
1
THE RTSORAC REAL-TIME

OBJECT-ORIENTED DATABASE

PROTOTYPE

V. F. Wolfe, J.J. Prichard, L.C. DiPippo, and J.
Black

Computer Science Department University of Rhode Island

Kingston, Rhode Island 02881 USA

1 INTRODUCTION

Applications that interact with their environments, such as automated vehicle
control, manufacturing, and air-tra�c control, have large volumes of time-
constrained data on which time-constrained transactions may operate. Such
applications can be supported by real-time database management systems [16].
Additionally, these applications often involve complex data types with complex
associations among the data items. The vast majority of work on real-time
databases to date has used the relational data model [16, 23], which has limi-
tations for complex data [24].

This chapter presents a real-time object-oriented data model called RTSORAC
(Real-Time Semantic Objects Relationships And Constraints) that incor-
porates time-constrained data and time-constrained transactions of real-time
databases with the support for complex data provided by the object-oriented
model. The chapter also presents our prototype system which is based upon
the RTSORAC model. The prototype is implemented as a real-time extension
to the widely-available Open Object-Oriented Database System (Open OODB)
[21].

The RTSORAC model supports the expression of temporal consistency con-
straints on data. Temporal consistency constraints express how \old" data can
be to still be considered valid. Absolute temporal consistency restricts the age
of a single data item. For example, in an automated train control system, the
data corresponding to a sensor that measures the speed of the train should be
updated often, (e.g. every �ve seconds). The value of the speed is temporally
consistent as long as it is no more than �ve seconds old. Relative temporal

1

2 Chapter 1

consistency restricts the relative ages of a group of data items with respect to
each other. For example, if the train control system computes the new fuel
consumption levels using the current speed and position on the tracks, it is im-
portant that the ages of the speed and position data be relatively close to one
another (e.g. within two seconds) so that they represent the \same" snapshot
of the environment.

RTSORAC also supports the expression of time constrained transactions. Tim-
ing constraints on transactions come from one of two sources. First, temporal
consistency requirements of the data impose timing constraints on a transac-
tion. For instance, the period of a sensor transaction is dictated by the absolute
temporal consistency requirements of the sensor data that it writes. The sec-
ond source of timing constraints on transactions is system or user requirements
on reaction time. There are typically two types of timing constraints on trans-
actions: absolute timing constraints (e.g. earliest start time, latest �nish time)
and periodic timing constraints (e.g. frequency of transaction initiation). The
criticality of meeting timing constraints is often characterized as hard real-
time or soft real-time. Although predictability is desirable, it is very di�cult to
achieve in a complex database system [23]. In the RTSORAC model and proto-
type, we concentrate on soft real-time database management, where providing
predictability is desirable, but not necessary.

The addition of timing constraints on transactions and data requires advanced
transaction scheduling and concurrency control techniques [1, 3, 23]. Trans-
action schedules should meet timing constraints and they should maintain the
logical consistency of the data in the database. Most conventional database sys-
tem concurrency control techniques seek to maintain logical consistency of data
while not supporting temporal consistency and transaction timing constraints.
For instance, a conventional technique may block a transaction with tight tim-
ing constraints or one that updates temporally invalid data if the transaction
attempts to write to a data item that another transaction is reading. Alterna-
tively, a concurrency control technique could seek to maintain temporal con-
sistency of a data item by preempting the transaction that is reading the data
item in favor of an update transaction or one with tighter timing constraints.
However, this preemption may violate the logical consistency of the data or
the logical consistency of the preempted reading transaction. The RTSORAC
model supports expression of both logical and temporal consistency require-
ments and their trade-o�s, as described in Section 2. Our prototype system
uses a novel real-time semantic concurrency control technique to enforce these
constraints and trade-o�s, as described in Section 3.

RTSORAC RT OO Database 3

In situations where logical consistency is traded for temporal consistency, im-
precision may be introduced into a transaction's \view" of the data or into the
data value itself. Many real-time control applications allow a certain amount of
imprecision . For instance, it may be su�cient for the stored data value repre-
senting a train's oil pressure to be within a speci�ed number of units of an exact
value. Also, since much of the data in real-time applications is periodically read
from sensors, allowing temporary imprecision may be permissible because pre-
cise values can be restored on the next update. However, even if imprecision is
allowed, it typically must be bounded in the system. The RTSORAC model of
Section 2 provides for the expression of imprecision accumulation and bounds;
Section 3 describes how the prototype system's concurrency control technique
enforces the imprecision bounds.

Other work has been done on temporal consistency enforcement, real-time
transaction management, and imprecision in real-time databases (see [23] for
a survey). This work has primarily involved extensions to the relational data
model. Although the relational model is useful for many applications, there are
several reasons why we believe that it is not as well-suited as an object-oriented
database model (OODM) (for a survey of object-oriented database research see
[24]) for many other real-time applications. An OODM allows for the speci-
�cation of more complex data types than those typically allowed in relational
databases. The encapsulation mechanisms of a OODM allow constraints that
are speci�c to a data object to be enforced within the object. That is, instead
of imposing a correctness criterion that ignores temporal consistency, such as
serializability, the schema designer can express both logical and temporal con-
sistency constraints for each individual object. This allows for more
exible cor-
rectness criteria to be used. The capability to include user-de�ned operations
(methods) on data objects can improve real-time capabilities by providing com-
plex operations with well-known timing behavior and by allowing a wide range
of operation granularities for semantic real-time concurrency control. That is,
instead of only enforcing concurrency among read and write operations, as is
typically done in relational data models, the OODM can potentially allow for
the enforcement of concurrency among a rich set of user-de�ned operations on
objects.

The remainder of this chapter is structured as follows. Section 2 describes
the RTSORAC real-time object-oriented data model. Section 3 summarizes
our prototype development which includes techniques for real-time concurrency
control, real-time scheduling, and data de�nition/data manipulation under the
RTSORAC model. Section 4 reviews the strengths, weaknesses, and current
work involving the model and implementation.

4 Chapter 1

2 THE RTSORAC MODEL

The RTSORAC model incorporates features that support the requirements
of a real-time database into an extended object-oriented model. It has three
components that model the properties of a real-time object-oriented database:
objects, relationships and transactions. Objects represent database entities.
RTSORAC extends a traditional object model with attributes that have time
and imprecision �elds. Objects are also extended to express constraints: logi-
cal constraints (on the value �elds of attributes), temporal constraints (on the
time �elds of attributes), and bounds on imprecision (on the imprecision �elds
of attributes). To support trade-o�s among con
icting constraints, each ob-
ject also expresses a compatibility function among its methods. RTSORAC
relationships represent associations among the database objects. Relationships
also express inter-object constraints. RTSORAC transactions access the ob-
jects and relationships in the database. These transactions can have timing
and imprecision constraints.

We now describe each of the RTSORAC model components in detail.

2.1 Objects

An object (Figure 1) consists of �ve components, hN;A;M;C;CF i, where N is
a unique name or identi�er, A is a set of attributes, M is a set of methods, C
is a set of constraints, and CF is a compatibility function. Figure 2 illustrates
an example of a Train object (adapted from [4]) for storing information about
a train control system in a database.

Object = hN;A;M;C;CF i
N = UniqueID

A = fa1; a2; :::; amg where attribute ai = hNa; V; T; Ii
M = fm1;m2; :::;mng where method mi = hNm; Arg;Exc;Op;OCi
C = fc1; c2; :::; csg where constraint ci = hNc; AttrSet; P red;ERi
CF = compatibility function

Figure 1 Object characteristics in RTSORAC

Attributes.

Each attribute of an object is characterized by hNa; V; T; Ii. Na is the name of
the attribute. The second �eld, V , is used to store the value of the attribute,

RTSORAC RT OO Database 5

and may be of some abstract data type. The next �eld, T , is used to store the
time at which the value was recorded. Access to the time �eld of an attribute is
necessary for maintaining the attribute's temporal consistency. For example, in
the Train object, there is an attribute for storing the oil pressure called OilPr

which is updated periodically by a sensor. This update is expected every thirty
seconds, thus the OilPr attribute is considered temporally inconsistent if the
update does not occur within that time frame. The system must examine the
time �eld of the OilPr attribute to determine if the update occurs as expected.

The last �eld, I, of an attribute is used to store the amount of imprecision
associated with the attribute. This �eld is of the same type as the value �eld
V . We elaborate on the management of imprecision in our discussion of an
object's compatibility function later in this section, and in Section 3.4.

Get_OilTemp()

M

C : Pred

N Train0294

CF

...

A

OilPressure

FuelQuantity

Name

...

OilPressure > 5

OilPressure.Time >
 Now-30*seconds

EngineRPM

ShowLog(LogName)

Get_OilPressure()

ThrottleSetting

Operator Put_OilPressure(OPreading)

Figure 2 Example of Train object

Methods.

Each method of an object is of the form hNm; Arg;Exc;Op;OCi. Nm is the
name of the method. Arg is a set of arguments for the method, where each
argument has the same components as an attribute, and is used to pass infor-
mation in and/or out of the method. Exc is a set of exceptions that may be
raised by the method to signal that the method has terminated abnormally.

Op is a set of operations that represent the actions of the method. These op-
erations include statements for conditional branching, looping, I/O, and reads
and writes to an attribute's value, time, and imprecision �elds.

The last characteristic of a method, OC, is a set of operation constraints. An
operation constraint is of the form hNoc; OpSet; Pred;ERi where Noc is the
name of the operation constraint, OpSet is a subset of the operations in Op,

6 Chapter 1

Pred is a predicate (Boolean expression), and ER is an enforcement rule. The
predicate is speci�ed over OpSet to express precedence constraints, execution
constraints, and timing constraints [22]. The enforcement rule is used to express
the action to take if the predicate evaluates to false. A more complete descrip-
tion of an enforcement rule can be found in the paragraphs below describing
constraints.

Here is an example of an operation constraint predicate in the Train object:

Pred : complete(Put OilPr) < NOW + 5*seconds

A deadline of NOW + 5*seconds has been speci�ed for the completion of the
Put OilPr method. Note the use of a special atom complete(e), which rep-
resents the completion time of the executable entity e. Other atoms that are
useful in the expression of timing constraints include start(e), wcet(e), and
request(e) which represent the execution start time, worst case execution
time, and the execution request time of entity e respectively.

Constraints.

The constraints of an object permit the speci�cation of correct object state.
Each constraint is of the form hNc; AttrSet; P red;ERi. Nc is the name of the
constraint. AttrSet is a subset of attributes of the object. Pred is a predicate
that is speci�ed using attributes from the AttrSet. The predicate can be used
to express the logical consistency requirements by using value �elds of the
attributes. It can express temporal consistency requirements by using the time
�elds of attributes. It can express imprecision limits by using the imprecision
�elds of attributes.

The enforcement rule (ER) is executed when the predicate evaluates to false,
and is of the form hExc;Op;OCi. Exc is a set of exceptions that the enforce-
ment rule may signal, Op is a set of operations that represent the actions of the
enforcement rule, and OC is a set of operation constraints on the execution of
the enforcement rule.

As an example of a temporal consistency constraint, consider the following.
As mentioned earlier, the Train object has an oil pressure attribute that is
updated with the latest sensor reading every thirty seconds. To maintain the
temporal consistency of this attribute, the following constraint is de�ned:

RTSORAC RT OO Database 7

N : OilPr avi

AttrSet : fOilPrg
Pred : OilPr.time > Now - 30*seconds

ER : if Missed <= 2 then

OilPr.time = Now

Missed = Missed + 1

signal OilPr Warning

else signal OilPr Alert

The enforcement rule speci�es that if only one or two of the readings have been
missed, a counter is incremented indicating that a reading has been missed and
a warning is signaled using the exception OilPr Warning. If more than two
readings have been missed, then an exception OilPr Alert is signaled, which
might lead to a message being sent to the train operator. The counter Missed
is reset to zero whenever a new sensor reading is written to the OilPr attribute.

Compatibility Function.

The compatibility function of an object expresses the semantics of allowable
concurrent execution of each ordered pair of methods in the object. For each
ordered pair of methods, (mi;mj), a Boolean expression (BEi;j) is de�ned.
BEi;j can be evaluated to determine whether or not mi and mj can execute
concurrently. In many object-oriented systems, the execution of a single method
of an object prevents any other methods of the object from being executed, i.e.
the entire object is locked upon invocation of a single method. Through the
use of the compatibility function, the designer of an object can allow more

exibility in sharing of objects by de�ning the semantics of the compatibility
of each pair of methods.

In the ordered pair (mi;mj) for which BEi;j is de�ned, mi represents a method
that has an active invocation, and mj represents a method for which an invoca-
tion has been requested by a transaction. The boolean expression may involve
predicates for several system characteristics including: a�ected sets [5], which
are the attributes of the object that can be read or written by a method; the
current time and the temporal consistency requirements of attributes; the cur-
rent amounts and limits of imprecision of attributes and method arguments;
the object's other active methods, as well as other characteristics [8]. All of the
information that the compatibility function uses to make its determination is
available locally within the object or in the arguments of the methods involved.
If the compatibility function evaluates to TRUE, then the method invocations
may execute concurrently; otherwise, they should not be allowed to execute
concurrently.

8 Chapter 1

Compatibility Imprecision Accumulation

A: CF (Put OilPr(); Put OilTemp()) = No Imprecision
TRUE

B: CF (Get OilPr(P1); Put OilPr(P2)) = Increment P1 :ImpAmt by
(OilPr:time <= Now � 30 � sec) AND jOilPr:value� P2 :valuej
(jOilPr:value� P2:valuej <=
(P1:implimit� P1 :ImpAmt)

C: CF (Put OilPr(P1); Put OilPr(P2)) = Increment OilPr:ImpAmt by
(jP1:value� P2:valuej <= jP1:value� P2:valuej
OilPr:implimit�OilPr:ImpAmt

Figure 3 Compatibility Function Examples

Based on the semantics of the application, the compatibility function may al-
low method interleavings that introduce imprecision into the attributes and
method arguments. Therefore, in addition to specifying compatibility between
two method invocations, the compatibility function expresses information about
the potential imprecision that could be introduced by interleaving method in-
vocations. There are three potential sources of imprecision when methods invo-
cations mi and mj are interleaved: imprecision in the value of an attribute that
is written by both mi and mj, imprecision in the value of the return arguments
of mi when mi reads attributes written by mj and imprecision in the value of
the return arguments of mj when mj reads attributes written by mi [17].

Figure 3 demonstrates several examples of the compatibility function and its
associated imprecision accumulation for the Train object of Figure 2. In Ex-
ample A of Figure 3, the compatibility function is used to specify that the
methods Put OilPr and Put OilTemp can always run concurrently. This is
appropriate because these two methods access di�erent attributes. No impre-
cision is introduced in this case. Example B demonstrates trading o� logical
consistency for temporal consistency. If the temporal consistency constraint on
the OilPr attribute has been violated (OilPr:time <= Now � 30 � seconds),
then the compatibility function speci�es that the Put OilPr method invoca-
tion can execute concurrently with an active Get OilPr method, presumably
to restore the temporal consistency of the OilPr attribute. The CF restricts
this interleaving to occur only if the amount of imprecision in the argument P1

RTSORAC RT OO Database 9

Relationship = hN;A;M;C;CF; P; ICi
N = UniqueID

A = fa1; a2; :::; amg where attribute ai = hNa; V; T; Ii
M = fm1;m2; :::;mng where method mi = hNm; Arg;Exc;Op;OCi
C = fc1; c2; :::; crg where constraint ci = hNc; AttrSet; P red;ERi
CF = compatibility function
P = fp1; p2; :::; psg where participant pi = hNp; OT;Cardi
IC = fic1; ic2; :::; ictg where interobject constraint

ici = hNic; PartSet; P red;ERi

Figure 4 Relationship Characteristics in RTSORAC

of the Get OilPr method invocation does not exceed the limit speci�ed by the
invoking transaction (P1:implimit, see Section 2.3). The amount of impreci-
sion to add to P1 in this case is also speci�ed by the compatibility function.
Example C demonstrates how the OilPr attribute can become imprecise if two
sensor transactions individually invoke the Put OilPr method and these meth-
ods are allowed to interleave. Note that although we use only simple methods
(essentially reads and writes) in this example, the compatibility function can
specify imprecision accumulation for general object methods [8].

2.2 Relationships

Relationships represent aggregations of two or more objects. In the RTSORAC
model, a relationship (Figure 4) consists of hN;A;M;C;CF; P; ICi. The �rst
�ve components of a relationship are identical to the same components in the
de�nition of an object. In addition, objects that can participate in the relation-
ship are speci�ed in the participant set P , and a set of interobject constraints
is speci�ed in IC.

Figure 5 illustrates an example of an Energy Management relationship for
relating a Train object with a Track object. The Track object stores infor-
mation such as track pro�le and grade, speed limits, maximum load, and power
available. The Energy Management relationship uses both train and track
information to determine control algorithm parameters such as fuel e�cient
throttle and brake settings.

10 Chapter 1

N EnergyMgt34
M

CF

A

...

TrackTrain

Train.Get_Speed() <
 Track.Speed_Limit(Train.Get_Location())

IC : Pred

OptimalThrottleSetting
BestSpeed ...

C : Pred

BestSpeed < 200 Get_BestSpeed()

Get_OptimalThrottleSetting()

C A

M

...

CF

C A

M

...

CF

Track0527NN Train0294

Figure 5 Example of Energy Management relationship

Participants.

Each participant in a relationship is of the form hNp; OT;Cardi. Np is the
name of the participant. OT is the type of the object participating in the
relationship. Card is the cardinality of the participant, which is either single
or multi [7]. Constraints can be used to express cardinality requirements of the
relationship, such as minimum and maximum cardinality of the participants.
In Figure 5, Train and Track are single cardinality participants.

Interobject Constraints.

The interobject constraints placed on objects in the participant set are of the
form:
hNic; PartSet; P red;ERi. Nic, Pred, and ER are as in object constraints,
and PartSet is a subset of the relationship's participant set P . The predicate
is expressed using objects from the PartSet, allowing the constraint to be
speci�ed over multiple objects participating in the relationship. Enforcement
rules are de�ned as before by hExc;Op;OCi, however the operations in Op

can now include invocations of methods of the objects participating in the
relationship.

As an example of an interobject constraint, consider the Energy Manage-

ment relationship in Figure 5. A Train object will be on one speci�c segment

RTSORAC RT OO Database 11

of track, represented by the Track object participating in the relationship. The
train should obey the speed limits set on the track segment, so the following
interobject constraint predicate could be speci�ed:

Pred : Train.Get Speed() < Track.Speed Limit(Train.Get Location())

If the speed of the train exceeds the speed limit posted at the train's location
on the track, the corresponding enforcement rule signals SpeedLimitExceeded.

2.3 Transactions

A transaction has six components, hNt; O;OC; PreCond; PostCond;Resulti,
where Nt is a unique name or identi�er, O is a set of operations, OC is a set of
operation constraints, PreCond is a precondition, PostCond is a postcondition,
and Result is the result of the transaction. Each of these components is brie
y
described below.

Operations.

The operations in O represent the actions of the transaction. They include
statements of the language in which the transaction is written, and method
invocations on database objects (MI). Method invocations (MI) are of the
form hMN;ArgInfoi, where MN is the method name (prepended with the
appropriate object identi�er) and ArgInfo is a set of tuples containing argu-
ment information. Each argument tuple is of the form haa;maximp; tcri where
aa is the actual argument to the method, maximp is the maximum allowable
imprecision of the argument, and tcr is the temporal consistency requirement
of the argument. The �elds maximp and tcr are speci�ed only for arguments
that are used to return information to the transaction. These �elds allow the
transaction to specify requirements that di�er from those de�ned on the data
in the objects. For example, the transaction might be willing to accept a value
whose temporal consistency requirements have been violated so as to meet
other timing constraints. The data may still be useful to the transaction be-
cause of other available information (for example, it may be able to do some
extrapolation). A transaction may also specify that data returned by a method
invocation must be precise (maximp is zero).

12 Chapter 1

Operation Constraints.

OC is a set of constraints on operations of the transaction. These constraints
are of the same form as the operation constraints speci�ed for methods, hNc;

OpSet; Pred; ERi. They can be used to express precedence constraints, ex-
ecution constraints, and timing constraints. For example, a transaction may
require that a sensor reading be returned within two seconds.

Precondition, Postcondition, Result.

PreCond represents preconditions that must be satis�ed before a transaction
is made ready for execution. For example, it may be appropriate for a trans-
action to execute only if some speci�ed event has occurred. The event may
be the successful termination of another transaction, or a given clock time.
PostCond represents postconditions that must be satis�ed upon completion of
the operations of the transaction. The postconditions can be used to specify
the semantics of what constitutes a commit of a transaction containing sub-
transactions. Result represents information that is returned by the transaction.
This may include values read from objects as well as values computed by the
transaction.

3 IMPLEMENTATION OF THE RTSORAC

MODEL

To implement the RTSORAC model in a prototype system, we have extended
the Open Object-Oriented Database System (Open OODB) [21]. The open,
modular design of Open OODB facilitates extending it with features to sup-
port speci�cation and management of RTSORAC objects, relationships, and
transactions. The following sections summarize the Open OODB system, de-
scribe interface extensions to Open OODB, and discuss the extensions to the
Open OODB architecture. The interface extensions involve a graphic interface
for specifying classes for RTSORAC objects. Extensions to the Open OODB
architecture include real-time transaction management that performs earliest-
deadline-�rst scheduling and real-time object management for shared-memory
RTSORAC objects.

RTSORAC RT OO Database 13

3.1 Open Object-Oriented Database System

The Open OODB system was initiated by the U.S. Advanced Research Projects
Agency (ARPA). An alpha version was released in 1993 and subsequent ver-
sions have been released in 1996. The project's goal is to establish a common,
modular, modi�able, object-oriented database system suitable to be used by a
wide range of researchers and developers [21]. Open OODB is designed so that
features such as transaction management, query interface, persistence, etc. are
modules that can be individually \unplugged" and replaced by other modules.

Open OODB's computational model strives to transparently extend the be-
havior of objects that are found in application programming languages. The
current release is a transparent extension to C++. In Open OODB's computa-
tional model, objects can exist in one of many address spaces. Currently there
are two address spaces supported: transient, which resides in main memory,
and persistent, which resides remotely in the Exodus [6] storage manager. The
system provides communication and translation facilities to allow transfers be-
tween di�erent address spaces to an Open OODB transaction's address space.
That is, an Open OODB transaction that wishes to use an object is granted a
lock on that object and the Open OODB run-time system copies the object into
the transaction's address space. There are language extensions to C++ that
specify requests for objects as well as extensions that specify other database
functionality.

The basic conceptual system architecture of Open OODB is shown in Figure 6
(along with the proposed real-time extensions that we have added). The sup-
port managers are modules that are currently implemented as library routines
that get linked into the user's C++ program to (transparently) provide the ex-
tended database capabilities. The Address Space Manager supports mappings
between global identi�ers and object identi�ers used in the local address space.
The Communication Manager provides support for interfacing to one or more
underlying communications mechanisms. The Translation Manager translates
an object stored in one format to a target format. For instance, it translates
objects stored in Exodus into objects suitable for a C++ application program.
The Data Dictionary is a globally known repository of the data model and
type information, instance information, name mappings (of application names
to instances) and possibly system con�guration and resource utilization infor-
mation.

Policy managers (PMs) provide extenders to the behavior of programs by coor-
dinating the support managers just described. The Persistence Policy Manager

14 Chapter 1

Application

OQL RTSQL

key:

Existing Open OODB

Real-Time Extensions

Persistence
PM

Distribution
PM

Object
PM

RT Trans.
PM

...

Meta Architecture Support (Policy Managers)

Support Modules (Managers)

Address
Space Communication Translation

Data
Dictionary

Thread-Based Real-Time POSIX-Compliant
Operating System

Real-Time
Persistent

Store

im
pl

ic
it

in
te

rf
ac

e

Query
PM

Network

C++ API

Exodus

Figure 6 Open OODB Architecture With Real-Time Extensions

RTSORAC RT OO Database 15

provides applications with an interface through which they can create, access,
and manipulate persistent objects in various address spaces. The Transaction
Policy Manager enables concurrent access to persistent and transient data; its
implementation in the current release is a trivial mapping to Exodus write
locks on all objects. Other policy managers include those for distribution,
change management, indexing, and query processing.

The query interface is in two forms: an extended version of C++ and an SQL-
like language called OQL, which must be embedded in C++ code [21]. The
C++ interface is C++ code extended with methods that invoke capabilities
of the managers. OQL has a very basic set of SQL-like commands that work
on sets of objects. Although the current version is skeletal, actual examples
can be executed. It relies heavily on Exodus as its persistent storage and
for concurrency control and recovery. Eventually, as Open OODB development
progresses, many of the manager capabilities will be incorporated into the Open
OODB architecture (Figure 6).

3.2 RTSORAC Extensions to the Open

OODB Interface

In the current version of Open OODB, the schema is speci�ed as a collection
of C++ classes and transactions are speci�ed as C++ programs, or as OQL
programs that are compiled to C++ programs. Recall that objects and transac-
tions in the RTSORAC model have additional features beyond those supplied
by C++ classes and programs. To support these additional capabilities, we
have added two additional interfaces to Open OODB: a graphic interface to
specify classes for RTSORAC objects, and real-time extensions to the standard
SQL query language to specify RTSORAC transactions.

Graphic RTSORAC Schema Speci�cation. A schema in our extended
Open OODB prototype is speci�ed as classes for RTSORAC objects which are
translated to C++ code suitable to execute on the extended Open OODB sys-
tem. Speci�cation of these classes is done with a graphic interface programmed
with X-windows and Motif. The graphic interface directs database schema
speci�cation while following Rumbaugh's OMT model [12] for object-oriented
design with additional real-time features [20]. The interface is a version of a
Motif-based software package called Object-Oriented Designer from Pusan Uni-
versity, Korea, extended to provide facilities to de�ne the RTSORAC model
features that must be added to C++ classes.

16 Chapter 1

Our prototype implementation provides attributes having only
oating point
value �elds. We have designed the capability to create arbitrary real-time
attribute classes by using the type of the value �eld as an argument to a C++
template that provides time and imprecision capabilities. The compatibility
function and constraints are added to classes through a special tool [11] that can
be selected from the graphic interface menu. The tool parses the speci�cation
of a schema object and computes a default compatibility function based on
a�ected sets of methods (see Section 2.1). It then interacts with the schema
designer to incorporate semantic information into the compatibility function.

The interface produces a C++ class speci�cation with certain \meta mem-
bers", including a wait queue, compatibility function, POSIX mutual exclusion
locks (mutexes) and condition variables, and member functions to request and
release locks on the object. These meta members are used by the concurrency
control mechanism described later in Section 3.3.2. The compatibility function
de�ned by the interface tool is structured as a two dimensional array. The rows
represent currently active methods and the columns represent requested meth-
ods. Each element of the array is a TRUE, FALSE, or pointer to a user-de�ned
boolean function. The array element determines whether the methods which
correspond to the element's row and column, are compatible. For instance, the
array representing the compatibility function of a Train object would have a
pointer to a boolean function specifying each of the conditions and associated
imprecision accumulation shown in Figure 3 of Section 2.1.

Transactions. Transactions in our prototype are C++ programs that include
the schema �le of object type declarations which was generated by the graph-
ical interface. Each transaction program is compiled into a POSIX process
that maps all database objects, which reside in shared memory as described in
Section 3.3.2, into its own address space. The process uses calls to the con-
currency control mechanism (Section 3.3.2) to lock objects while using them.
These calls are provided by our Open OODB policy manager code, as shown
in Figure 7 of Section 3.3.2. Once an object is locked, the transaction calls the
object's methods as if the object were in the transaction's own address space.
A transaction process uses calls to the underlying operating system to set its
priority and to set alarms for start times and deadlines.

RTSORAC RT OO Database 17

3.3 RTSORAC Extensions to the Open

OODB Architecture

Our RTSORAC extensions to the Open OODB architecture are designed within
Open OODB's original framework, as shown in Figure 6. We have made two
changes to the system's underlying architecture by implementing extensions
using a real-time POSIX operating system [15] and by incorporating a real-
time persistent storage subsystem. We have also added a policy manager for
real-time transaction management and a policy manager for real-time object
management.

Basic Open OODB Architecture Modi�cations

As shown in Figure 6, our prototyping uses a real-time operating system that is
consistent with the POSIX standards and a real-time persistent storage man-
ager. The current release of Open OODB executes on a Sun Sparc architecture
with the Sun Solaris operating system. Solaris contains many of the real-time
operating system features speci�ed in the IEEE/ISO POSIX real-time oper-
ating system standards [15]. These features include shared memory, priority-
based scheduling and priority-based semaphores.

Our major basic architecture modi�cation is the addition of a real-time persis-
tent store. The current Open OODB version relies heavily on the Exodus stor-
age manager as its persistent store. Exodus's unpredictable execution times,
handling of requests in �rst-come-�rst-serve order rather than priority order,
and conservative locking capabilities, render it unacceptable for a real-time
data management system. Instead of relying on Exodus, we are incorporating
another address space to Open OODB: a real-time persistent address space.
Our current design uses this address space as checkpointed permanent storage
for shared main memory RTSORAC objects (see Section 3.3.2) and for swap
space if all objects can not �t into shared memory.

RTSORAC Object Management

RTSORAC database objects are designed to be kept in shared mainmemory for
fast, predictable access. That is, instead of keeping objects in one of the current
Open OODB address spaces, where they must be copied into a transaction's
local address space for use, the protoype system keeps objects in shared main
memory. The Object Policy Manager (OPM) that we have added to Open

18 Chapter 1

OODB manages this shared memory and provides concurrency control for the
objects. Figure 7 shows the implementation of object management.

Shared Main Memory Management.

In the prototype system, an object keeper process creates a shared mainmemory
segment at system startup. This keeper process may load the shared segment
with object instances, either by restoring previously archived objects, or by in-
stantiating new objects. Transaction processes use the POSIX shared memory
capabilities to map the shared segment into their own virtual address spaces
(see Figure 7), thereby gaining direct access to object instances. Transactions
use an overloaded C++ new operator to dynamically place objects in the shared
segment or to locate existing objects by name. To do this, part of the shared
segment is reserved at a well-known o�set for use by the system as an object
table. The table associates each object's name with the object's o�set from the
shared segment's base address. The table also stores object type information.
The special new operator automatically manages the object table and uses it
to translate object names to o�sets. From this o�set, the new operator creates
a properly typed pointer to the object in the shared memory segment and re-
turns this pointer to the transaction. There is also an overloaded C++ delete

operator for removing objects.

Semantic Locking Object Concurrency Control. Since each transaction
may concurrently map objects in the shared memory segment into its own
virtual address space, we must provide a concurrency control mechanism for the
shared objects. Open OODB's current policy enforces serializability through
exclusive locking of objects by transactions before a transaction makes a copy
of the object into it's own address space. This is quite slow compared to
shared memory accesses. Additionally, the exclusive locking of objects ignores
transaction and data timing constraints.

We have developed a concurrency control technique called semantic locking for
RTSORAC object management [8]. The semantic locking technique is capa-
ble of supporting logical consistency, temporal consistency, and the trade-o�s
between them as well as bounding any resulting imprecision. The technique
utilizes the user-de�ned compatibility function (Section 2.1) of a RTSORAC
object to determine the trade-o� and to de�ne correctness for that particular
object. In this technique, a transaction requests a semantic lock to invoke a
method on an object. Semantic locks are granted based on the evaluation of a
set of conditions and on the evaluation the compatibility function of the object.

RTSORAC RT OO Database 19

When a transaction requests a semantic lock for a method invocation, it calls
the meta member function SLM lock() of the object specifying the method
and the arguments for the requested invocation. The meta member function
acquires the POSIX mutex for access to the object's meta data. When the
mutex is granted, the SLM lock meta member function attempts to acquire
a semantic lock for the transaction. There are two possible outcomes when
a transaction process requests a semantic lock for a method invocation: the
SLM lock meta member function either grants permission to the transaction
process to execute the requested method, or it suspends the requesting trans-
action. A suspended transaction will be awakened and will retry its lock request
whenever a lock is released (discussed later). In either case, the transaction re-
leases the mutex at the end of the SLM lock meta member function. Note that
the OPM uses mutexes to ensure mutual exclusion only for each object's meta
members during the semantic locking mechanism execution; transaction access
to object attributes is controlled with semantic locks.

Figure 8 shows the semantic locking mechanism that the SLM lock meta mem-
ber function performs when a transaction requests a semantic lock for a method
invocation mreq . First, SLM lock computes the maximum amount of impreci-
sion that mreq could introduce into each of the attributes that it writes and
into each of its own return arguments (Step A). It computes these values by
using the amount of imprecision already in the attribute or return argument
and calculating how mreq may update this imprecision through operations that
it performs.

Next, the meta member function evaluates a set of conditional statements
that determine if granting the lock would violate temporal or imprecision con-
straints. The �rst condition ensures that if a transaction requires temporally
valid data, then mreq will not execute if any of the data that it reads will be-
come temporally invalid during its execution time. The other two conditions
test that mreq will not introduce too much imprecision into the attributes that
it writes and into its return arguments.

If all of the above conditions hold, the SLM lockmeta member function updates
the imprecision amounts computed in Step A and saves the old amounts in a
data structure, in case the request is not granted (Step C). The meta member
function then loops to evaluate the compatibility function for mreq with each
currently locked method invocation and with each lock request in the wait queue
for a method invocation with higher priority than mreq (Step D). If all tests
in the loop succeed, the meta member function grants the lock for mreq, adds
it to the active locks set and gives the transaction permission to execute the
method. If any of the conditions or any compatibility test fails, the SLM lock

20 Chapter 1

Transaction
process 0831 Object Keeper

Information

Object table

Shared Memory

Object 1003

Attributes

Meta members

Real-time POSIX Compliant Operating System

C++
Specification

Compile
Link

Preprocess

OPM TPM

 SLM_lock();
 SLM_release();

Graphic
Interface

SQL/RT

Object Keeper
process

RT OOODB Library

Execute

shared

local

main
thread

Object 0730

Attributes

Meta members

Transaction
process 6959

shared

local

main
thread

process
address space

shared

local

main
thread

process
address space

process
address space

Figure 7 Object Management Implementation in Open OODB

RTSORAC RT OO Database 21

Method
Invocation

Initial
Imprecision

Check
Preconditions

Update
Imprecision

Compatibilities
Add Lock
to Active
Locks Set

Enqueue
Request

Restore
ImpAmts

Done

A

B

C D

E

F

G

YES

NO

YES

NO

Figure 8 SLM lock Meta Member Function Outline

meta member function restores the original values of any changed imprecision
amounts (Step E), places the lock request in the priority queue, and suspends
the requesting transaction (Step G).

A transaction must explicitly release the locks that it is granted by calling
the SLM release meta member function on the object. This meta member
function removes the method invocation from the object's active locks set. It
then broadcasts on a POSIX condition variable to awaken all of the suspended
transactions in the object so they may retry their lock requests. Due to the
newly-released lock, it may now be possible to grant some of these previously-
denied locks. The use of a the real-time POSIX scheduler, discussed next,
assures that the awakened transactions make their lock requests in priority
order.

Performance simulations indicate that our semantic locking technique main-
tains temporal consistency better than several other object locking techniques
[10]. In [9] we prove that our Object Manager's semantic locking technique can
bound imprecision in the database and that it can support global correctness
by showing that it can enforce a form of Epsilon Serializability [17] specialized
for object-oriented databases.

22 Chapter 1

RTSORAC Transaction Management

Our Open OODB Transaction Policy Manager (TPM) provides for real-time
scheduling of transaction processes, and transaction timing constraint enforce-
ment.

Real-Time Scheduling. The real-time transaction scheduling performed by
the TPM is essentially a mapping of timing constraints expressed in RTSORAC
transactions into real-time POSIX priorities for transaction processes. This
mapping is designed so that the transaction process priorities realize Earliest-
Deadline-First (EDF) scheduling. EDF scheduling has been shown to be ef-
fective in real-time databases [1], but implementing EDF scheduling using the
capabilities speci�ed by the POSIX interface is non-trivial. The problem is that
optimal EDF scheduling requires in�nite priorities (one for each possible dead-
line), while POSIX mandates a minimum of only 32 priorities1. Furthermore,
POSIX mandates a form of First-In-First-Out (FIFO) scheduling for processes
of the same priority2. FIFO scheduling can adversely a�ect EDF scheduling
since a later deadline may execute before an earlier deadline within same pri-
ority. Our TPM is designed to minimize the violation of EDF transaction
scheduling order while using the capabilities of POSIX. It does this in three
steps:

1. Initial priority assignment is done by mapping the RTSORAC transaction
deadline to a POSIX process priority using the probability distribution of
deadlines in the application. This mapping uses the distribution to equalize
the expected number of processes at any given priority. For example, if
most transaction processes have deadlines in the 50ms to 100ms range, this
range might be split into several POSIX priorities while a range of several
seconds in length might map to a single priority because there is a lower
probability of RTSORAC transactions within that particular larger range
of deadlines.

2. The TPM uses POSIX primitives to shu�e transaction processes within a
priority so that they are queued in deadline order, not FIFO order.

3. The TPM increases priorities of transaction processes as time progresses.
That is, when time passage causes a transaction process to map to a new

1POSIX mandates a minimum of 32 priorities for standard compliance; implementations
may, and often do, provide more priorities.

2There are two other POSIX policies: round robin which is FIFO with a time quantum,
and other, which is non-standard.

RTSORAC RT OO Database 23

(higher) priority because its deadline is nearer, the TPM increases that
transaction process's priority.

Details and simulation results of this scheduling technique are presented in [18].

Transaction Timing Constraint Enforcement. In addition to earliest
deadline �rst scheduling on the processor, the TPM is also responsible for
mapping RTSORAC transaction timing constraints to POSIX primitives for
enforcing timing constraints. In particular, the TPM maps expressed earliest
start times, deadlines, and periods into appropriate POSIX timer primitives. A
RTSORAC transaction's earliest start time e is implemented by setting a timer
for e and suspending the transaction process until the timer signal arrives. A
RTSORAC transaction deadline d is implemented by setting a timer for d. If
the timer signal arrives, it causes the transaction process to jump to the sig-
nal handler, which contains high-level RTSORAC enforcement rule (exception
handling) code. Periodic execution requires repeatedly setting timers for the
start and end of period frames. This enforcement procedure is described in
[22].

4 CONCLUSION

This chapter has presented the RTSORAC model and its use in designing real-
time extensions to the Open OODB system. The model supports expression of
logical consistency, temporal consistency, and imprecision constraints as well
as their trade-o�s for both data objects and transactions. It also supports
expression of complex data types and associations among data items. The pro-
totype uses main-memory objects with semantic real-time concurrency control
to achieve fast access that observes the semantics of the logical, temporal, and
imprecision constraints.

We believe that real-time object-oriented database systems can be e�ective
for many applications that involve management of complex, real-time data.
The RTSORAC model is a useful abstraction of the incorporation of real-time
requirements into object-oriented database systems. The prototyping of the
model in the Open OODB system is an important step towards indicating the
feasibility of the RTSORAC approach.

24 Chapter 1

REFERENCES

[1] Robert Abbott and Hector Garcia-Molina. Scheduling real-time transac-
tions: A performance evaluation. In 14th VLDB Conference, August 1988.

[2] A. Biliris, S. Dar, N. Gehani, H. V. Jagadish, and K. Ramamritham. AS-
SET: A system for supporting extended transactions. In Proceedings of
ACM SIGMOD Conference, May 1994.

[3] A.P. Buchmann, D.R. McCarthy, M. Hsu, and U.Dayal. Time-critical
database scheduling: A framework for integrating real-time scheduling and
concurrency control. In The Fifth International Conference on Data En-
gineering, February 1989.

[4] Grady Booch. Object-Oriented Design. The Benjamin/Cummings Pub-
lishing Company, Redwood City, CA, 1991.

[5] B.R. Badrinath and Krithi Ramamritham. Semantics-based concurrency
control: Beyond commutativity. ACM Transaction on Database Systems,
17(1):163{199, March 1992.

[6] MichaelJ. Carey, David J. DeWitt, Joel E. Richardson, and Eugene J.
Shekita. Object-Oriented Concepts, Databases and Applications. Addison-
Wesley Publishing Company, 1989.

[7] Oscar Diaz and Peter M. D. Gray. Semantic-rich user-de�ned relation-
ship as a main constructor in object-oriented databases. In R.A. Meers-
man, W. Dent, and S. Khosla, editors, Object-Oriented Databases: Analy-
sis,Design & Construction (DS4), pages 207 { 224. Elsevier Science Pub-
lishers, B.V. (North-Holland), 1991.

[8] Lisa B. Cingiser DiPippo and Victor Fay Wolfe. Object-based semantic
real-time concurrency control. In Proceedings of IEEE Real-Time Systems
Symposium, December 1993.

[9] Lisa Cingiser DiPippo and Victor Fay Wolfe. Object-based semantic real-
time concurrency control with bounded imprecision. To appear IEEE
Transactions on Knowledge and Data Engineering.

[10] Lisa Cingiser DiPippo and Victor Fay Wolfe. Performance of object-based
semantic real-time concurrency control Submitted to SIGMOD 97.

[11] David Druin. ??? Master's Thesis. Dept. of Computer Science, The Uni-
versity of Rhode Island, 1996.

RTSORAC RT OO Database 25

[12] J. Rumbaugh et. al. Object-Oriented Modelling and Design. Prentice Hall,
Englewood Cli�s, NJ, 1991.

[13] P. Fortier, JJ Prichard, and Victor Fay Wolfe. SQL/RT: Real-time
database extensions to the SQL standard. To appear in Standards and
Interface Journal, 1994.

[14] Paul Fortier, Victor Fay Wolfe, and JJ Prichard. Flexible real-time SQL
transactions. In IEEE Real-Time Systems Symposium, Dec. 1994.

[15] IEEE. Portable Operating System Interface (POSIX); Part 1: System API;
Ammendment 1: Real-time Extension. IEEE, 1994.

[16] Krithi Ramamritham. Real-time databases. International Journal of Dis-
tributed and Parallel Databases, 1(2), 1993.

[17] Krithi Ramamritham and Calton Pu. A formal characterization of ep-
silon serializability. to appear in Transactions on Knowledge and Data
Engineering.

[18] Joseph Senerchia. A dynamic real-time scheduler for posix 1003.4a compli-
ant operating systems. Master's Thesis. Dept. of Computer Science, The
University of Rhode Island, 1993.

[19] John Stankovic and Krithi Ramamritham. What is predictability for real-
time systems? Real-Time Systems, 2, September 1990.

[20] Bhavani Thurasingham and Alice Schafer. RT-OMT: A real-time object
modeling technique for designing real-time database applications. In Pro-
ceedings of the Second IEEE Workshop on Real-Time Applications, pages
124{129, July 1994.

[21] David L. Wells, Jos�e A. Blakely, and CraigW. Thompson. Architechture of
an open object-oriented database management system. IEEE Computer,
25(10):74{82, October 1992.

[22] Victor Wolfe, Susan Davidson, and Insup Lee. RTC: Language support
for real-time concurrency. Real-Time Systems, 5(1):63{87, March 1993.

[23] Philip S. Yu, Kun-Lung Wu, Kwei-Jay Lin, and Sang H. Son. On real-time
databases: Concurrency control and scheduling. Proceedings of the IEEE,
82(1):140{157, January 1994.

[24] Stanley Zdonik and David Maier. Readings in Object Oriented Database
Systems. Morgan Kau�man, San Mateo, CA, 1990.

