem where the tasks of
each distinct transaction must �t into a time frame delimited by the deadline
of the transaction. A solution to this model is very similar to the solution for
the �rst restricted model, and we are currently formalizing it.

Again, note that while this is not the full general model of real-time database
scheduling and concurrency control, applications exist for which this restricted
model is su�cient. Recall the contact classi�cation example described in Sec-
tion 3.1, but now with multiple contacts to be classi�ed. Each of these classi�-
cations can be considered an independent transaction with its own deadline that

Unifying Scheduling and Concurrency Control 17

depends on the time at which the contact was detected. Again, the database
read tasks that should be performed before the associated classi�cation calcu-
lation can be sacri�ced in order to meet the transaction deadline.

4 CONCLUSION

In this paper we have presented a general model for unifying real-time database
scheduling and concurrency control. We have also presented two restricted ver-
sions of the general scheduling model. The �rst model reduces to the knapsack
problem, for which dynamic programming provides schedules that comprise the
frontier. A similar approach may be possible for our second problem. While we
have not solved the general problem, the solutions that we have developed can
apply to a large subset of real-time database applications. Furthermore, these
solutions are stepping stones towards a more general solution. We anticipate
that as the model becomes more general, algorithmic approaches like dynamic
programming may not be practical. We expect that a heuristic approach will
be needed once we remove most of the restrictions and approach the general
problem of unifying scheduling and concurrency control in real-time databases.

Our scheduling model is general by design. That is, we have purposely made
it as general as possible so that it can apply to a wide variety of scheduling
problems. For instance, presently most real-time database scheduling and con-
currency control constraints are expressed in terms of deadlines and locking.
Our model can express these constraints. Recall that Figure 1 depicts the value
functions for tasks with soft and �rm deadlines. Two-phase read/write locking
can be expressed using the partial ordering notation provided by our model
and extended by [12]. The strength of our model is that while it can express
most currently well-known temporal and logical constraints like deadlines and
locking, it can also apply to more general temporal and logical constraints.

The frontier approach that we represent in our model allows a user to make the
trade-o� between temporal and logical consistency that is appropriate to the
problem domain. Traditional approaches to scheduling force the user to choose
between logical performance and temporal performance in an all-or-nothing
way. Most schedulers for real-time systems use a secondary criteria approach,
or a simple variation. The secondary approach is limited in that it seeks to
maximize a secondary criteria subject to optimizing the primary criteria. The
frontier approach to bi-criteria scheduling considers each criterion equally and
therefore the trade-o� can be made according to the application requirements.

18 Chapter 1

One interesting characteristic of our general model is that the concepts can scale
from the micro level to the macro level. Temporal and logical constraints can be
applied to the low level of transaction reads and writes, as we have illustrated
here. The same trade-o� between logical and temporal consistency can be made
at the level of major functions. For example, in a mission planning system for
an autonomous robotic device, high level goals can be decomposed into lower
level goals, perhaps with intermediate deadlines and precedence constraints
between them. Using similar techniques to those developed here for database
reads and writes, we can de�ne a frontier of trade-o�s between meeting mission
deadlines and completing all requested tasks correctly. Similar applications
in exible manufacturing systems, �nancial systems and military applications
abound.

The scheduling technique discussed here still presents further challenges for
implementation in a real-time system. We recognize that, given the solution
to restricted problems such as those presented here, the solution to the general
problem is still a long way o�. With su�cient restrictions on the speci�ca-
tion of logical and temporal constraints, however, we are con�dent a practical
scheduling technique can be found. In this paper, we have presented a sound
theoretical foundation for this future work.

Acknowledgements

This work has been supported in part by The O�ce of Naval Research under
grant #535398.

REFERENCES

[1] Philip S. Yu, Kun-Lung Wu, Kwei-Jay Lin, and Sang H. Son. On real-time
databases: Concurrency control and scheduling. Proceedings of the IEEE,
82(1):140{157, January 1994.

[2] Lisa Cingiser DiPippo and Victor Fay Wolfe. Object-based semantic real-
time concurrency control with bounded imprecision. IEEE Transactions

on Knowledge and Data Engineering, 9(1), January 1997.

Unifying Scheduling and Concurrency Control 19

[3] Lisa B. Cingiser DiPippo and Victor Fay Wolfe. Object-based semantic
real-time concurrency control. In Proceedings of IEEE Real-Time Systems

Symposium, December 1993.

[4] C. Chuen-Lung and R. Bul�n. Scheduling a single machine to minimize two
criteria: Maximum tardiness and number of tardy jobs. IEE Transactions,
26(5):76{84, Sep 1994.

[5] S. French. Sequencing and Scheduling, An Introduction to the Mathematics

of the Job-Shop. Ellis Horwood Limited, 1982.

[6] A. Hariris and C. Potts. Single machine scheduling with deadlines to
minimize the weighted number of tardy jobs. Management Science, 40(12),
1994.

[7] G. Vairaktarakis and L. Chung-Yee. The single-machine scheduling prob-
lem to minimize total tardiness subject to minimimum number of tardy
jobs. IEE Transactions, 27:250{256, 1995.

[8] Douglas Locke. Best-e�ort decision making for real-time scheduling. PhD
Dissertation, Department of Computer Science, Carnegie-Mellon Univer-
sity, 1986.

[9] Raymond Clark. Scheduling dependent real-time activities. PhD Disserta-
tion, Department of Computer Science, Carnegie-Mellon University, 1990.

[10] D. Jensen. Real-time manifesto. Published on the Internet:
http//www.realtime-os.com/rtmanifesto/, 1996.

[11] S. Westin V. Wolfe, K. Lau. Real-time object-oriented database support
for program stock trading. Journal of Database Management, 5(2):3{17,
1994.

[12] Greg Jones and Manbir Sodhi. A method for describing operation se-
quences in exible manufacturing systems. In Proceedings of the Third In-

ternational Conference on Computer Integrated Manufacturing, July 1995.

[13] Krithi Ramamritham and Calton Pu. A formal characterization of epsilon
serializability. IEEE Transactions on Knowledge and Data Engineering,
7(6), December 1995.

[14] S. Martello and P. Toth. Knapsack Problems; Algorithms and Computer

Implementations. John Wiley and Sons, 1990.

