
, , 1{30 ()
c Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Expressing and Enforcing Timing Constraints in a

Dynamic Real-Time CORBA System

VICTOR FAYWOLFE, LISA CINGISER DIPIPPO, ROMAN GINIS, MICHAEL SQUADRITO, STEVEN

WOHLEVER AND IGOR ZYKH

lastname@cs.uri.edu

Department of Computer Science, University of Rhode Island, Kingston, RI 02881

RUSSELL JOHNSTON russ@nosc.mil

U.S. Navy SPAWAR Systems Center, San Diego, CA 92152

Editor: Ragunathan Rajkumar

Abstract. Distributed real-time applications have presented the need to extend the Object Man-
agement Group's Common Object Request Broker Architecture (CORBA) standard to support
real-time. This paper describes a DynamicReal-Time CORBA system, which supports the expres-
sion and enforcement of end-to-end timing constraints as an extension to a commercial CORBA
system. The paper also describes performance tests that demonstrate the system's ability to
enforce expressed timing constraints.

Keywords: real-time, CORBA, distributed, dynamic, timing constraints

1. Introduction

Distributed object computing is becoming a widely accepted programmingparadigm
for applications that require seamless interoperability among heterogeneous clients
and servers. The Object Management Group (OMG), an organization of over 700
distributed software vendors and users, has developed the Common Object Re-
quest Broker Architecture (CORBA) as a standard software speci�cation for such
distributed environments. The CORBA speci�cation includes an Object Request
Broker (ORB), which is the middleware that enables the seamless interaction be-
tween distributed client objects and server objects; Object Services, which facil-
itate standard client/server interaction with capabilities such as naming, event-
based synchronization, and concurrency control; and the Interface De�nition Lan-
guage(IDL), which de�nes the object interfaces within the CORBA environment.
Many distributed real-time applications, such as automatedmanufacturing, telecom-

munications, �nancial services, and simulation, are embracing the object-oriented
paradigmand have a mandate to use an open systems design. The designers of many
of these applications are considering CORBA for their architecture, but are �nd-
ing it is currently inadequate to support real-time requirements. CORBA contains
neither the services, nor the interface facilities to express and enforce end-to-end
timing constraints on distributed client/server interactions.
In 1995, a Special Interest Group (SIG) was formed within the OMG with the goal

of extending the CORBA standard with support for real-time applications. This

2

SIG (RT SIG) is developing a whitepaper (OMG, 1996a) that details requirements
for extending/modifying CORBA to support real-time. The whitepaper describes
requirements for the operating environment, for the ORB architecture, and for the
CORBA Object Services.

Our research group at the University of Rhode Island and the U.S Navy's NRaD
facility, along with collaborators from the MITRE Corporation, produced an early
design of real-time capabilities in a CORBA system (Krupp, 1994, Wolfe, 1995)
which is a partial basis for the RT SIG whitepaper. We then implemented a pro-
totype of a real-time CORBA environment as an extension to the Orbix CORBA
system from Iona Technologies. This paper describes a prototype system and the
issues and techniques for adding real-time capabilities to CORBA.

The RT SIG has put out two requests for proposal (RFPs) for real-time CORBA:
one for static scheduling and one for dynamic scheduling, because they have recog-
nized a need for both. The static scheduling RFP deals with applications with hard
real-time constraints for which a priori analysis is necessary. The work described
here is a design and implementation of a dynamic real-time CORBA system that
is meant as an exploratory response to the dynamic scheduling RFP.

The prototype is designed to support end-to-end timing constraints in exible
dynamic CORBA environments. A dynamic CORBA environment is one in which
clients and servers may be added and removed, and where constraints may change.
This type of environment prohibits complete a priori analysis of timing behavior.
This Dynamic Real-Time CORBA system implements a best-e�ort approach to-
wards enforcing timing constraints through global priority-based scheduling across
the CORBA system, but does not o�er hard real-time guarantees. It admits all
tasks into the system, and performs appropriate exception handling when a timing
constraint is missed. It is also important to note that we are not designing a Real-
Time ORB, but rather exploring techniques for extending ORBs, possibly real-time
ORBS when they become available, with speci�c dynamic real-time enforcement
support.

The main concept behind this Dynamic Real-Time CORBA system is support for
Timed Distributed Method Invocations (TDMIs). A TDMI is a client's request to
a server object along with real-time constraint information for the request, such as
deadline, importance, and quality of service. The components that we added to the
Orbix CORBA system express and enforce TDMI constraints. These components
include a real-time library with types for expression of real-time constraints, and
extensions to the ORB and Object Services to enforce the constraints. A major
addition in this system is an Object Service to assign and enforce a global priority
across the entire CORBA system based on the real-time constraint information in
the TDMI. Our prototype implementation of this Object Service uses a dynamic
Earliest Deadline First within Importance scheduling policy on all schedulable en-
tities in the CORBA system. The system also provides a CORBA Real-Time Con-
currency Control Service to enforce consistency of server objects through a form of
locking with priority inheritance; and provides a Real-Time Event Service to allow
real-time event-based synchronization and constraints.

3

Track Table Server IDL Client Code

interface Track table long retval;

f readonly attribute short max len; Track table *p;

short put(in short index, p = bind("my Track table");

in long data); retval = p->get(500);

long get(in short index);

g

Figure 1. Sample IDL and Client Code

In this paper, we describe the Dynamic Real-Time CORBA design and prototype
implementation along with results of performance tests. We present background on
CORBA and Real-TimeCORBA requirements in Section 2. Section 2 also describes
related RT CORBA research. Section 3 describes the design and implementation.
The testing environment, tests, and test results are described in Section 4. Section
5 concludes by summarizing the concepts and techniques for adding real-time ca-
pabilities to CORBA and speculates on further enhancements towards developing
RT CORBA.

2. Background

This section provides background on the CORBA architecture and on the OMG RT
SIG's requirements for extending CORBA for real-time. The section also describes
related work in real-time CORBA.

2.1. CORBA

The CORBA standard developed by the OMG deals primarily with the basic frame-
work for applications to access objects in a distributed environment. This frame-
work includes an object interface speci�cation and the enabling of remote method
calls from a client to a server object. Issues such as naming, events, relationships,
transactions, and concurrency control are also addressed in the CORBA 2.0 spec-
i�cation (OMG, 1996b). Services such as time synchronization and security are
expected to be addressed in later revisions.

CORBA is designed to allow a programmer to construct object-oriented programs
without regard to traditional object boundaries such as address spaces or location
of the object in a distributed system. The CORBA speci�cation includes: an
Interface De�nition Language(IDL), that de�nes the object interfaces within the
CORBA environment; an Object Request Broker (ORB), which is the middleware
that enables the seamless interaction between distributed client objects and server
objects; and Object Services, which facilitate standard client/server interaction with
capabilities such as naming, event-based synchronization, and concurrency control.

4

Object Services : naming, events, life cycle, persistence, transactions, concurrency, relationships,
externalization, object licensing, properties, object query.

ORB

Dyn.
Inter
-face

IDL
Stub

ORB
Interface

IDL
Skeleton

Object
Adapter

Client
Server Objects

Figure 2. CORBA System Components

CORBA IDL. CORBA IDL is a declarative language that describes the inter-
faces to server object implementations, including the signatures of all server object
methods callable by clients. As an example, consider an object that acts as a
shared table for tracking data (represented as long integer values) for clients in a
distributed system. CORBA IDL for a simple Track table object is displayed in
Figure 1. The IDL keyword interface indicates a CORBA object (similar to a
C++ class declaration). A readonly attribute is a data value in the object that
a client may read. This IDL example also speci�es two methods: put, which stores
a data value at a index into the table; and get which returns a data value given an
index.

Figure 1 also displays possible client code in C to access the Track table object
in a CORBA environment. The client must �rst bind to the Track table object
before calling the get method on the server. This method invocation assumes that
a Track table server was previously implemented and registered with the CORBA
ORB.

The ORB and Object Services. An ORB provides the services that locate a
server object implementation for servicing a client's request; establish a connection
to the server; communicate the data making up the request; activate and deactivate
objects and their implementations; and generate and interpret object references.

Figure 2 illustrates the parts of a CORBA system. The client stubs and the server
skeletons are produced by the IDL compiler. There is a stub and skeleton for each
method on a server's interface. A method's stub is linked with the client code to
hide the details of communicating with the server. The skeleton is linked with the

5

server code to allow application developers to create servers without knowing the
communication details. Server skeleton code is used by the ORB in forwarding
method invocation requests to the server, and in returning results to the client.
Using the stubs, the skeletons, the ORB, and a component called the Basic Object
Adapter, the CORBA system handles all details of the distributed method invoca-
tion so that the distribution is essentially transparent to both the client and server
application developers.
The CORBA standard contains speci�cations for Object Services that facilitate

client/server interaction. These services include a naming service for binding a name
to an object; an event service for noti�cation of named events; and a concurrency
control service for locking of resources to maintain consistency. A more complete
list of the Object Services can be found in (OMG, 1996b).

2.2. Real-Time CORBA

The OMG RT SIG is currently de�ning the speci�cations for RT CORBA. The
essence of its de�nition is:

Real-Time CORBA deals with the expression and enforcement of real-time
constraints on end-to-end execution in a CORBA system.

Consider a real-time scenario where a client needs to perform a get method from
the Track table server of Figure 1 within timing constraints. This interaction
means that the client must have some way of expressing timing constraints on its
request, and that the CORBA system must provide an ORB and Object Services
that support enforcement of the expressed timing constraints. It also means that
the underlying operating systems on the client and server nodes, along with the
network that they use to communicate, must support enforcement of real-time con-
straints. Thus, there are two main categories of real-time CORBA requirements:
requirements on the operating environment (operating systems and networks); and
requirements on the CORBA run-time system. The operating environment require-
ments include requirements for synchronized clocks, for bounded message delay, for
priority-based scheduling, and for priority inheritance of operating environment
entities.
The requirements on the ORB and Object Services involve providing for speci�ca-

tion and enforcement of end-to-end timing constraints on client/server interactions.
Some of these requirements are:

� Transmittal of Real-Time Method Invocation Information. The standard should
allow a client to attach timing constraint information, such as deadline, impor-
tance and quality of service, to a method invocation. This information will be
available to the ORB, ORB Services, skeletons, and server implementations in
order to enforce the real-time constraints.

� Global Priority. The ORB should establish global priorities for all execution so
that the priorities of any tasks that compete for any resource in the real-time
CORBA environment are set relative to each other.

6

� Priority Queueing of All CORBA Services. All real-time CORBA-level software
should use priority based queuing. For instance, queues of requests for CORBA
2.0 services such as Naming should be priority queues.

� Real-Time Events. The real-time CORBA environment should provide the abil-
ity for clients and servers to determine the absolute time value of \events".
These events may include the current time (provided by a Global Time Ser-
vice), or named events provided by the CORBA 2.0 Event Service. Further-
more, events should be delivered in an order reecting either the priority of the
event or the priority of the event consumer, or both.

� Priority Inheritance. All real-time CORBA-level software that queues one task
while another is executing should use priority inheritance. This requirement
includes the locking done by the CORBA 2.0 Concurrency Control Service, but
also includes simple queuing such as waiting for the Naming Service.

A concise summary of the real-time CORBA requirements can be found in (Wolfe, 1997)
and a full listing can be found in the RT SIG whitepaper (OMG, 1996a).

2.3. Related Work

There have been several real-time CORBA projects initiated over the past few years.
One early approach to real-time CORBA was to install a non-real-time ORB on
real-time operating systems. These ported ORBs did not take advantage of most of
the operating system's real-time features. Furthermore, although implementation
on a real-time operating system may be necessary for real-time CORBA, it is not
su�cient to enforce end-to-end timing constraints in a distributed system.
Several projects have sought to realize \real-time ORBs" that are stripped-down,

faster, versions of existing ORBs. They removed features like CORBA's Dynamic
Invocation Interface and allowed special protocols with �xed point-to-point con-
nections of clients to servers that by-passed most CORBA features. Such high
performance might also be necessary in a real-time CORBA system, but it may not
be su�cient for predictable enforcement of end-to-end timing constraints.
MITRE has done work (Krupp, 1994, Bensley, 1996) to identify requirements

for the use of real-time CORBA in command and control systems. They have
prototyped the approach by porting the ILU ORB from Xerox to the Lynx real-
time operating system. This system provides a static distributed scheduling service
supporting rate-monotonic and deadline-monotonic techniques.
Researchers atWashington University in St. Louis are developing a high-performance

endsystem architecture for real-timeCORBA called TAO (The ACEORB) (Harrison, 1996).
The focus of this work is on hard real-time systems, requiring a priori guarantees
of Quality of Service (QoS) requirements. The key components of TAO include
a Gigabit I/O subsystem; a method for specifying QoS requirements; a real-time
inter-orb protocol for transferring QoS parameters; a real-time scheduling service;
a real-time object adapter with a real-time event service; and presentation layer
components.

7

Current work at the University of Illinois Urbana-Champaign is extending the
TAO system to allow for on-line schedulability testing. Along with the statically
guaranteed real-time tasks, the new system will perform admissions tests on dy-
namic tasks to ensure scheduling feasibility (Feng, 1997).
The CHORUS/COOL ORB is a exible real-time ORB that is being developed by

Sun Micros Systems (Chorus 1996). The design enforces a strict separation between
resource management policy and mechanism. The design philosophy also calls for
providing applications with full control over operating system-level resources. Given
this philosophy, the goals of the CHORUS/COOL ORB include: a exible binding
architecture; producing minimum CORBA on a minimal ORB; and a real-time
operating environment that provides access to �ne grain resource management.
The COOL ORB from Chorus Systems does not provide many real-time features
itself, but rather relies on the CHORUS operating systems. A strength of the
COOL ORB is that it imposes minimal overhead on top of the native operating
systems.
Along with the dynamic scheduling approach taken in the work described in this

paper, our research group at URI has also developed a static scheduling approach
for real-time CORBA (DiPippo, 1998). The design entails the speci�cation of a
scheduling service interface that allows the passing of global priority throughout the
real-time CORBA system, and the mapping from global priority to local operating
system priority. The design also includes a front-end analysis tool which is our
augmentation of the PERTS real-time analysis tool made by Tri-Paci�c Software
(TriPaci�c, 1998), which has been modi�ed to analyze real-time CORBA clients and
servers. The PERTS system performs the analysis, and if the real-time CORBA
system is found to be schedulable, PERTS provides priorities for the clients and
servers.
The preliminary work on some of the projects described in this section, along

with our research and development described in the next section, has provided the
basis for the RT SIG whitepaper. The development of this whitepaper, in turn,
has provided a common set of requirements for real-time CORBA, both static and
dynamic. Approaches such as CORBA on a real-time operating system and fast
CORBA are necessary parts to real-time CORBA development. Static scheduling
across the system, such that provided by the MITRE prototype, the TAO CORBA
system, and the URI scheduling service interface, are important steps to supporting
hard real-time applications. The incorporation of dynamic real-time, where clients
and servers can be added or removed, timing constraints may change, and priorities
are not �xed, is the subject of our work described in the remainder of this paper.

3. Dynamic Real-Time CORBA System

This section describes the Dynamic Real-Time CORBA system, shows how real-
time constraints are expressed, and details how global dynamic real-time scheduling
is performed.
A depiction of the Dynamic Real-Time CORBA system components is shown

in Figure 3. This system is designed to augment an existing CORBA system; the

8

Extended Services: Priority and Scheduling service, Global time service, Realtime Event
service, Realtime Concurrency Control service.

Object Services : naming, events, life cycle, persistence, transactions, concurrency, relationships,
externalization, object licensing, properties, object query.

ORB
Clock synchronization
Bounded message delay
Exception handler

Stub
IDL
Stub

ORB
Interface

IDL
Skeleton

Object
Adapter

+
Client

time
constraints

time constraints

Realtime Objects

Figure 3. Dynamic Real-Time CORBA System

prototype implementation augments the Orbix CORBA system from Iona Technolo-
gies. The extensions consist of minor changes to the basic ORB, modi�cations and
additions to the Object Services, and modi�cations to the client-side and server-side
high-level code, stubs, and skeletons.

The components of our Dynamic Real-Time CORBA system are implemented
as a Real-Time Daemon process (RT Daemon) that executes on each real-time
POSIX operating system in the system, and as a real-time library that provides
type de�nitions, IDL de�nitions, and code that is used to link in with client and
server code. The RT Daemon coordinates dynamic aspects of the system including
changing global priorities, time synchronization, and supporting real-time events.
The library code performs tasks such as initial priority assignment, handling of real-
time information that is associated with all execution in the system, and handling
of real-time exceptions. The remainder of this section details how this is done.

3.1. Underlying System

Our Dynamic Real-Time CORBA System assumes implementation on an underly-
ing system that provides these features:

� Real-time operating systems on all nodes that provide:

{ Priority-based scheduling of tasks.

{ Priority-based queuing with priority inheritance within the operating sys-
tem.

9

� Clock synchronization among nodes so that any two clocks are with a bounded
skew � of each other.

� Real-time networking that provides:

{ A message delay bound of �.

{ Priority-based queuing of all network functions.

The current implementation uses only operating system features speci�ed in the
IEEE POSIX 1c real-time operating system standard (POSIX, 1995), which in-
cludes priority-based scheduling of threads and priority-based queueing with prior-
ity inheritance.
As depicted in Figure 3, the changes to the basic ORB include implementing a

version of the NTP protocol to provide clock synchronization. Also depicted in the
�gure is a change to the ORB to ensure bounded message delays. Although the
prototype implementation uses a dedicated network between two hosts to achieve
bounded message delay, we have done research on providing bounded messages
delays for a general real-time CORBA system on an ATM network; including the
Latency Service described in Section 3.3.

3.2. Global Time Service.

For expressed timing constraints to be meaningful in a distributed system, a com-
mon global notion of time must be supported. Our Dynamic Real-Time CORBA
system implements this by synchronizing the clocks and by providing a Global Time
Service, which clients and servers can call using standard CORBA calls, to get the
current time. The Global Time Service calls simply make calls to the local operat-
ing system to get the (synchronized) time. The Global Time Service is described
in detail in (Zykh, 1997).

3.3. Latency Service.

Since bounded message delays are imperative to reasoning about behavior in a
distributed real-time system, the prototype Dynamic Real-Time CORBA system
provides a Latency Service to allow clients and servers to determine various qual-
ities of latency bounds in the network. The Latency Server accounts for varying
\tightness" of bounds by allowing requests for bounds to specify the percentage of
cases in which the latency bound must hold. A 100% speci�cation requires that
the bound must always hold. A speci�cation of 98% speci�es that the value of the
returned latency must be greater than the actual latency 98% of the time. The
Latency Service uses three methods to provide latency bounds:

� Estimated Latencies - A priori measurements are used to establish latencies.
The implementation of this form of service is a simple lookup in a table of
latencies on each node.

10

Node 2

Client 1

Client m

Server 1

Server n

Client 1

Client q

Server 1

Server r

Node 1
ORB

RT Event Channel

RT Daemon

RT Event Channel

RT Daemon

Track_Table_Client

Track_Table_Server

TrackTableLockSet

TDMI

RT Environment and
other parameters

Figure 4. Timed Distributed Method Invocation in The Dynamic Real-Time CORBA system

� Measured Latencies - The Latency Service performs latency measurements when
system changes occur. This method typically yields more accurate latency
measurements, but requires signi�cant overhead in both the call to the Latency
Service and in background measurements taken by the Latency Service(s).

� Analytical Latencies - The Latency Service uses network parameters to cal-
culate expected latencies. In the prototype, the Latency Service uses SNMP
information provided by each node to make latency estimates.

Which form of service the Latency Service provides to a client is determined by
the quality of the bound needed, as speci�ed by a parameter in the Latency Ser-
vice call. Typically, higher quality bounds, like measured and analytical bounds,
require higher overhead and take longer to process. The implementation of the
Latency Service that provides these capabilities on an ATM network is described
in (Pallack, 1997).

3.4. Speci�cation of Real-Time Constraints

The Dynamic Real-Time CORBA system allows clients to express dynamic con-
straints on execution through Timed Distributed Method Invocations (TDMIs).
In the prototype implementation these constraints include deadlines and impor-
tance. Importance is an ordinal application-level speci�cation of the relative value
to the system of an execution. Importance di�ers from priority, which is an
implementation-level attribute used to order various executions. Note that although

11

the current system supports only deadline and importance speci�cations, the design
is exible enough to allow other constraints including periods and various Quality
of Service parameters to be expressed.
Executions in the Dynamic Real-Time CORBA system use a RT Environment

structure and a RT Manager class, both de�ned in the Real-Time Library, to
convey real-time information (see Figure 4). A RT Environment structure con-
tains attributes that include the importance and deadline. The Dynamic Real-Time
CORBA run-time system attaches the RT Environment structure to all executions
in the system. Other parts of the Dynamic Real-Time CORBA run-time system
examine this structure to acquire information necessary to enforce the expressed
real-time requirements by doing things such as establishing priority and setting
operating system timers.
As an example of expressing real-time constraints, consider a client making a

TDMI to a server that contains a table of tracking data for some tracking appli-
cation. The client requires that the results of its query to the tracking table be
returned within a speci�ed deadline.
The following is the IDL for the table CORBA Object:

#include "rt_info.idl"

struct Track_Record {

// contains track ID, position, etc.

};

interface Track_Table {

void Put(in Track_Record track, in RT_Environment rt_env);

Track_Record Get(in long track_id, in RT_Environment rt_env);

};

The two methods on the table's interface enable clients to insert (Put()) and
retrieve (Get()) track data. The code for a client of the table looks as follows:

#include Track_Table.hh // header file generated by IDL compiler

#include RT_Manager.h // header file for RT_Manager class

#include Track_Table_i.h // header file for table implementation

:

(1) RT_Manager rt_mgr; // create instance of RT_Manager

Track_Table* Track_Table_Obj; // declare pointer to table

:

int main() // main procedure of a CORBA client

{

:

// bind to the appropriate Track_Table (in this case, the

// one managed by the server named Track_Table_Server).

(2) Track_Table_Obj = Track_Table::_bind("Track_Table_Server");

CORBA::Long track_id = 42;

12

try {

:

: // set constraints and scheduling parameters

(3) rt_mgr.Set_RT_Constraint_Now(BY,REL,3,0); //deadline=NOW+3sec

(4) rt_mgr.Start_RT_Invocation();

// start TDMI: 1) calculate Global Priority

// 2) call RT Daemon and register as an active client

// 3) map Global Priority to this node's priority

// set and change this thread to the new priority

// 4) arm the timer

(5) Track_Record track = Track_Table_Obj->

Get(track_id, rt_mgr.Get_RT_Env());

(6) rt_mgr.End_RT_Invocation();

// finish TDMI 1) call RT Daemon and deregister as a client

// 2) disarm the timer

// 3) restore this thread to its original priority

}

(7) catch(const RT_Exception &rtp) { // catch RT_Exception

cout << ``RT_Exception Raised :'' << rtp.reason << endl;

}

:

}

The client �rst creates a RT Manager object (Label 1 in the above code). It
then binds to the appropriate server (Label 2). Next, it calls the RT Manager

functions necessary to set timing constraints and scheduling parameters (Label 3).
In the example, we set a relative deadline of 3 seconds in the Set RT Constraint()
method. The bulk of the work is done inside of the Start RT Invocation() (Label
4) function and is transparent to the client. Start RT Invocation() calls the RT
Library functions to register the client with the RT Daemon on its node, to calculate
the priority for the client (described in Section 3.6.1), and to arm a timer in the
real-time operating system to expire at the client's deadline.
After the above sequence is complete, the client makes the TDMI to the table

(Label 5). The RT Environment that is sent with the call contains the timing
information computed by the RT Manager. Figure 4 depicts a typical TDMI such
as this one. Also in Figure 4, note the existence of a RT Daemon on each node.
When the TDMI request is received by the server skeleton, the execution is sched-

uled on the server's node by server library code going through a procedure similar
to that of the client: registering the thread as a server with its local RT Daemon,
establishing a priority, and arming a timer. How this is done is described further in
Section 3.6. If the client has not missed its deadline when the TDMI returns, then
End RT Invocation() (Label 6) disarms the client's deadline timer and performs
some clean up. If the timer expires (i.e., the deadline is missed), a new real-time
CORBA exception of type RT Exception is raised in the client. The client catches
this exception (Label 7) and performs any necessary recovery operations.

13

3.5. Real-Time Event Service.

An important aspect of expressing and enforcing real-time constraints and provid-
ing synchronization is the use of real-time events. The current CORBA 2.0 Event
Service allows for the exchange of named events in the CORBA system. For in-
stance, a client might synchronize with another client by waiting for the �rst client
to generate a CORBA event. The Dynamic Real-Time CORBA system has a mod-
i�ed Real-Time Event Service that prioritizes the delivery of events and delivers the
time that the event occurred. Prioritized events are based on the global priorities
of the producers and consumers as set by the Priority Service. The (global) time of
an event occurrence is important to allow expression of timing constraints relative
to events. The following example illustrates this concept.

3.5.1. Example of Real-Time Events For Expressing Timing Constraints. In
the above real-time CORBA TDMI example of Section 3.4, the deadline for the
client request was based on an absolute time that is relative to the current time
(three seconds from the current time). Now consider the case where the client's
deadline is event-driven. Let the deadline for the TDMI on the tracking table server
be NewContact + 3secs, where NewContact is a named event that occurs when
a new contact is entered into the table. In this case, the client �rst has to create
a RT Event object, specify a real-time event ID number, importance of the event,
and event source (a server name). The revised code for an event-driven client is:

:

try {

:

RT_Event rt_event("NewContact",5); // create RT_Event object

rt_event.Set_Importance(1000);

rt_event.Set_Server_Name("Track_Table_Server");

rt_event.Set_Push_Consumer(); // act as a push consumer

:

// set constraints and scheduling parameters

:

// deadline = abs time when Event "NewContact" occurred + 3 secs

(1) rt_mgr.Set_RT_Constraint_Event(BY,&rt_event,3,0);

(2) rt_mgr.Start_RT_Invocation(); // start TDMI

Track_Record track=Track_Table_Obj->Get(track_id,rt_mgr.Get_RT_Env());

rt_mgr.End_RT_Invocation(); // finish TDMI

}

:

The Set T ime Constraint Event() function call (Label 1 in above code) causes
the client to wait, with in�nite deadline, for a noti�cation that the real-time event

14

has occurred. The deadline for the client's request is determined by the abso-
lute time when that event occurred plus 3 seconds. This timing constraint is
stored in the RT Environment, and the rest of the work is done inside of the
Start RT Invocation() function as previously described (Label 2).

3.5.2. Implementation of Real-Time Event Service. The implementation of a
RT Event Service is based on IP multicasting and takes advantage of multithread-
ing in the local operating systems. Each node has a CORBA Event Channel

(OMG, 1996b) component in its RT Daemon that is con�gured to \listen" to a
pre-de�ned IP multicast group. Each real-time event has a unique event ID num-
ber, which is mapped to the IP address for the multicast group. Suppliers transport
real-time event data to each RT Event Channel by multicasting to its IP address.
Event consumers can wait for delivery of real-time events to the IP multicast groups
associated with the events, or they can invoke the local RT Event Channel to re-
trieve the real-time event. In the prototype, each RT Event Channel bu�ers the
incoming events in priority order so that consumers can look for the bu�ered high
priority real-time events �rst. If the real-time event data is not in the bu�er, then
the RT Event Channel raises a RT exception to the consumer, which is handled
as described in Section 3.4. Further details on the Real-Time Event Service are
provided in (Zykh, 1997).

3.6. Global Priority Service and Real-Time Scheduling

Dynamic real-time scheduling is done by establishing a global priority assignment
for all execution in the Dynamic Real-Time CORBA system. Each client communi-
cates its scheduling parameters to the Global Priority Service, and in turn receives
a global priority for its execution. These priorities are dynamic and may change
over the lifetime of the execution.
We call an execution's priority at an instant in time its Global priority. A Global

priority is an integer that is derived by the Global Priority Service based on the in-
formation in the RT Environment for the execution. The Global Priority Service
ensures that the Global priority is meaningful relative to all other Global priorities
in the Dynamic Real-Time CORBA system. That is, much like a single real-time
operating system assigning priorities within its local domain, the Global Priority
Service assigns priorities that are meaningful across the real-time CORBA domain.
The RT Daemon on each node maps each execution's Global priorities to the priori-
ties on the various schedulable entities that the RT Daemon manages. For instance,
in the prototype, the RT Daemon maps a client's Global priority to one of the 60
real-time priorities that the local Solaris operating system allows. An execution's
global priority is dynamic and may change during the execution for several reasons
that we describe below, including re-calculation, aging, and inheritance.

3.6.1. Global Priority Calculation. The Global Priority Service uses a uniform
function for all clients and servers in the system to compute Global priority using

15

the attributes in the RT Environment that is associated with the execution. The
prototype uses a global earliest-deadline-�rst within importance priority assignment
scheme. That is, the prototype's global priority function orders priorities based on
the importance attribute �rst, and then based on the deadline attribute. A global
priority is a seven digit value, where the millions digit represents importance, and
the lower order digits represent a time di�erence (multiplied by 100,000) between
the maximum allowable deadline and the deadline speci�ed in the RT Environment
for the execution. For instance, if the maximum deadline is 10 seconds, then exe-
cution with importance level 2 and a deadline of 3 seconds has a global priority of
2,700,000. Changing the calculation of global priorities based on other scheduling
policies, such as global rate-monotonic priority assignment, is facilitated by the
function's central implementation in the Global Priority Service.
The implementation of the Global Priority Service in the prototype is accom-

plished through a combination of the RT Daemon and code from the RT Library.
The library code calculates the initial global priority, the RT Daemon handles map-
ping an execution's global priority to a priority on a local node, and also handles
changing the global priority.

3.6.2. Priority Mapping. The RT Daemon on each node maps the global prior-
ity to the priorities available on the local real-time operating system. The function
that performs the mapping must be written for each operating system individually
because of the variability in ranges of real-time priorities present on di�erent sys-
tems (e.g., Solaris has 60 local priorities, and LynxOS has 256). In the prototype,
which uses RT Solaris operating systems, the RT Daemon must map the (wide)
range of global priorities into the 60 local priorities. The mapping is done by using
a statistical model of the likely deadlines and calculating global priorities such that
TDMIs are probabalistically evenly distributed among the local priorities. For ex-
ample, if there were 60 executions to be scheduled on a Solaris node, the mapping
would reduce the probability that two executions would be at the same priority.
Unfortunately mapping of a large range of global priority values into a smaller
range of priorities can cause more than one global priority to be mapped to a single
local priority value, which could cause some execution to be out of deadline order.
We address the priority mapping problem and a solution that is optimal in certain
circumstances in (DiPippo, 1998).

3.6.3. Dynamic Global Priority Re-Calculation. An execution may have di�er-
ent global priorities at di�erent times during its lifetime. For instance, a real-time
CORBA client could have an initial global priority based solely on its importance
with no deadline. It then might enter phases of its execution that must be done
under deadlines (as speci�ed by a Set RT Constraints RT Manager method call
in the client). Thus, each Start RT Invocation call must re-calculate the global
priority for the execution that makes the call. Similarly, the End RT Invocation

method call, recalculates a global priority using the deadline (if any) that was in
e�ect before its associated Start RT Invocation call.

16

Another re-calculation of global priority is done when a client makes a TDMI
to a server. Assume that the client's deadline constraint is dclient. This means
that the return message from the server with results for the client must be received
by the client by dclient as measured on the client's clock. Recall from Section 3.1
that we assume synchronized clocks with maximum skew �, and assume maximum
network message delay �. To calculate the global priority at which a server should
execute on behalf of the client, the server uses the deadline dserver = dclient� �� �

to pessimistically allow for � message delivery time back to the client and an �

clock skew between its clock and the client's clock. Since this deadline is tighter
than the client's deadline on whose behalf the server is executing, the TDMI will
usually have a higher global priority when executing in the server than it will while
executing in the client.

3.6.4. Global Priority Aging. Another change in an execution's global priority
is performed by the RT Daemons in the Dynamic Real-Time CORBA system en-
forcing aging of global priorities. Aging is the process of increasing priority as time
goes on, which is necessary in dynamic earliest-deadline-�rst scheduling. Each RT
Daemon keeps track of the global priorities on its node. A RT Daemon increases
an execution's global priority if, due to the passage of time, the execution's global
priority is too low compared to a newly-arrived execution on the node which the
RT Daemon controls. Note that in the prototype the aging facility can be \turned
o�" for real-time scheduling policies that do not require aging, such as a static
rate-monotonic-based policy.

Another source of possible of global priority change is priority inheritance in the
Real-Time CORBA Concurrency Control Service, as described next.

3.7. Real-Time Concurrency Control Service.

CORBA 2.0 provides a Concurrency Control Service to maintain consistent access
to servers. The Dynamic Real-Time CORBA system includes a Real-Time Con-
currency Control Service that implements priority inheritance (Rajkumar, 1991).
When a TDMI requests a lock on a resource from the Real-Time Concurrency
Control Service, the TDMI's execution priority is compared to those of all TDMIs
holding conicting locks on that resource. Conicting TDMIs with lower priorities
are raised to the requesting TDMI's priority, and the requesting TDMI is suspended.
Whenever a lock is released, the releasing TDMI resets its priority to that of the
highest priority TDMI it still blocks (this is possible since clients can hold several
locks of di�erent types). If it no longer blocks any higher priority TDMIs, then the
releasing TDMI is reset to its original priority. Finally, the highest priority blocked
TDMI that can now run is allowed to obtain its lock and continue execution. In de-
signing the Real-Time Concurrency Control Service, we needed to consider several
issues including whether to allow explicit locking and how to handle global priority
inheritance. We now address these issues and then provide an example of the use
of the Real-Time Concurrency Control Service.

17

3.7.1. Implicit vs. Explicit Locking. When using the CORBA Concurrency
Control Service, two forms of locking are possible: implicit locking and explicit
locking. Implicit locking is done within the method code. This placement of lock
calls simpli�es the usage of the resource because clients do not need to know the
locking semantics of the resource. However, there is a loss of exibility when using
purely implicit locking. For example, if a client wishes to execute a sequence of
method calls that are protected by the same lock, implicit locking is insu�cient.
Explicit locking provides more exibility since it allows the client that is using
the resource to request and release locks when needed. This is done by high-level
client code explicitly making CORBA Concurrency Control Service calls to obtain
the necessary locks. However, explicit locking requires the client to know which
internal locks to use. More importantly, the client must have knowledge of the
locking semantics for the resource being accessed (i.e., the client must know which
locks are required for each method on the resource's interface). Aside from the
burden this places on the client, breaking the encapsulation of the resource is not
desirable from an object-oriented design perspective.

3.7.2. Transitive Priority Blocking. Another issue that must be addressed is
that of transitive blocking. There are two forms of transitive blocking in which a
high priority activity A3 is indirectly blocked by a lower priority activity A2. If A1

is the activity that directly blocks A2, then either:

1. A2 is holding a lock that is blocking activity A1; or

2. A2 is executing under a lock held by A1.

In either case, a transitive blocking chain is formed in which an activity (e.g., A3)
is indirectly blocked by another activity further down the chain (e.g., A2). Note
that this is not the same as chained blocking in which an activity is blocked by
multiple other activities. The di�culty with transitive priority blocking is the fact
that these blocking chains can become arbitrarily long, especially when activities
are allowed to lock multiple resources. This locking can require a great deal of
overhead to implement. Therefore, the prototype implementation of the Real-Time
Concurrency Control Service was designed with the following limitations:

1. No \child" activities can be created under a lock.

2. An activity can only hold locks on one resource at a time.

The �rst restriction disallows explicit locking in the sense that only code local to the
activity that holds the lock can run while the lock is held. The second restriction is
a special case of the �rst restriction since obtaining additional locks after the initial
lock would constitute starting \child" activities under the initial lock. The only
transitive blocking that is allowed in the prototype is that which occurs within a
LockSet, which is a CORBA 2.0 lock object for a single resource. That is, blocking
chains are allowed to form as long as all of the clients in the chain are clients of the
same resource and do not start any \child" activities while they hold locks.

18

3.7.3. Real-Time Concurrency Control Interface. One of the goals of the Dy-
namic Real-Time CORBA system was to ensure that the interfaces to various
CORBA Object Services were changed as little as possible. The only change to
the CORBA Concurrency Control interface is that a RT Environment is passed
into each TDMI for use in implementing priority inheritance. In addition, each
method can raise a RT Exception exception. This exception is used to indicate
that a timing constraint has been violated during the TDMI. The following CORBA
IDL shows a subset of the Concurrency Control Service that was implemented and
extended for real-time.

module CosConcurrencyControl {

enum lock_mode {

read, write, upgrade, intention_read, intention_write

};

exception LockNotHeld{};

interface LockSet {

void lock(in lock_mode mode);

boolean try_lock(in lock_mode mode);

void unlock(in lock_mode mode);

raises(LockNotHeld);

void change_mode(in lock_mode held_mode, in lock_mode new_mode);

raises(LockNotHeld);

};

};

The revised IDL for the Real-Time Concurrency Control Service is shown here:

#include "rt_info.idl"

module CosConcurrencyControl {

enum lock_mode {

read, write, upgrade, intention_read, intention_write

};

exception LockNotHeld{};

interface LockSet {

void lock(in lock_mode mode, in RT_Environment rt_env);

raises(RT_Exception);

boolean try_lock(in lock_mode mode, in RT_Environment rt_env);

raises(RT_Exception);

void unlock(in lock_mode mode, in RT_Environment rt_env);

raises(LockNotHeld, RT_Exception);

void change_mode(in lock_mode held_mode,

in lock_mode new_mode,

19

in RT_Environment rt_env);

raises(LockNotHeld, RT_Exception);

};

};

The design of the Real-Time Concurrency Control Service makes use of several
simplifying restrictions:

1. Only implicit locking is allowed.

2. A client can only obtain locks on one LockSet at a time.

3. A client cannot start \child" activities while the client holds a lock.

4. Locks must be requested in a pre-determined order.

The �rst restriction requires that only the methods on a resource's interface be
allowed to request locks from the resource's LockSet. The next two restrictions
prevent all transitive blocking except that which arises between clients of the same
LockSet. Finally, the last restriction supports the prevention of deadlock.

3.7.4. Example With Real-Time Concurrency Control. Consider the case where
the tracking table requires concurrency control to handle multiple clients and to
maintain its data in a consistent state. The following code illustrates how the ta-
ble's Get method implements implicit locking using the Real-Time Concurrency
Control Service provided by the Dynamic Real-Time CORBA system.

Track_Record TrackTable::Get(CORBA::Long track_id,

const RT_Environment& rt_env)

{

Track_Record track;

try {

RT_Env_Mgr rt_mgr(rt_env);

rt_mgr.Begin_RT();

{

CosConcurrencyControl::LockSet* LockSetObj;

(1) LockSetObj=CosConcurrencyControl::LockSet::_bind("Track_Table_Server");

(2) LockSetObj->lock(CosConcurrencyControl::read, rt_mgr.Get_RT_Env());

// Code for retrieval of TrackRecord with the specified ID

(3) LockSetObj->unlock(CosConcurrencyControl::read, rt_mgr.Get_RT_Env());

}

20

rt_mgr.End_RT();

}

catch(const RT_Exception &rtp) {}

return track;

}

The method �rst binds to the LockSet object (Label 1 in above code) that is
associated with the table (both the LockSet and table are managed by the same
server, namely, Track Table Server). The Get method then makes the request for
a read lock on behalf of the client (Label 2). Thus, the Get method invocation
becomes a client of the LockSet object. Below is the sequence of steps that occur
within the LockSet object when a lock is requested:

1. The Get method invocation requests a lock (CORBA call to LockSet object).

2. The LockSet object grants the requested lock if it does not conict with any
locks currently held (skip Steps 3-5). This simply involves incrementing a
counter within the LockSet object (each LockSet client has one counter per
lock type).

3. Otherwise, the LockSet object determines which clients hold locks that are
blocking the requesting client.

4. The LockSet uses a function in the RT Library to raise the priority of each
blocking client to that of the requesting client.

5. The requesting client then waits on the LockSet's condition variable.

Once the Get method invocation �nishes reading from the table, it releases the
read lock (Label 3). The following is the sequence of steps that occurs when the
lock is released:

1. The Get method invocation requests to release a lock (CORBA call to LockSet
object).

2. The LockSet object releases one instance of the speci�ed lock for that client
(remember that a client can hold multiple instances of a given lock). This
simply involves decrementing the appropriate counter. If the client does not
hold the indicated lock, an exception is raised.

3. The LockSet uses a function in the RT Library to set the releasing client's
priority to that of the highest priority client still blocked by the releasing client.
If it does not block any clients, its priority is reset to its original value.

4. Finally, the LockSet object sends a broadcast signal to its condition variable
(the intention is to wake the highest priority client that can run).

Further details of the Real-Time Concurrency Control Service can be found in
(Wohlever, 1997).

21

3.8. Summary

The Dynamic Real-Time CORBA system has been prototyped as an extension to
Orbix, but was designed without access to Orbix source code and using only real-
time POSIX operating system features. Thus, it is suitable for use as the basis of
extending many di�erent CORBA systems to support real-time. The extensions
are packaged as a Real-Time Library of de�nitions and linkable code, and a Real-
Time Daemon that executes on each node in the system. We have provided the
prototype to companies including Iona Technologies, Tri-Paci�c Corporation, and
Computing Devices International, as well as several U.S Navy programs for use in
their applications and products.

4. Performance Tests

We have performed tests on the prototype implementation of the Dynamic Real-
Time CORBA system in order to demonstrate how it enforces expressed timing
constraints. We ran several tests to indicate raw performance numbers for indi-
vidual features of the system. We also ran tests to determine how many client
deadlines the prototype missed under varying system conditions. In this section we
describe the testing environment, as well as the tests we performed and the results
of the tests. described here are not meant to portray the capabilities of a full-scale
implementation of the Dynamic Real-Time CORBA system. Rather, these tests
are meant to illustrate how such an implementation might perform under varying
conditions. described below were performed on the two-node isolated network de-
scribed in Section 3. A network delay of approximately 1.2 ms was measured on
the system.

4.1. Overhead Performance Tests

The tests described here were performed to determine the amount of overhead in
the system that was due to changes we made to the Orbix system to add real-time
capabilities. We discuss tests involving Timed Distributed Method Invocations,
the Real-Time Event Service, and the Real-Time Concurrency Control Service.
The results described here are summaries of extensive testing performed on each
of these Services. For more detailed descriptions of these tests and results, see
(Wohlever, 1997, Zykh, 1997).

4.1.1. TDMI Overhead Tests. The results of tests described here are averages
over 25 trials, with an error of 1% or less. The tests had a client running on a
Sun Sparc IPX station, and a server running on a Sun Sparc Station 5. When a
client sends a TDMI to a server, the �rst source of overhead is the addition of the
RT Environment structure to the method invocation. The extra data copying,
moving, dereferencing and transmission that must be done by the stubs, skeletons
and the ORB amounts to approximately 3 ms per method invocation.

22

Table 1. Real-Time Event Channel Overhead

Consumer on same node Consumer on di�erent node

Event Response Time 90.6 ms 96.6 ms

On both the client node and the server node, the bulk of the overhead of the
TDMI is in the setting up the real-time information. On the client side, most of
the overhead was produced by the following two methods:

� Start RT Invocation(): The RT Manager Clientmethod that registers a client
with a Real-Time Daemon, calculates and assigns the global priority, and arms
a timer with a signal handling function. The latency introduced by this method
averaged 25.2 ms.

� End RT Invocation(): The RT Manager Client method that deregisters a
client with a Real-TimeDaemon, changes the global priority to its base priority,
and disarms the timer. The latency introduced by this method averaged 10.7
ms.

On the server side most of the overhead was produced by the following two meth-
ods:

� START RT (): The RT Manager Server method that registers a server's thread
with a Real-Time Daemon, calculates and assigns the global priority, and arms
a timer with a signal handling function. The latency introduced by this method
averaged 11.4 ms.

� END RT (): TheRT Manager Server method that deregisters a server's thread
with a Real-Time Daemon, changes the global priority to its base priority, and
disarms the timer. The latency introduced by this method averaged 6.1 ms.

4.1.2. Real-Time Event Service Overhead Tests. The implementation of the
Real-Time Event Service was tested by periodically starting up the suppliers on
one node that would send real-time events to the consumers on another node via
the Real-Time Event Channels. Table 1 shows the event response time, the time
between a supplier generating a real-time event and a consumer receiving the event,
for each of these tests.

The tests for the Real-Time Event Channel involved a supplier running on the
Sun Sparc Station 5, and two consumers, one on the same node, and the other
on the Sun Sparc IPX. An analysis of the results shown in Table 1 indicates that
85-90% of the overhead was due to network communications via IP Multicasting.

We also performed a set of tests in which a consumer periodically invoked the
Real-Time Event Channel on its node. The overhead for this test was 161.0 ms.
These results include the time to make a bind() call to the Real-Time Event Chan-
nel, which itself took approximately 43.4 ms.

23

Table 2. Priority Inheritance Overhead Measurements

One Client Two Clients

Write Lock Low Prio Client unlock High Prio Client
PI Enabled 102.62 ms 82.60 ms 129.90 ms
PI Disabled 80.39 ms 65.22 ms 83.54 ms

4.1.3. Concurrency Control Overhead Tests. The majority of the overhead
that was added to the Real-Time Concurrency Control Service comes from priority
inheritance. We ran two tests to compare the overhead involved when priority in-
heritance was enabled with overhead when there was no priority inheritance. The
results of each test were compiled by averaging over 100 trials. The �rst test in-
volved a single client that requested a write lock from a server on another node.
The second test involved two clients both trying to access the same write lock on a
server. In this test, a low priority client �rst requested and got a write lock. Then
the high priority client requested the write lock, but was blocked. The low priority
client released the lock and then the high priority client was granted the lock.

Table 2 displays the overheads for each of the tests that we performed. A more
detailed breakdown of the overhead for these tests can be found in (Wohlever, 1997).
Notice in Table 2 that there are no reported overhead numbers for the low priority
client getting the write lock in the two client test. This is because there is nothing
added to this operation for priority inheritance. In all three reported cases, a
di�erence in overhead comes from the mechanism used to update the priority of
a low priority client for priority inheritance, and the mechanism for restoring the
priority when a low priority client releases its lock. The results for the high priority
client also reect a di�erence due to a query the RT Daemon to detect the priority
of the blocking client.

In all of the overhead performance tests, a majority of the overhead came from
CORBA calls that were made through the Orbix system. Unfortunately, we did not
have access to the source code for Orbix, and so we had to work with the system
that was not designed for real-time.

4.2. Missed Deadline Performance Tests

In this set of tests, we compared the prototype with an implementation of a non-
real-time ORB (Orbix 2.0.1) on a real-time operating system (Solaris 2.5). In this
baseline system, all clients executed at the same real-time priority, and so scheduling
reverted to a round-robin scheme. We chose this comparison for several reasons.
First, the Orbix on Solaris implementation provides a good baseline for a \�rst
step" towards real-time CORBA. In fact, there have been claims that running a
CORBA implementation on a real-time operating system can be called Real-Time

24

Table 3. System Parameters

Parameter Baseline Value

Nodes 2

Clients 6

Servers 1

Client Start Time 1 - 13 sec

Client Deadline 6 sec

Write Probability 50%

CORBA (Wolfe, 1997). Second, there are no other existing dynamic real-time
CORBA implementations available for comparison.

4.2.1. Testing Environment. We chose to use percentage of missed deadlines
as the performance metric because the goal of the prototype is to provide for the ex-
pression and enforcement of timing constraints in the CORBA environment. Missed
deadline percentage is a clear measure of how well timing constraints (deadlines)
are enforced. examine di�erent system workloads, we varied the number of clients
that execute concurrently. We used an increasing range of start times to implement
this. That is, in some tests, all clients start at the same time, producing a very
high workload. In other tests the start times for the clients were randomly chosen
from a wider range of values. Overall, we examined �ve di�erent start time ranges
to represent di�erent workloads. The �ve ranges from which start times were ran-
domly generated for clients to produce varying system workloads were: 1-1 seconds
(all clients start at the same time); 1-4 seconds (all clients start between 1 and 4
seconds after an initial start time); 1-7 seconds; 1-10 seconds; and 1-13 seconds.

testing. a single server on which all of the method invocations were performed.
There were certain system limitations that required a small number of servers,
however for the purposes of the testing, one server was su�cient to demonstrate
the capabilities of the system. There were 6 clients the other node, each accessing
the server on the �rst node. Each client started some time between one second
and 13 seconds after an initial start time. The range of start times was varied in
order to illustrate di�erent system workloads. For the baseline test, each client
had a deadline of 6 seconds. One of the suites of tests we performed (see Section
4.2.2) indicates how system performance changes as the clients' deadlines change.
Each client performed a single operation, either a read or a write on the server. The
Write Probability of a client represents the probability that the operation performed
by the client is a write. Write probability is a measure of contention for the server,
since the concurrency control for the server must not allow more than one client to
hold a write lock. In the baseline test, the write probability was 50%. That is, a
client's operation was just as likely to be a read as a write. Another suite of tests

25

Figure 5. Baseline Test

was performed to illustrate the e�ect of write probability on the performance of the
system (see Section 4.2.2).

4.2.2. Tests and Results. Along with the baseline test that we performed, we
also ran two suites of tests to illustrate how deadline and write probability a�ect
the ability to meet timing constraints. Each suite of tests was made up of two tests
for each start time range. Each test was the result of averaging over 15 random
trials that produced a 95% con�dence level with an error of at most 5%.
Baseline Test. The parameters for the baseline tests are listed in Table 3. We
performed this test to illustrate how the system performs under average conditions.
Figure 5 displays the results for the baseline test. The x-axis of the graph rep-

resents system workload. The numbers that label the axis represent the outside
number of the start time range. For instance, we can see that as system workload
decreases (start time range increases) the percentage of missed deadlines decreases.
This is expected since the contention for the CPU also decreases. The �gure also
shows that the Dynamic Real-Time CORBA system consistently meets more dead-
lines than the non-real-time CORBA implementation.
Deadline Tests. We performed this suite of tests to illustrate the e�ect of dead-
line on the ability to meet timing constraints. Because the clients in the baseline
test all had a 6 second deadline, which turned out to be a medium length deadline,
this test examined short deadlines (4 seconds), and long deadlines (8 seconds).
6. For long deadlines, both implementations performed well, with the Dynamic

Real-TimeCORBA system performing slightly better than the non-real-time CORBA
implementation at high system workload. As workload increased, both implemen-
tations missed no deadlines. This result is due to the fact that given a long enough
deadline, all of the clients had time to complete, whether or not timing constraints
were enforced. however, there was a marked di�erence between the performances of
our Dynamic Real-Time CORBA system and the non-real-time CORBA implemen-

26

Figure 6. Deadline Tests

Figure 7. Write Probability Tests

tation. The non-real-time CORBA missed every deadline, while our system missed
more at high system workload and virtually none at low system workload. This
result illustrates how the enforcement of timing constraints enables more real-time
clients to meet deadlines in a tight deadline situation. Because the non-real-time
CORBA implementation schedules clients in a round-robin fashion, none of them
was assigned enough CPU time to complete.

Write Probability Tests. In order to illustrate how resource contention a�ects
the system's ability to meet timing constraints, we varied the write probability of
clients accessing the server. The baseline test used a medium write probability
of 50%. Therefore, this suite of tests examined the e�ect of low write probability
(0%), in which none of the clients requested write locks on the server, and high
write probability (100%), in which every client requested a write lock.

27

7. It is clear, again, that the Dynamic Real-Time CORBA system missed fewer
deadlines than the non-real-time CORBA implementation. One result that might
seem surprising is that under high system workload, both systems missed more
deadlines when clients requested only read locks, than when clients requested only
write locks. This is surprising because one would expect that the blocking involved
in write locking would cause more deadlines to be missed. In the non-real-time
CORBA implementation, the explanation for this result lies in the fact that when
one client holds a write lock, and blocks the others, the client holding the lock has
an advantage over the others in a round-robin scheduling scheme. That is, while the
client with the lock holds the lock, it will be the only execution that can run, and
therefore it will be likely to meet its deadline. In the case of the Dynamic Real-Time
CORBA system, the writing clients miss fewer deadlines than the reading clients
only at the highest system workload. This is because in this test, all clients started
at the same time and had the same deadline. Thus, under earliest-deadline-�rst,
each client ran at the same priority, and therefore the scheduling policy reverted to
round-robin.

5. Conclusion

This paper has presented the Dynamic Real-Time CORBA system, which is based
on the desired features speci�ed by the OMG's Real-Time SIG for CORBA. The
focus of our work has been on the expression and enforcement of timing constraints
on end-to-end client/server interactions. Clients can express timing constraints
through TDMIs and the system enforces the timing constraints through various
extensions and additions to the CORBA standard. The Global Priority Service
allow all CORBA requests to be scheduled at all points in the distributed system
according to the same (real-time) policy. The Real-Time Concurrency Control
Service provides CORBA object-level locking with bounded priority inversion. The
Real-Time Event Service enforces the distribution of real-time events in priority
order with real-time enforcement of event response time. The Global Time Service
provides a common notion of time across the system.
The performance results presented here demonstrate the overhead involved with

several aspects of the implementation as well as the ability of the Dynamic Real-
Time CORBA system to enforce expressed timing constraints. Because the proto-
type implementation includes two nodes, and has other system resource limitations,
the results of the tests must be seen as proof of concept and not as de�nitive results
of the design of the system. Full-scale development will be performed by compa-
nies to which we have provided the prototype, including: Iona Technologies and
Tri-Paci�c Inc.
The Dynamic Real-Time CORBA system provides the groundwork for a full dy-

namic Real-Time CORBA design. However, there is still work to be done. Cur-
rently, the scheduling heuristic uses only importance and deadline information in
the calculation of the global priorities. We are investigating which other Quality of
Service (QoS) parameters can be factored in as scheduling parameters and how to
use them to generate the transitive priorities. Performance polymorphism, another

28

form of QoS enforcement where the ORB decides which method of a server to invoke
based on speci�ed QoS parameters and current system conditions, is another area
of current interest. nother area of current work is in Real-Time Concurrency Con-
trol Service, where we are incorporating explicit locking in addition to the implicit
locking described in Section 3. We are also extending the Real-Time Concurrency
Control Service to use our results in object-based semantic real-time concurrency
control (DiPippo, 1993, Squadrito, 1996, DiPippo, 1997), where method-level locks,
whose compatibilities are semantically de�ned, are employed.
Tackling the substantial requirements posed by using CORBA in a real-time envi-

ronment is a monumental undertaking, but necessary if standard, open, distributed
computing environments are to be used in real-time applications. Work that has
been done on porting CORBA products to real-time operating systems, and on
using high-performance CORBA, is necessary for supporting some aspects of real-
time, but neglects expression and enforcement of distributed end-to-end real-time
constraints. The results presented in this paper are important steps towards achiev-
ing this goal.

Acknowledgments

This work is supported by the U.S. O�ce of Naval Research grant N000149610401.
We thank Bhavani Thurasingham and John Maurer of MITRE Corporation, and
Peter Krupp of Iona Technologies for their insights and pioneering work on real-
time CORBA. We also thank the members of the OMG Real-Time Special Interest
Group for their dedicated and sound work in deriving the Real-Time CORBA
speci�cation.

References

Bensley, E., et. al. Object-oriented approach for designing evolvable real-time command and
control systems. In The 1996 Workshop on Real-Time Dependable Systems, February 1996.

Chorus Systems. Chorus/COOL-ORB R3 product description. Technical Report CS/TR-95-
157.3, June 1996.

DiPippo, Lisa B. Cingiser and Victor Fay Wolfe. Object-based semantic real-time concurrency
control. In Proceedings of IEEE Real-Time Systems Symposium, December 1993.

DiPippo, Lisa Cingiser and Victor Fay Wolfe. Object-based semantic real-time concurrency
control with bounded imprecision. IEEE Transactions on Knowledge and Data Engineering,
9(1):135{147, Jan-Feb 1997.

DiPippo, Lisa Cingiser, Victor Fay Wolfe, Levon Esibov, Gregory Cooper, Russell Johnston,
Bhavani Thuraisinghamand John Mauer.. Scheduling and priority mapping for statuc real-time
middleware. Technical Report URI-TR-98-261, University of Rhode Island Dept. of Computer
Science, Sept. 1998. Submitted to Real-Time Systems Journal, Aug. 1998.

Feng, W., U. Syyid and J.W.-S. Liu. Providing for an open real-time CORBA. In Proceedings of
the 1997 IEEE Workshop on Middleware for Distributed Real-Time Systems and Services, San
Francisco, CA, December 1997.

Harrison, T., A. Gokhale, D. Schmidt, and G. Parulkar. Operating system support for a high-
performance, real-timeCORBA. In International Workshop on Object-Orientation in Operating
Systems: IWOOOS 1996 Workshop, Seattle, WA, October 1996.

Krupp, P., Alice Schafer, Bhavani Thuraisingham, and Victor Fay Wolfe. On real-time exten-
sions to the common object request broker architecure. In Proceedings of the Object Oriented

, , 29{30 ()
c Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Programming, Systems, Languages, and Applications (OOPSLA) '94 Workshop on Experiences
with the Common Object Request Broker Architecture (CORBA), Sept. 1994.

The Realtime Platform Special Interest Group of the OMG. CORBA/RT white paper. ftp site:
ftp://ftp.osaf.org/whitepaper/Tempa4.doc, Dec 1996.

OMG. CORBAservices: Common Object Services Speci�cation. OMG, Inc., 1996.
Pallack, Robert. A study and development of real-time corba on atm. Technical Report URI-
TR-97-255, University of Rhode Island Dept. of Computer Science, May 1997. Masters' Thesis.

IEEE POSIX. IEEE POSIX 1003.1c Threads API. 1995.
Rajkumar, Ragunathan. Synchronization in Real-Time Systems: A Priority Inheritance Ap-
proach. Kluwer Academic Publishers, Boston, MA, 1991.

Squadrito, M., Bhavani Thurasingham, Lisa Cingiser DiPippo, and Victor Fay Wolfe. Towards
priority ceilings in semantic object-based concurrency control. In 1996 International Workshop
on Real-Time Database Systems and Applications, March 1996.

TriPaci�c Software at www.tripac.com.
Wohlever, Steven C. Concurrency control in a dynamic real-time distributed object computing
environment. Technical Report URI-TR-97-253, University of Rhode Island Dept. of Computer
Science, May 1997. Masters' Thesis.

Wolfe, V.F., John Black, Bhavani Thuraisingham and Peter Krupp. Towards distributed real-
time method invocations. In Proceedings of the International High Performance Computing
conference, Dec. 1995.

Wolfe, V.F., Lisa Cingiser DiPippo, Roman Ginis, Michael Squadrito, Steven Wohlever, Igor
Zykh, and Russell Johnston. Real-time CORBA. In Proceedings of the Third IEEE Real-Time
Technology and Applications Symposium, June 1997.

Zykh, Igor. Timed distributedmethod invocations in CORBA. Technical Report URI-TR-97-254,
University of Rhode Island Dept. of Computer Science, May 1997. Masters' Thesis.

Contributing Authors

Victor FayWolfe. Victor Fay-Wolfe received the BS degree in Elec-
trical Engineering from Tufts University in Medford, Mass. in 1983,
and theMSE and PhD degrees in Computer and Information Science
from the University of Pennsylvania in 1985 and 1991 respectively.
He worked as a Computational Design Engineer for General Electric
from 1983-1986. He is an Associate Professor of Computer Science
at the University of Rhode Island, where he has been since 1991.
His research interests are in real-time distributed objects, real-time
middleware, real-time databases, and real-time object modeling. He
has been an active participant and standards author in the real-time
POSIX, real-time SQL, and real-time CORBA groups.

Lisa Cingiser DiPippo. Lisa Cingiser DiPippo received the BS
degree in Computer Science from Lafayette College in Easton, PA,
in 1987. She received the MS degree in Computer Science from the
University of Rhode Island in 1991, and her PhD in Applied Math-
ematics also from the University of Rhode Island in 1995. She is
currently an Adjunct Assistant Professor at the University of Rhode
Island, where she has been since May 1995. Her research interests
include real-time distributed objects, real-time and ohject-oriented

30

databases, real-time semantic concurrency control, distributed vir-
tual environments, and real-time object modeling.

Roman Ginis. Roman Ginis received a BS degree in Computer
Science from University of Rhode Island in 1996. He has worked
as a Database Systems Engineer at MITRE Corporation from 1996-
1997. He is a Ph.D. student in Computer Science at the California
Institute of Technology, Pasadena, Ca. His research interests are in
distributed object systems, real-time middleware, formal methods,
real-time scheduling and quality of service.

Michael Squadrito. Michael A. Squadrito received the BS degree
in Electrical Engineering and the MS degree in Computer Science
from the University of Rhode Island in 1984 and 1996 respectively.
He worked as an Electrical Engineer for General Dynamics from
1984-1992. He worked for the MITRE Corporation as a Technical
Sta� member from 1995-1996, and then worked for Real-Time Re-
search as a Research Assistant from 1996-1998. He is currently the
Lead Programmer at Tantalus Games, Inc. His research interests are
in real-time distributed objects, real-time middleware, and real-time
databases.

Steven Wohlever. Steven Wohlever received his BA degree in
Computer Science from Western Connecticut State University in
1995, and his MS degree in Computer Science from the University of
Rhode Island in 1997. His research interests include object-oriented
design and programming, real-time computing, and real-time dis-
tributed objects and middleware. He is currently a member of the
senior technical sta� at the MITRE Corporation in Bedford, Mas-
sachusetts.

Igor Zykh. Igor Zykh received the BS degree in Applied Mathe-
matics from Kabardino-Balkarian State University, Nalchik, Russia
in 1994, and the MS degree in Computer Science from the University
of Rhode Island in 1997. He has worked as a Programmer/Analyst
in the Computing Systems Architecture group for Bell Atlantic Inc.
He is currently a Systems Engineer in the Infrastructure group of the
Online Services division at the Vanguard Group. His interests are
in real-time, distributed object-oriented computing environments,
real-time, message based middleware, real-time, and object-oriented
databases. He has been a participant of real-time CORBA groups.

Russell Johnston. Russell Johnston is Principal Investigator for
the Distributed Hybrid Database Architecture Project for the Of-
�ce of Naval Research. He initiated the integration of the real-time
operating systems, database development, networks and protocols in
order to provide a seamless infrastructurewhich is being transitioned
to Joint Service programs. Mr. Johnstonwas the lead in the develop-
ment for the Joint Directors of Laboratories Tri-Service Distributed
Technology Experiment from its conception. In addition, Mr. John-
ston has served on the JDL Tri-Service Panel for C3, Distributed
Processing Subpanel providing technical guidance in developing the
Joint Service Distributed Technology program.

