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Abstract

This paper presents a technique that is capable of
supporting two major requirements for concurrency
control in real-time databases: data temporal consis-
tency, and data logical consistency, as well as trade-
o�s between these requirements. Our technique is
based upon a real-time object-oriented database model
in which each object has its own unique compatibil-
ity function that expresses the conditional compatibil-
ity of any two potential concurrent operations on the
object. The conditions use the semantics of the object,
such as allowable imprecision, along with current sys-
tem state, such as time and the active operations on
the object. Our concurrency control technique enforces
the allowable concurrency expressed by the compatibil-
ity function by using semantic locking controlled by
each individual object. The real-time object-oriented
database model and process of evaluating the compat-
ibility function to grant semantic locks are described.

1 Introduction

Many real-time control systems require the support
of a real-time database system to manage large vol-
umes of time-constrained data operated on by time-
constrained transactions. Typical database manage-
ment systems provide concurrency control techniques
that seek to preserve logical consistency of data items
(e.g. read/write locking) and logical consistency of
transactions (e.g. two-phase locking). Although these
two requirements still exist for concurrency control
techniques in real-time databases, two additional re-
quirements are also imposed: the concurrency control
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must support the real-time scheduling algorithm in
enforcing transaction timing constraints, and the con-
currency control technique must support preserving
data temporal consistency constraints, which con-
strain data to be valid only for a certain interval of
time. We are designing an object-based semantic con-
currency control technique that integrates support for
the four real-time concurrency control (RTCC) re-
quirements: transaction temporal consistency, trans-
action logical consistency, data temporal consistency,
and data logical consistency. In this paper we present
the aspects of the technique that handle the data con-
sistency requirements.

There have been many concurrency control and
scheduling techniques developed to support each of
the four RTCC requirements. More speci�cally, each
of these techniques supports a correctness criteria that
de�nes correct behavior of the system for one or more
of the RTCC requirements. A sampling of popular
correctness criteria is depicted in Table 1.

Transaction temporal consistency requirements
constrain when each transaction must execute. As Ta-
ble 1 shows, correctness can range from requiring no
support to requiring full capability of enforcing timing
constraints such as start times, deadlines, and periods
on transactions.

Transaction logical consistency requirements ex-
press how a transaction must be scheduled with re-
spect to accessing data objects. Some systems pro-
vide no support for this, while others enforce serial
transactions by locking all data objects for the dura-
tion of each transaction. Less restrictive correctness
criteria require serializability through techniques such
as two-phase locking and timestamping. Transaction-
based semantic correctness criteria allow the designer
to express logical correctness of a transaction sched-
ule based on knowledge of the speci�c application and
of the actions performed by each transaction. These
criteria are enforced through techniques such as those
that employ user-de�ned compatibility sets of trans-



Temporal Consistency Logical Consistency

� No support � Serial Transactions
Transaction � Delay only required � Serializable transactions

� Periodic only required � Trans.-based semantic correctness
� Start, deadline, period req. � Epsilon-serializable transactions
� No support � Mutual exclusion

Data � Absolute required � Serializable operations
� Relative & absolute req. � Object-based semantic correctness

� Similarity-based correctness

Table 1: Some Correctness Criteria for the Four RTCC Requirements

actions [1]. Epsilon-serializability provides increased
concurrency by allowing each transaction to de�ne its
own limits on the amount of inconsistency that it may
view and that it may write [2].

Data temporal consistency correctness criteria can
range from no temporal constraints to requiring ab-
solute temporal consistency and/or relative temporal
consistency of data. Absolute temporal consistency is
maintained only if the data's value is updated within a
speci�ed time interval (so as to \accurately" reect the
environment it represents). Relative temporal consis-
tency is maintained only if several speci�ed data items
have their values updated within a speci�ed time in-
terval (so as to have them all represent the \same"
state of the environment).

Data logical consistency is the type of consistency
(data integrity) that is maintained in a traditional
database. One form of data logical consistency re-
quires mutual exclusion, which is supported using
techniques such as exclusive locking and monitors.
Another form requires serializable execution of op-
erations on the data; it is supported by techniques
such as read/write locking, and commutativity-based
scheduling [3]. Object-based semantic logical correct-
ness, which is based on the designer's knowledge of
how the data is used, is supported by semantic lock-
ing techniques [4, 5] in which the user de�nes compat-
ibility of locks on the data item. Several correctness
criteria have been recently introduced for similarity-
based scheduling which de�ne correct schedules based
on the amount of imprecision introduced into the data
[6].

Unfortunately, techniques to support one form of
RTCC requirement are often not well-suited to sup-
port another. For instance, many traditional concur-
rency control techniques support only serial or seri-
alizable transaction schedules. There are two major
problems with the use of these techniques in real-time
databases. First, they are only concerned with pre-
serving typical logical correctness of data and trans-
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Figure 1: Concurrency Control Allowable Schedules

actions; they are not concerned with temporal con-
sistency of data or transactions. Second, allowing
only serial or serializable schedules is too restrictive
for real-time databases that must schedule transac-
tions to meet timing constraints. As Figure 1 depicts,
serial schedules are a small subset of all possible log-
ically consistent schedules. Serializable schedules are
typically a bigger, but still small, subset of all log-
ically consistent schedules. A larger subset of logi-
cally consistent schedules is made up of those sched-
ules which may be expressed as semantically correct.
While it is true that, in theory, all logically con-
sistent schedules are semantically correct, the set in
Figure 1 is depicted as a subset because, in reality,
not all logically consistent schedules can be easily ex-
pressed using the semantics of the application. Al-
lowing more logically consistent schedules is impor-
tant in a real-time database: the more logically con-
sistent schedules that the concurrency control allows,
the more exibility the database manager's scheduler
has in determining a logically consistent schedule that



meets timing constraints. There has been signi�cant
work on scheduling real-time transactions [7, 8]; how-
ever, no widely applicable optimal scheduling algo-
rithm has been found that will generate a logically
consistent schedule that meets timing constraints if
such a schedule exists. Thus, a real-time concurrency
control technique should allow as many logically con-
sistent schedules as possible to provide the database
management system scheduler with exibility in de-
termining a schedule that meets all constraints.

Designing a concurrency control technique that
meets all four forms of RTCC requirements is di�-
cult because these requirements can have general fun-
damental conicts. For instance, preserving temporal
consistency of a data item may require preempting a
transaction that is using the data item in favor of an
update transaction. However, this preemption may
violate the logical consistency of the data item and/or
the logical consistency of the preempted transaction.
Therefore, a concurrency control technique that seeks
to support all four forms of RTCC requirements must
be capable of expressing the tradeo�s in sacri�cing
one RTCC requirement for another. These tradeo�s
are application-speci�c; that is, an application may
favor one RTCC requirement over another depending
on the circumstances. The decision regarding which
RTCC requirement to enforce is based on the system
conditions and on the application semantics.

To integrate support for the RTCC requirements
and the tradeo�s that they introduce, we have de-
veloped an object-based semantic real-time concur-
rency control technique. Object-based semantic con-
currency control techniques allow the user to specify
allowable interleavings of object operations to preserve
data logical consistency; some of these are presented
in [3, 9, 5, 4]. However, these techniques typically
only support limited forms of logical consistency; they
do not address temporal consistency or the tradeo�s
among the RTCC requirements.

In Section 2 we present a portion of a general model
of an object-oriented real-time database system that
we use to describe our concurrency control technique.
Section 3 describes our technique, which uses semantic
locking of data objects, where compatibility of locks is
based on current system conditions, including timing
and allowable imprecision of data and transactions.
While it is important to maintain all four RTCC re-
quirements, this paper concentrates on how to handle
data consistency requirements (temporal and logical)
and makes certain assumptions about correctness cri-
teria upheld by transactions. Also note that our tech-
nique is designed for soft real-time systems: it makes

a best e�ort to meet timing constraints, but o�ers no
guarantees. Section 4 summarizes and discusses how
our technique supports the data object RTCC require-
ments and the tradeo�s between them.

2 Real-Time Object-Oriented Model

Most work in developing concurrency control for
real-time database management systems uses the rela-
tional data model [10]. Although the relational model
is useful for many applications, there are several rea-
sons why we believe that it is not as well-suited as an
object-oriented database model (OODM) (for a survey
of object-oriented database research see [11]) for sup-
porting semantic real-time concurrency control. First,
the encapsulation mechanisms of an OODM allow con-
currency control speci�c to a data object to be en-
forced within the object. That is, instead of imposing
a general correctness criteria, such as serializability, on
all data objects, the allowable concurrency of an object
can be treated as a component speci�c to an object or
class of objects. Second, the capability to include user-
de�ned operations (methods) on data objects can im-
prove real-time concurrency by allowing a wide range
of operation granularities for semantic real-time con-
currency control. That is, instead of only enforcing
concurrency among read and write operations, as is
typically done in relational data models, the OODM
can potentially allow for enforcing concurrency among
the rich set of user-de�ned operations on objects. Fi-
nally, an OODM potentially makes it easier to inte-
grate constraint expression and checking as compared
to relational models [11]. This improved constraint
handling is particularly important when we consider
the constraints imposed by the RTCC requirements.
We exploit these advantages in the model of an object-
oriented real-time database that we present in this sec-
tion.

2.1 Model

We model a real-time database as a database man-
ager, a set of objects, a set of relationships and a set of
transactions. The database manager performs typical
database management operations including scheduling
of all execution on the processor, but not necessarily
including concurrency control (in the technique de-
scribed in Section 3, objects and transactions coordi-
nate to perform concurrency control themselves). We
assume that the database manager uses some form of
real-time, priority-based, preemptive scheduling of ex-



ecution on the processor1. Database Objects represent
database entities. Relationships are objects that repre-
sent associations among the database objects. Trans-
actions are executable entities which access the objects
and relationships in the database.

Objects. An object is de�ned by hN;A;M;C;CF i.
The component N is a unique name or identi�er for
the object. The component A is set of attributes, each
of which is characterized by hV; T; Ii. V is a complex
data type that represents some characteristic value of
the object, T is a time �eld which de�nes the age of
the attribute, and I is a boolean imprecision �eld that
identi�es whether or not some imprecision has been
introduced into the value of the attribute.

An object's M component is a set of methods which
are the only means transactions have of accessing the
attributes in the object. A method is de�ned by
hO; exec; TSi. O is a sequence of programming lan-
guage statements including: conditional branching,
looping, I/O, and reads and writes to the object's
attributes. Read and write operations on attributes
read and write the time and imprecision �elds, as well
as the value �eld. Exec is the worst-case execution
time of the method. TS is a set of temporal scopes,
each of which de�nes absolute timing constraints on
part of the method's execution and is represented by
hE; sa; sb; di. E is the subsequence of O that is to
be time constrained, sa is an absolute earliest start
time, sb is an absolute latest start time and d is an
absolute latest complete time (deadline). A temporal
scope expresses the constraint: 8e2E((sa � start(e) �
sb) ^ (complete(e) � d)).

The C component of an object is a set of constraints
which de�ne the correctness of the object with re-
spect to the system speci�cation. A constraint is de-
�ned by hPr;ERi. Pr is a predicate represented in
a boolean algebra with special atoms de�ned to sig-
nify the changing of an attribute (change(a)), the time
at which an attribute becomes temporally inconsis-
tent (deadline(a)), the allowable amount of impreci-
sion for an attribute (ImpAmt(a)), the start time of
an execution (start(e)), and the completion time of an
execution (complete(e)). An execution e is a single
executable entity such as a method invocation, or a
simple read operation. Logical constraints, such as in-
tegrity and range constraints, are speci�ed using the V
�elds of attributes. Temporal consistency constraints
are speci�ed using the T �elds of attributes. Impreci-
sion can be bounded by using constraints that involve

1We assume a single processor system for simplicity, our
technique can be extended to multi-processor systems.

attribute's I �eld and the ImpAmt characteristic.
Violating a constraint amounts to making the con-

straint's predicate false. The ER component of a con-
straint is an enforcement rule which is a sequence
of programming language statements including reads
and writes on the object's attributes that is executed
when the constraint is violated.

The CF component of an object is a compatibility
function with domain M � M that expresses condi-
tional compatibility between all pairs of methods in
the object. We describe the CF component in detail
in Section 3.

Other Model Components. A relationship is a
special kind of object that is used to express asso-
ciations among other objects. It has all of the com-
ponents of an object, and it can also express inter-
object constraints among the participating objects. A
transaction accesses objects by invoking their meth-
ods. It can de�ne a set of method invocations to be
atomic and/or exclusive of incompatible interruption.
Transactions have timing constraints and may express
requirements for temporally and/or logically consis-
tent data. A complete formal description of the entire
model, called the RTSORAC (Real-Time Semantic
Objects Relationships And Constraints) model, in-
cluding detail on relationships, transcations, and in-
heritance, can be found in [12].

2.2 Example

We illustrate our object-oriented real-time database
model using an application in submarine command
and control systems that involves contact tracking,
contact classi�cation, and response planning tasks
that must have fast access to large amounts of sensor
data [13]. Since sensor data is only valid for a certain
amount of time, the database system must ensure the
temporal consistency of the data so that transactions,
such as those for contact tracking and for response
planning, get valid data. All data in the system may
have to be accessed by transactions that have timing
constraints, such as those involved with tracking other
ships in a combat scenario.

Figure 2 illustrates an example of a Submarine

object type in the database schema. Recall that along
with each attribute value is the time �eld representing
the age of the value. In some cases, as with the static
Size attribute, this time will be1 since it has no real-
time characteristics. Other attributes, such as Speed
and Bearing, will be updated periodically. To specify
the temporal consistency of these attributes, timing
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Figure 2: Example of Submarine Object Model

constraints are placed on the object indicating when
the attributes must be updated. For example, the
absolute temporal consistency constraint on the Speed
attribute has a predicate that states Speed:time >

Now � 5sec and the corresponding enforcement rule
marks the Speed as invalid if the constraint is violated.
The relative temporal consistency constraint predicate
jSpeed:time � Bearing:timej < 3sec expresses that
the time �elds of the Speed and Bearing attributes
must be within three seconds of each other.

The example imprecision constraint:
ImpAmt(Speed) = 0:5knots

speci�es that data may be written that introduces no
more than 0:5knots of imprecision to the Speed (pos-
sibly due to interleavings allowed by the concurrency
control as we describe in Section 3). If the impreci-
sion �eld's value is TRUE, then some imprecision has
already been introduced into the Speed attribute; this
information will assist in bounding the amount of im-
precision allowed in the object.

3 Semantic Real-Time Concurrency

Control Technique

Our approach to supporting the RTCC require-
ments is to provide a semantic concurrency control
technique in which each object has a concurrency con-
trol (CC) mechanism that uses its (user-de�ned) com-
patibility function to grant semantic locks to transac-
tions. This section describes the compatibility func-
tion and many of the important system characteristics
it may capture in its conditional expression of compat-
ibility. The semantic locks provide transactions with
permission to invoke speci�ed methods of the object.
Since this paper concentrates on the object-based con-
currency control, we assume that transactions use a

two-phase locking scheme to coordinate transaction
logical correctness2 . This section describes the seman-
tic locks and the process that an object performs when
a transaction requests one.

3.1 Compatibility Function

To express allowable concurrency of method invo-
cations, we expand on previous object-based semantic
concurrency control techniques that de�ne a compat-
ibility table for an object [4, 5]. In these techniques,
a pair of method invocations is compatible, and hence
the entry in the table is TRUE, if the invocations can
always be executed concurrently and still preserve the
logical consistency of the data object. The compati-
bility function of an object extends this notion to ex-
press compatibility as a run-time function of the form:

CF (Ma(a1; a2; : : : ; an);Mr(b1; b2; : : : ; bm)) =
hBooleanExpressioni

Here, Ma is a currently active method invocation with
arguments a1 : : : an, and Mr is a method invocation
(with arguments b1 : : : bm) that has been requested by
a transaction. The boolean expression may involve
predicates for any of the current system characteris-
tics that we describe below.

A�ected Set System Characteristics. The po-
tential increase in concurrency provided by seman-
tic concurrency control is particularly important in
object-oriented databases where data objects can be
large and complex so that locking an entire data item
is often unnecessary and ine�cient. Instead, the se-
mantics of the object methods can be used so that if
two method invocations do not a�ect the same part
of the object, they can potentially execute concur-
rently without violating the data logical consistency
constraints of the object. In order to determine what
data is a�ected by a particular method invocation,
we modify the concept of an a�ected set originally
presented in [3]. When a method is invoked, the set
of attributes a�ected by the particular invocation is
computed. The a�ected set must be computed for
each invocation of a method because the a�ected at-
tributes may depend on the arguments of the method.
The attributes in the a�ected set for a method in-
clude all of the attributes that are read by or written
by the method as well as any attributes a�ected by en-
forcement rules that may be triggered by the method.
We can also refer to subsets of the a�ected set that

2We assume two-phase locking for simplicity, our technique

can be extended to other techniques of preserving transaction
logical correctness.



A: CF (IncPos(Amt1); IncPos(Amt2)) =
(Amt1 < ImpAmt(Position)) AND

(Amt2 < ImpAmt(Position)) AND

(NOT (Position:imprecise))

B: CF (GetSpeed(S1); UpdateSpeed(S2)) =
(Speed:time < Now� 5) AND

(jSpeed�S2j < ImpAmt(Speed)) AND

(GetSpeed:temporal) AND

(NOT (GetSpeed:logical))

C: CF (UpdateSpeed1(S1); UpdateSpeed2(S2)) =
(jS1 � S2j < ImpAmt(Speed)) AND

(NOT (Speed:imprecise))

Figure 3: Compatibility Function Examples

contain only attributes read by the method (read af-
fected set) or only attributes written by the method
(write a�ected set). The a�ected set can be used to
de�ne compatibility between methods. For instance,
in [3] two methods are considered to be compatible
if the intersection of their a�ected sets is empty. We
represent the a�ected sets of method mi in the com-
patibility function as characteristics: Affected(mi ),
ReadAffected(mi), WriteAffected(mi ), with which
we can form predicates by testing for membership and
empty intersections.

Active Method Invocations System Character-

istics. Active method invocations are method invo-
cations of an object that the object's CC mechanism
currently allows to execute. The set of active method
invocations for an object is represented by a set called
Active that contains all active method invocations
of that object and by a set of counters, Active(mi),
each of which contains the number of active invoca-
tions of its corresponding method mi. We use the
active method invocations characteristics to mitigate
a drawback of object-based semantic concurrency con-
trol techniques that use compatibility tables: that
compatibility tables such as [4, 5] represent strictly bi-
nary relations between methods. This drawback im-
plies that there is no way of expressing a maximum
number of a particular method invocation that can be
concurrently active or that two method invocations
are compatible only if a third method invocation is
not already active. For instance, a compatibility ta-
ble can not express that an object which represents a
video image may allow two method invocations that
write to the image (and cause temporary blurring) to
execute concurrently as long as no method that views
the image is currently active.

Time-based System Characteristics. Time may
be used in a compatibility function to facilitate main-
taining temporal consistency of the object. The com-
patibility function's boolean expression can include
predicates involving time �elds of attributes (repre-
sented by :time), time values such as the current time
(Now), and the time at which an attribute a becomes
temporally inconsistent (deadline(a)). As an example
of how time-based system characteristics can be used
to express a particular object's requirement that tem-
poral consistency should be enforced at the expense of
logical consistency, consider the condition expressed
in Figure 3B. In this example, a method invocation of
GetSpeed is currently active and a method invocation
of UpdateSpeed has been requested. Normally, these
methods would be incompatible because UpdateSpeed
might cause the data being read by GetSpeed to be
changed. However, in this example the semantics of
the application determined that if the temporal con-
sistency constraint requiring that the Speed attribute
be no more than �ve seconds old is violated, then
UpdateSpeed is allowed to execute so that a new value
for Speed can be written to restore temporal consis-
tency.

Imprecision System Characteristics. Impreci-
sion is used to provide added exibility in schedul-
ing, as well as to allow the tradeo� of logical consis-
tency for temporal consistency. That is, certain in-
terleavings that may introduce an allowable amount
of logical imprecision to attribute values might be ac-
ceptable if they help to maintain temporal consistency
or if they provide more scheduling exibility. For in-
stance, consider the increment position method invo-
cation, IncPos, in the example of Figure 3A that per-
forms a read (r(Position)) operation followed by a
write (w(Position + Amt)) operation. The possible
outcomes of interleaving two invocations of IncPos
are either that both increments a�ect the Position,
as with a serial schedule, or only one of them does, as
in the following schedule in which only Amt1 is added
to the Position:
r1(Position); r2(Position); w2(Position +Amt2);

w1(Position +Amt1):
If both Amt arguments are less than the allowable
amount of imprecision for Position, then the result of
any interleaving will be within the allowable bounds
of imprecision and the two method invocations can
be allowed to be concurrent; otherwise they will not
be allowed to be concurrent. Another example of al-
lowing imprecision is shown in Figure 3B, where the
requested GetSpeed method invocation is compatible



with the active UpdateSpeed invocation only if the
value being written to the Speed attribute is within
the imprecision bounds for the attribute.

For each attribute in an object, there can be a spec-
i�cation of how much imprecision is allowed, de�ned
by the ImpAmt characteristic. If ImpAmt is unspeci-
�ed, the attribute must be precise. The compatibility
function should specify interleavings that introduce at
most the de�ned amount of imprecision. However, if
the CC mechanism allows the same interleaving more
than once, it may introduce more imprecision than
the constraint allows. The imprecision �eld of each
attribute (represented by :imprecise), along with the
ImpAmt constraint can be used in the compatibil-
ity function to bound imprecision of each attribute.
For instance, the compatibility function may have a
clause that checks the value of the :imprecise �eld of
an attribute and if the value is TRUE, the CC mech-
anism disallows any further interleavings that could
potentially introduce imprecision. Such a clause is
captured in Figure 3A: if the Position attribute is
marked as imprecise, then the interleaving is not al-
lowed. Note that there is no way of knowing exactly
how much imprecision has been introduced into an
attribute because that depends upon the exact inter-
leaving of method invocations that is scheduled. The
semantics of each possible pairing of method invoca-
tions determines the maximum amount of imprecision
that could be introduced if they were allowed to ex-
ecute concurrently. We describe in Section 3.3 how
each attribute's :imprecise �eld is set.

Method Arguments System Characteristics.

Since the way in which method invocations a�ect an
object often depends on the arguments of the method
invocation, it may be important to examine the ar-
guments of the method invocations when determining
compatibility [4]. For instance, if two method invoca-
tions write to the same attribute, then they may be
allowed to interleave if they both write the same value.
Another example is shown in Figure 3A: when de-
termining the compatibility between two invocations
of the method IncPos, the methods' arguments are
examined to determine if they are both within the
allowed amount of imprecision for the Position at-
tribute.

Invoking Transactions System Characteristics.

The consistency of data required by the invoking
transactions (see Section 2) can also a�ect whether
a method invocation should become active. In or-
der to specify its consistency requirements, a transac-

tion de�nes each of its method invocations to require
temporal and/or logical consistency. These speci�ca-
tions can then be used in clauses of the compatibil-
ity function, represented by boolean �elds :temporal
and :logical. In the example of Figure 3B, the com-
patibility function's clause GetSpeed:temporal only
allows method invocation UpdateSpeed to interleave
with method invocation GetSpeed if the transac-
tion invoking GetSpeed requires temporal consis-
tency. Otherwise, GetSpeed will not be interrupted
by UpdateSpeed, even if a temporal consistency would
be violated.

3.2 Semantic Locks

In our semantic real-time concurrency control tech-
nique, the CC mechanism of each object uses seman-
tic locking to enforce the allowable concurrency ex-
pressed by the compatibility function of the object. A
transaction must acquire a semantic lock for a method
invocation before the method is allowed to execute.
When a transaction requests a semantic lock from an
object, the request contains the identi�er for the re-
questing transaction, an indicator of the transaction's
precision requirements, the method to be locked and
the arguments to the method if they are available. A
transaction may request a group of semantic locks for
a set of future method invocations in order to enforce
its exclusive constraints. For instance, a transaction
that wishes to perform several method invocations,
mi1 : : :min, exclusively on an object (without interfer-
ence from incompatible method invocations) would re-
quest semantic locks for all of the method invocations
in fmi1 : : :ming. The transaction would only invoke
the methods once it had all of the semantic locks and
would only release the locks once all ofmi1 : : :min had
completed. Note that since we assume for this paper
that transactions perform two-phase locking, it may
be necessary for a transaction that invokes more than
one method to request all semantic locks prior to the
method invocations.

3.3 Semantic Locking Process

When a transaction requests a semantic lock from
an object, there are two possible outcomes: either the
lock is granted immediately, or the request is placed on
a priority queue within the object to be granted later.
The speci�c outcome for each lock request is based on
evaluating the compatibility function of the object.
That is, the conditions expressed in the compatibility
function determine whether locks are granted. Most
other locking techniques require evaluating a condition



for concurrency control (e.g. typically a read lock is
granted only under the condition that a write lock is
not currently active), however our technique employs
user-de�ned conditions based on the semantics of the
application.

Requesting Semantic Locks. Figure 4A depicts
the process conducted by an object's CC mechanism
in response to a semantic lock request. First, the CC
mechanism performs a \Check Compatibilities" func-
tion that uses the current lock request and evaluates
the compatibility function once for every active lock
and for every queued request of higher priority. If the
current request is incompatible with any active lock
or any queued request of higher priority, it is placed
in the priority queue according to the priority of the
requesting transaction. Otherwise, the semantic lock
is granted to the transaction and the lock is added to
the active locks set for the object. If a semantic lock is
requested before its associated method is invoked, the
values of the method's arguments are not available at
the time the lock is requested. Therefore, any predi-
cate of the compatibility function involvingmethod ar-
guments of such a semantic lock evaluates to FALSE.
For example, in Figure 3C, assume that a seman-
tic lock is held for an anticipated method invocation
UpdateSpeed1 and a semantic lock is requested for an-
other invocation, UpdateSpeed2. Since argument S1

is not known, the lock on UpdateSpeed2 is considered
incompatible with the lock on UpdateSpeed1.

Checking compatibilities also has the side e�ect of
setting the imprecision �elds of attributes. For each
attribute a in the write a�ected set of the current lock
request, if any evaluation of the compatibility func-
tion for the current request requires a check of the
imprecise �eld of a, then a:imprecise is set to TRUE.
This side e�ect is performed because we assume (pes-
simistically) that any condition which is concerned
with the imprecision of an attribute may allow con-
currency that could introduce imprecision into the at-
tribute. If none of the evaluations of the compatibil-
ity function checks a:imprecise, then the execution of
the current request is assumed to introduce no im-
precision to a and, if the request is granted a lock,
a:imprecise is set to FALSE. Note that since the im-
precision �eld is set as compatibilities are checked,
only one active method can introduce potential im-
precision to attribute a. However, if a:imprecise is
set to TRUE by the check of compatibilities and the
lock is eventually not granted, a:imprecise is reset to
FALSE.
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Figure 4: Process For Requesting Locks



Method Invocation. Figure 4B depicts the pro-
cess employed by an object's CC mechanism in re-
sponse to a method invocation. First, the mechanism
tests a precondition. The precondition attempts to
ensure that if the requesting transaction requires tem-
poral consistency, then none of the attributes in the
read a�ected set of the invoked method will become
temporally inconsistent while the method is executing.
The precondition examines the deadline of every read
a�ected attribute to determine if the method's exe-
cution time is longer than any of the attribute dead-
lines. That is, an invocation of a method m with exe-
cution time exec(m), requires that the following pre-
condition holds: m:temporal ) 8a2ReadAffected(m)

(exec(m) < deadline(a) � Now). Notice that if tem-
poral consistency is not required by the invoking trans-
action, the precondition is always met. If the precon-
dition fails, then executing the method would ensure
that the transaction gets temporally inconsistent data.
Therefore the method invocation is enqueued until the
precondition can be met (usually after an update to
the temporally inconsistent attribute).

If the precondition is met, then the object's CC
mechanism looks for a previously obtained semantic
lock for the method invocation. If no lock was re-
quested earlier, a lock must be obtained at this point,
so the CC mechanism checks compatibilities with the
current method invocations. If any incompatibilities
arise, the request is enqueued. Otherwise, the seman-
tic lock is granted and it is added to the active lock
set.

If the invoked method is associated with a previ-
ously obtained semantic lock, the object's CC mecha-
nism performs a Semantic Lock Update. In this proce-
dure, any of the information that the semantic lock
lacked at the time of its request, such as speci�c
method arguments, is copied from the method invo-
cation into its semantic lock. Because some of the
requests waiting in the queue may now be compatible
with this semantic lock, the queue is checked for any
newly compatible requests (see Figure 4C).

Releasing Locks. A semantic lock may either be
explicitly released by request of the holding transac-
tion or implicitly released upon completion of method
execution or when a transaction commits or aborts.
Whenever a semantic lock is released, the priority
queue is checked for any requests which may be
granted (see Figure 4C). Since the newly released se-
mantic lock may have been on a method that re-
stored temporal consistency to an attribute, or may
have been a semantic lock that had caused some other

incompatibilities, some queued requests may now be
granted locks. The requests in the wait queue are re-
issued in priority order, and if any of these requests is
granted, it is removed from the queue.

4 Conclusion

This paper has described an object-based real-time
semantic concurrency control technique that can sup-
port both the logical and temporal data consistency
RTCC requirements of a real-time database as well as
the tradeo�s between them.

The time �eld of each data attribute and the ex-
plicit constraints of each object allow absolute tem-
poral consistency (using the time �eld and an abso-
lute time) and relative temporal consistency (using
the time �elds of multiple attributes) to be speci�ed.
These explicit temporal constraints can be captured
in clauses of the compatibility function so that our
semantic real-time concurrency control technique can
determine if data is temporally consistent when de-
ciding on allowable concurrency. The technique does
this determination in two ways. First, it tests the pre-
condition (see Section 3.3) and only allows a method
invocation that requires temporally consistent data to
be executed if it appears that the data will be tempo-
rally consistent while the transaction uses it. Other-
wise, the transaction is queued until the data's tempo-
ral consistency is restored. Second, the compatibility
function allows general speci�cation of temporal con-
sistency conditions so that concurrency can be con-
trolled based on the temporal consistency status of any
attribute in the object. In addition, our technique ac-
tively supports the maintenance of data temporal con-
sistency by allowing conditions to specify that update
methods can be executed to restore temporal consis-
tency at times where typical locking techniques might
disallow that execution.

Various data logical consistency correctness crite-
ria can be maintained by our technique. For exam-
ple, exclusive locking, which allows only serial object
operations, can be realized by making every pair of
method invocations incompatible. Serializability of
object operations can also be maintained by build-
ing the traditional read/write locking compatibilities
into the compatibility function. Object-based seman-
tic correctness is facilitated by the expressive power of
the compatibility function. In fact, our semantics can
go beyond semantic speci�cation of precise correctness
by including a speci�cation for an allowable amount
of imprecision in the data.



Note that in this paper we have only described the
concurrency control mechanism within a single ob-
ject. In a database system based on the RTSORAC
model (see Section 2 and [12]), multiple objects can be
connected by relationship objects that express inter-
object constraints. We are developing a technique in
which semantic locks may be propagated from object
to object via relationship objects in order to enforce
inter-object constraints.

Our technique also supports the inevitable tradeo�s
among the RTCC requirements by allowing the speci�-
cation of relaxing one form of constraint in favor of an-
other in certain circumstances. We demonstrated how
the compatibility function can specify that logical con-
sistency constraints can be relaxed, either completely
or by allowing bounded imprecision, in order to pre-
serve temporal consistency. Furthermore, transactions
can specify whether they require temporal consistency
or precise logical consistency so that this information
can be used in determining the tradeo�.

The power and exibility of our approach can also
be its drawback. Specifying such a exible system is
a signi�cant responsibility. The modularity of using
object-based semantics provides some relief since one
can focus on the semantics of each individual object,
which is more tractable than having to consider the
semantics of all objects and all transactions. We are
developing software tools that further ease the burden
on the object designer by computing a default version
of the compatibility function for each object and then
allowing the object designer to interactively adjust the
conditions to include the speci�cs of the application se-
mantics. However, the fact remains that maintaining
correctness in a real-time database is more complex
than in a traditional database system due to temporal
consistency requirements and allowed imprecision. We
believe that this complexity requires exible, modular
concurrency control, such as the object-based seman-
tic technique that we have described here.
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