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Abstract

In this paper we present the results of performance tests that were executed to demonstrate the
e�ectiveness of an object-based semantic real-time concurrency control technique. The paper reviews
the technique and the model upon which it was based. It then presents the results of several tests
comparing two implementations of the semantic technique with three more traditional object-based
concurrency control techniques. The results indicate that the semantic techniques maintained both
transaction temporal consistency and data temporal consistency better than the traditional techniques.

1 Introduction

A real-time database is a database in which both the data and the transactions may be time-constrained.

The concurrency control for such a database must therefore maintain both the logical consistency constraints

of traditional databases, and the temporal consistency constraints placed on data and on transactions. Data

temporal consistency requirements constrain how old a data item may be and still be considered valid.

Transaction temporal consistency requirements constrain when the transaction may execute. Unfortunately,

an inherent conict exists between maintaining logical consistency and maintaining temporal consistency.

For example, if a transaction T1 is currently reading an object X, the logical consistency requirements of T1

would not allow another transaction T2 to write to X concurrently. However, suppose that the data stored

in X will become old if T2 does not perform its write. In this case, the logical consistency of T1 may be

sacri�ced in order to maintain the temporal consistency of the object X. This violation of logical consistency

may lead to some amount of imprecision in the view that T1 has of X.

We have developed an object-based semantic concurrency control technique that can express the trade-o�

between temporal and logical consistency by using object semantics to de�ne conict between locks [DW93].

For instance, object semantics may determine that in order to maintain certain temporal consistency con-

straints, the logical consistency of the data or transactions must be sacri�ced. More traditional object-based

concurrency control techniques de�ne conict with less exibility. For instance, exclusive locking de�nes

conict as any two concurrent accesses to the object. Techniques like read/write locking, and commutative

locking [BR88] use more object semantics to de�ne conict. In general, the more exibility in the de�nition
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of conict, the more concurrency that will be allowed by an object-locking technique. Furthermore, this

increased concurrency will allow more temporal consistency constraints to be maintained.

In this paper we describe performance tests that we executed to compare our semantic concurrency control

technique with other techniques that provide varying degrees of exibility in conict de�nition. The tests

compare the temporal consistency provided by more traditional object locking techniques with our semantic

locking technique. We measure both transaction temporal consistency and data temporal consistency to

show how increased allowable concurrency a�ects the performance of a real-time database.

The remainder of this paper is organized as follows. Section 2 briey describes our model for a real-

time object-oriented database, and our semantic locking technique based on that model. It also describes a

prototype implementation of two versions of the technique that represent speci�c chosen object semantics.

Section 3 describes the environment in which we performed the tests comparing the object locking techniques.

Section 4 describes the speci�c tests that we performed and presents the results of the tests. Finally, Section

5 concludes with remarks summarizing the test results and describes possible future work.

2 Object-based Semantic Concurrency Control

In this section we briey describe our model of a real-time object-oriented database, called RTSORAC (Real-

Time Semantic Objects, Relationships And Constraints) [PDPW94]. It continues with an overview of our

semantic locking technique for real-time concurrency control. This review is important for the understanding

of the tests that we performed. A full description of both the model and the technique can be found in

[DW93, DW].

2.1 RTSORAC Model

The RTSORAC model incorporates time into objects and transactions to allow for explicit speci�cation of

data temporal consistency as well as transaction temporal consistency. The model is comprised of a database

manager, a set of object types, a set of relationship types and a set of transactions. The database manager

performs typical database management operations including scheduling of all execution on the processor,

but not necessarily including concurrency control. Database object types specify the structure of database

objects. Relationships are instances of relationship types; they specify associations among the database

objects and de�ne inter-object constraints within the database. Transactions are executable entities that

access the objects and relationships in the database. Because our testing concentrates on the object locking

aspect of concurrency control, the technique described in this paper is limited to concurrency control within

individual, non-related objects. The model for relationship types is described in more detail in [PDPW94].

Object Types. An object type is de�ned by hN;A;M;C;CF i. The component N is the name of the object

type. The component A is a set of attributes, each of which is characterized by hvalue; time; ImpAmti. Here,
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value is a complex data type that represents some characteristic value of the object type. The ImpAmt �eld

is of the same type as value and it represents the amount of imprecision that has been introduced into the

value of a. The �eld a:time de�nes the age of attribute a.

An object type'sM component is a set of methods that provides the only means for transactions to access

instances of the object type. A method has a set of arguments where each argument has the same structure

as an attribute. An input argument is one whose value is used by the method to update attributes. A

return argument is one whose value is computed by the method and returned to the invoking transaction. A

method also has a known worst case execution time (Exec), computed using techniques described in [PE94].

The read (write) a�ected set [BR88] of a method is the set of attributes that the method reads (writes).

The C component of an object type is a set of constraints that de�nes correct states of an instance of

the object type. An object can specify value constraints, timing constraints an imprecision constraints on

its attributes.

The CF component of an object type is the compatibility function which uses semantic information about

the methods as well as current system state (SState) to de�ne compatibility between each ordered pair of

methods of the object type. The function has the form:

CF (mact;mreq) =< BooleanExpression >

where mact represents a method that has an active invocation, and mreq represents a method for which an

invocation has been requested by a transaction. In addition to specifying compatibility between two method

invocations, the compatibility function also expresses information about the potential imprecision that could

be introduced by interleaving the speci�ed method invocations. The compatibility function is the means for

de�ning semantics of locking for the semantic locking technique.

Transactions. A transaction is comprised of a set of method invocations, a set of constraints and a priority.

The constraints can be expressed on execution, timing or imprecision [PDPW94]. The priority is used by

the database manager to perform real-time transaction scheduling. Each method invoked by the transaction

is executed at the transaction's priority.

2.2 The Semantic Locking Technique

The semantic locking technique is a concurrency control technique for database objects under the RTSORAC

model. The technique uses semantic locks to determine which transactions may invoke methods on an object.

A semantic lock gives a transaction permission to invoke a speci�c method on an object. The granting of

semantic locks is controlled by the individual objects based on the evaluation of a set of preconditions and

on the evaluation of the object's compatibility function. The technique is fully described in [DW, DW93].

In the semantic locking technique, each request for a method invocation by a transaction is associated

with a request to the object for a semantic lock, which, if granted, allows the method to execute. Each

object executes a mechanism called the semantic locking mechanism (SLM) when a lock is requested.
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Figure 1: Semantic Locking Mechanism

There are two possible outcomes to a semantic lock request: either 1) the semantic lock becomes active

and the associated method invocation is executed, or 2) the request is placed on a priority queue to be

granted later. The outcome is determined by the object's SLM evaluating a set of preconditions and then

evaluating the object's compatibility function. The SLM also records the amount of potential imprecision

that could be introduced when concurrent semantic locks are granted. Figure 1 shows the process that the

SLM performs when a semantic lock is requested by a transaction invoking a method m. We now discuss

the phases of the SLM.

Initial Imprecision Calculation. The SLM �rst computes the potential amount of imprecision that m

will introduce into the attributes that it writes and into its return arguments (Figure 1, Step A). The initial

imprecision procedure computes these values by using the amount of imprecision already in the attribute or

return argument and calculating how the method may update this imprecision through operations that the

method performs.

Preconditions Test. The next phase of the SLM tests two preconditions that determine if granting the

lock would violate temporal consistency (temporal precondition) or imprecision constraints (logical precon-

dition) (Step B). The temporal precondition ensures that if a transaction requires temporally valid data,

then an invoked method will not execute if any of the data that it reads will become temporally invalid

during its execution time. The logical precondition ensures that executing the method invocation will not

allow too much initial imprecision to be introduced into attributes that the method invocation writes or into

its return arguments.

If any precondition fails, then the SLM places the request on the priority queue (Step G) to be retried

when another lock is released. If the preconditions hold, the SLM updates the imprecision amounts for every

a�ected attribute and every return argument (Step C). The SLM saves the original imprecision values so

that they can be restored if the lock is not granted.
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Compatibility Function Test. Upon m's successful passing of the preconditions, the SLM checks the

compatibility function to make sure that m is compatible with all of the currently active method invocations,

as well as all requested method invocations on the queue with higher priority than m (Step D). For each

compatibility function test that succeeds, the SLM accumulates the imprecision that could be introduced by

the corresponding interleaving. If all tests succeed, the SLM grants the semantic lock, places it in the active

lock set (Step F), and allows the method to execute. If any test fails, the SLM restores the original values of

any changed imprecision amounts (Step E) and places the request in the priority queue to be retried when

another lock is released (Step G).

Releasing Locks. A semantic lock can be released explicitly by request of the holding transaction, or it

can be released implicitly upon completion of method execution or when a transaction commits or aborts.

Whenever a semantic lock is released, it is removed from the active locks set and the priority queue is checked

for any requests that may be granted. Since the newly-released semantic lock may have been associated with

a method invocation that restored logical or temporal consistency to an attribute, or the lock may have

caused some incompatibilities, some queued requests may now be granted locks. The requests in the queue

are re-issued in priority order and if any of these requests is granted, it is removed from the queue.

2.3 Implementation

We have implemented the RTSORAC model in a prototype system that extends the Open Object Oriented

Database System (Open OODB) [WBT92] for real-time [WDPP94]. RTSORAC Objects are implementated

in main memory using the shared memory capability. Transaction processes map the shared segment into

their own virtual address spaces, thereby gaining direct access to object instances. In order to gain a lock on

a method of an object in shared memory, a transaction process calls the SLM of the desired object, which

determines if the method lock can be granted to the transaction.

One unique feature of our semantic locking technique is the way in which the technique de�nes conict

between transactions. Our user-de�ned compatibility function de�nes conict between methods based on

object semantics and system characteristics. We have implemented two versions of the semantic locking

technique, each representing speci�c object semantics, to demonstrate how our technique can express the

trade-o� between temporal and logical consistency [DiP95]. The �rst version of the semantic locking tech-

nique, called the semantic-logical technique, chooses logical consistency over temporal consistency. The other

version, called the semantic-temporal technique, chooses temporal consistency of data over logical consistency.

The semantic-logical technique is based on semantics that we have shown to be su�cient for bounding

imprecision in our semantic locking technique [DW]. Certain restrictions are placed on the de�nition of the

compatibility function to ensure that speci�ed imprecision limits are not violated. The restrictions require

the compatibility function to disallow any interleavings that would cause imprecision limits to be exceeded.

The semantic-temporal technique uses the same semantics as the semantic-logical technique, except that the
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Semantic-Logical Semantic-Temporal

CF (UpdateX(Y1);UpdateX(Y2)) = CF (GetX(Y1);UpdateX(Y2)) =

(jY1:value � Y2:valuej < X:ImpLimit� (X:time < Now � 5) OR

X:ImpAmt) (jX:value� Y2:valuej < Y1 :ImpLimit�

(Y1:ImpAmt+ Y2:ImpAmt))

Figure 2: Compatibility Function Examples

semantic-temporal technique allows concurrency that could exceed imprecision bounds in order to preserve

the temporal consistency of the data.

Note that while the semantic-temporal technique takes into account logical consistency, the semantic-

logical technique ignores temporal consistency. These semantics were chosen to reect the trade-o� that

must be made between temporal and logical consistency. That is, the semantic-logcial technique always

requires logical consistency (within imprecision bounds). The semantic-temporal technique always chooses

temporal consistency whenever a timing constraint might be violated, and falls back on logical consistency

otherwise.

Figure 2 illustrates compatibility functions for the two versions of the semantic locking technique using

an example involving methods that read (GetX) and write (UpdateX) an attribute X. The compatibility

function for the semantic-logical technique allows two updates of the same attribute X to interleave as long

as the imprecision limits of X are not violated. In the example of the semantic-temporal technique, the

invocation of UpdateX is allowed to interleave with the currently active invocation of GetX if the return

argument of GetX does not become too imprecise, or if X has become temporally invalid. Notice that in this

version of the semantic locking technique, logical consistency is maintained in most cases, but if temporal

consistency must be restored, logical consistency may be violated.

3 Testing Environment

We utilized the prototype system described in Section 2.3 to conduct performance tests in which we compared

the two versions of our semantic locking mechanism with other object-based locking techniques (exclusive

locking, read/write locking and commutative locking). Each test involved generating a set of synthetic system

con�gurations and a set of synthetic workloads. On each system con�guration, we executed the corresponding

workload using each of the concurrency control mechanisms. The results of these tests indicate, in general,

that our semantic locking technique, in both forms, maintains transaction and data temporal consistency

better than the other concurrency control techniques.

This section �rst de�nes our performance model, describing the system con�guration and workload

parameters, and compares it to the canonical concurrency control performance model of [ACL87]. The

section goes on to describe the techniques with which we compared our semantic locking technique. Finally,
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Parameter Meaning

db size Number of objects

tran size Mean size of transactions
max size Size of largest transaction
min size Size of smallest transaction
write prob Probability that transaction writes object

int think time Mean intratransaction think time
restart delay Mean transaction restart delay
num terms Number of terminals

mpl Multiprogramming level
ext think time Mean time between transactions
obj io I/O time for accessing an object

obj cpu CPU time for accessing an object
num cpus Number of CPUs
num disks Number of disks

Table 1: Performance Parameters for Agrawal Performance Model

Objects

no. attribs 1-5

no. methods 2-5

A

Attributes

value 1.0-10.0

time 0

imp amt 1.0-10.0

imp limit 1.0-10.0

avi 1-10

B

Methods

a�ected sets 0-1

exec time 1-3

C

Figure 3: System Con�guration Tables with Ranges for Random Values

it de�nes the metrics by which we measured the performance of the technqiues.

3.1 Performance Model

To test our semantic locking technique, we used the simulation model of [ACL87], which we will refer to as

the Agrawal model, with several modi�cations to handle the required semantics and the real-time aspects

of our technique. Table 1 indicates the performance parameters used in the Agrawal model. Some of the

parameters in the table do not apply to our model. For instance we do not have a parameter representing the

number of disks (num disks), because our prototype is a main memory database. On the other hand, our

model requires parameters that do not exist in the Agrawal model because our technique examines object

semantics to determine concurrency control. For example, while the Agrawal model uses db size to represent

the size of the database, our objects have parameters representing semantics of value, time and imprecision.

Also, because each object in our system con�guration is di�erent, the transactions in our workload have

to specify the object and method to invoke, as well as parameters, instead of the simpler write probability

(write prob) of the Agrawal model.
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System Con�guration. The system con�gurations that were generated in our testing consisted of groups

of data objects. Each con�guration was made up of ten objects, each with randomly generated attributes,

methods and constraints. The compatibility function for each object was generated based upon the concur-

rency control protocol used and the semantics of the object.

Figure 3 illustrates how each of the parameters in the system con�guration was generated. The ranges

of values for the parameters were chosen so that the system con�gurations were complex enough to produce

interesting results, while remaining reasonable for testing purposes. Chart A shows that for each object,

the number of attributes was between 1 and 5, and the number of methods was between 2 and 5. Figure

3B shows how the �elds of each attribute were generated. The value �eld was generated randomly from the

range of numbers shown. The time �eld of the attribute was set at the time the test started. In the chart, the

zero represents the time relative to the time the object was placed in memory. The amount of imprecision

initially in the attribute was chosen from a range of 1.0 to 10.0. The imprecision limit for the attribute was

between 1.0 and 10.0. The avi (absolute validity interval) was generated from a range of relative times (1

to 10 seconds) and was then added to the absolute time that the object was placed in memory.

Figure 3C displays parameters for each method of an object. The a�ected sets (read a�ected set and

write a�ected set) were generated randomly so that for each attribute in the object, a value of either 0 or 1

was randomly chosen to specify if the attribute was in the a�ected set. The execution time for each method

was generated as an integer number of KiloWhetstones [DSW90]. 1

To facilitate de�nition of object semantics in our testing environment, we made a simplifying assumption

regarding the methods of an object:

For every attribute A in the read a�ected set of a method M , there is a return argument RM;A that

returns the value read by M , and for every attribute A in the write a�ected set of the method M , there is an

input argument IM;A that stores a value to be written by M . The only execution performed by a method is

done by the reads and writes associated with its arguments.

This assumption provides the semantics of attribute to argument mapping thus allowing for the automatic

generation of an object's compatibility function and imprecision accumulation.

The arguments of a method and their types were determined by the randomly generated a�ected sets.

For example, if an attribute a was in the read a�ected set of a method m, then m had a return argument r

that returned the value of a.

Workload. Generation of a workload for our performance tests involved building transactions. Each test

that we performed involved 20 transactions accessing a single system con�guration. Figure 4 displays the

parameters that were used to build transactions for the workload. Chart A in the �gure indicates that for

each transaction the number of method invocations was generated randomly from a range of 1 to 5. This

range of values was found to be su�cient to represent transaction of varying length. For the start time and

1This execution time was later converted to seconds and nanoseconds based on testing on the prototype implementation.
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Transactions

no. meth invocs 1-5

start time 4-35

deadline 12-25

exec time computed

slack time computed

priority computed

A

Method

Invocations

object sys con�g

method sys con�g

temporal 0-1

B

Method

Invocation

Arguments

imp limit 1.0-10.0

imp amt 1.0-10.0

value 1.0-10.0

time 0

C

Figure 4: Workload Tables with Ranges for Random Values

deadline of each transaction, random relative times (in seconds) were generated from the ranges indicated

in the chart. They were relative to some initial starting time for the entire test. The execution time of a

transaction was calculated by adding the execution times of each of the methods that the transaction invoked.

The slack time was calculated by subtracting the execution time from the relative deadline. The priority of

the transaction was determined based on a real-time least slack time priority assignment scheme [CSK88].

Least slack time was chosen because the priorities are static, simplifying the simulation, and because it has

been shown to be optimal under certain conditions.

Figure 4B shows the parameters for each method invocation of a transaction. For the generation of

each method invocation, �rst an object was chosen randomly from among all of the objects in the system

con�guration. Then a method was chosen randomly from among all of the methods of the chosen object.

For each argument to the chosen method (See Figure 4C), if it was a return argument, an imprecision limit

was generated randomly from a range of 1.0 to 10.0. If the argument was an input argument, a value was

generated from a range of 1.0 to 10.0. These ranges were chosen to correlate with the value and imprecision

ranges of the object attributes. The time �eld for the input argument was the time at which the write

actually took place and the initial imprecision amount for the input argument was chosen from a range of

1.0 to 10.0. The generation of the method invocation also randomly determined (from 0 or 1) whether or

not the transaction required temporally consistent data to be returned by the invocation.

Each transaction in a given workload requested locks using a two-phase locking scheme. The transaction

requested a lock when it was needed (just before invoking the method) and the transaction held the lock

until the end of its execution. Transactions that missed their deadlines were aborted and not restarted, as

would be done in a �rm real-time application.

3.2 Comparison Techniques

In our tests, we compared the semantic-logical technique and the semantic-temporal technique with three

other object locking techniques of varying degrees of allowable concurrency - exclusive locking, read/write
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Exclusive Locking CF (mr;ma) = FALSE

Read/Write Locking CF (mr;ma) = (WAS(mr ) = ;) AND (WAS(ma) = ;)
Commutative Locking CF (mr;ma) = (WAS(ma) \ (WAS(mr ) [RAS(mr )) = ;)

AND((RAS(ma) \WAS(mr )) = ;)

mr=requested method, ma=active method
RAS(m)=read a�ected set of m, WAS(m)=write a�ected set of m

Table 2: Compatibility Function for Comparison Techniques

locking, and commutative (a�ected set) locking, for a total of �ve concurrency control techniques. Each of

the object locking techniques was implemented by de�ning the compatibility function accordingly. Table 2

displays the compatibility functions for each of the comparison techniques. Exclusive locking de�nes conict

by mutual exclusion. Only one transaction may access an object at a time. Therefore, the corresponding

compatibility function is always false; allowing no methods within an object to interleave. Read/write locking

of objects allows multiple readers of an object, but only one writer at a time. The compatibility function

for read/write locking requires that two methods are compatible only if neither of them writes to the object.

Commutativity of methods, as de�ned in [BR88], allows methods to interleave only if the intersections of the

a�ected sets of the methods involved are empty. The compatibility function for commutative locking checks

that if the requested method writes an attribute, no active method reads or writes the attribute, and if the

requested method reads an attribute, no active method writes the attribute.

Each of the �ve object locking concurrency control techniques was implemented in our prototype system.

For the implementation of exclusive locking, read/write locking and commutative locking we used a simpli�ed

version of the semantic locking technique in which all of the steps in the technique that involved testing or

accumulation of imprecision (Steps A, B, C, and E of Figure 1) were left out because none of these techniques

allows any imprecision. This removed any unnecessary overhead from the comparison techniques so that

they were better represented. The temporal precondition was left in the comparison techniques so that any

di�erence that was found among the techniques could be attributed to the way in which conict was de�ned,

and not to di�erences in how locks were acquired.

3.3 Performance Measurements

Traditionally the measure of a concurrency control protocol is the throughput of transactions [ACL87].

However, because our technique was designed for real-time applications, it is more important to measure

temporal consistency than it is to measure throughput. To measure temporal consistency of transactions we

examined the percentage of transactions that miss their deadlines (deadline miss ratio) [HSTR89, AGM88].

To measure the temporal consistency of the data we calculated the percentage of method requests that

returned temporally invalid data to its transaction (temporal inconsistency ratio) [Son92].
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Deadline Miss Ratio Temporal Inconsistency Ratio

DL1: Vary Method Invocations TI1: Vary Method Invocations

DL2: Vary Method Execution TI2: Vary Method Execution

DL3: Vary Deadline TI3: Vary Absolute Validity Interval

Table 3: Tests Performed

4 Results

For each test that we performed we generated 15 system con�gurations and 15 corresponding transaction

sets. The results of each test were averaged over these 15 trials producing a 95% con�dence level with

an error of at most 8% (unless otherwise speci�ed). We executed a test for each of the �ve concurrency

control protocols that we compared. We also varied the interarrival time of transactions to illustrate how

the techniques perform under varying system loads. We used the range of start times for a transaction as a

measure of interarrival time. That is, the smaller the range of start times for a set of transactions, the closer

the interarrival time and therefore the heavier the load. Table 3 summarizes the tests that we performed.

For both data temporal consistency and transaction temporal consistency we performed three test suites,

each to highlight the performance of our techniques under speci�c conditions. The goal here was twofold.

First, we wanted to show that our techniques outperform the less exible object locking techniques over a

wide range of system conditions. Second, we were interested in determining under which conditions it would

be most bene�cial to use semantic locking.

4.1 Deadline Miss Ratio

We performed three test suites to measure deadline miss ratio, each to highlight a particular parameter of

the testing.

Test Suite DL1: Vary Method Invocations. The �rst test was chosen to illustrate how the length

of transactions a�ects concurrency control. We used the number of method invocations in a transaction to

represent transaction length. A short transaction had a randomly generated number of method invocations

from 1 to 3. A medium length transaction had from 4 to 6 method invocations. A long transaction had from

7 to 9 method invocations.

For medium length transactions, there was a signi�cant di�erence between our semantic techniques and

the other techniques (Figure 5). At low contention levels, the semantic techniques performed similarly. With

higher contention, the semantic-temporal technique performed better than the semantic logical technique,

because with high contention, there were more chances for methods of di�erent transactions to conict.

It was therefore more likely that the read/write conict that allowed the semantic-temporal technique to

violate logical consistency would occur. For very short transactions all of the concurrency control techniques
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performed very well, missing almost no deadlines. For long transactions the semantic techniques performed

slightly better than the others, with the di�erence diminishing as contention got higher.

The reason we see the most di�erence for medium length transactions is that with short transactions it is

very easy for all techniques to meet their deadlines, and for long transactions, the system becomes overloaded

making it di�cult for any techniques to perform well.

Test Suite DL2: Vary Method Execution. The length of the methods invoked by a transaction is

another way of examining the e�ect of length of transaction. We varied the execution time of methods so

that it was randomly chosen from a range of 1 to 3 KiloWhetstones for short methods, 5 to 8 KiloWhetstones

for medium length methods, and 10 to 15 KiloWhetstones for long methods.

The greatest di�erence between the semantic techniques and the traditional techniques is seen with short

methods (Figure 6). For medium length methods, the semantic techniques missed fewer deadlines when

contention was low, but as contention became higher, all of the techniques missed more deadlines, with not

much signi�cant di�erence among them. And for long methods, a very high percentage of deadlines were

missed by all of the concurrency control techniques.

An explanation for these results is that as method execution time increased, the possibility of the real-

time scheduler �nding a feasible schedule (one that meets all of its deadlines) decreased. Thus, for long

methods, there was very little di�erence among the �ve techniques because there were very few feasible

schedules. For shorter methods, there are more feasible schedules, and the increased allowable concurrency

of our semantic techniques provides the exibility for the scheduler to �nd them. Thus, there was more

di�erence among the techniques.

Test Suite DL3: Vary Deadline. We varied the length of the transactions' deadlines in order to ex-

amine how the concurrency control mechanism reacts to di�erent real-time environments. The deadlines for

transactions were randomly chosen from a range of 8 to 11 seconds for short deadlines, 12 to 15 seconds for

medium deadlines, and 17 to 20 seconds for long deadlines.

The results of this test suite are illustrated by Figures 7 through 9. In each of the tests, all of the

concurrency control techniques miss very few deadlines at low contention, and as contention increased, our

semantic techniques performed better. When deadlines were short, the techniques all missed substantially

more deadlines at very high contention, but the di�erence among the techniques was clear, with the semantic

techniques performing better than the others. For medium and long deadlines, the semantic techniques

remained virtually the same regardless of processor contention, missing almost no deadlines. The other

techniques tended to miss more deadlines as processor contention increased.

These results can be explained by the fact that with medium and long deadlines, the semantic techniques

provided enough concurrency for the transactions to meet most of their deadlines regardless of how many

transactions were running concurrently. When processor contention was high, the traditional techniques

could not provide enough concurrency for all of the executing transactions to meet their deadlines.
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4.2 Temporal Inconsistency Ratio

We measured temporal inconsistency by examining the percentage of all method requests that read tem-

porally inconsistent data. In order to do this, we had to change the system so that transactions did not

abort when they missed their deadlines, but rather continued until complete. We found that if transactions

were allowed to abort, a concurrency control mechanism that missed a lot of deadlines appeared to preserve

temporal consistency better than a mechanism that allowed more deadlines to be made. This was because

the aborted transactions stopped at a time when they were most likely to read temporally inconsistent data.

Without transaction aborts, another problem emerged. In the tests for deadline miss ratio, deadlock

was avoided because transactions had a maximum amount of time to run, and then they aborted. Without

aborts, there was the possibility that deadlock would occur and the tests could not be run. In order to detect

a deadlock situation, we placed a deadline of two minutes on the overall test. Those transactions that were

not complete after this long deadline were assumed to have been stuck in deadlock. From these transactions,

we assumed that every method invocation returned temporally invalid data.

We performed three test suites (Table 3 TI1-TI3) to measure temporal inconsistency ratio. We looked at

varying the number of method invocations, method execution time, and absolute validity interval. In each

of these tests, the baseline parameters were as shown in Figures 3 and 4, except that the attribute initial

imprecision amount always started at 0.0.

Test Suite TI1: Vary Method Invocations. With this test, we set out to determine how the length

of transactions (number of method invocations) a�ects the amount of temporal inconsistency seen by trans-

actions. A low number of method invocations was represented by a range of 1 to 3, medium by 4 to 6, and

high by 7 to 9 method invocations.

With a small number of methods invocations, there was very little di�erence in temporal inconsistency

among the techniques. Each technique read virtually no temporally inconsistent data because the transac-

tions were all short enough in order to read the data before it became old.

In the tests with medium and high number of method invocations (Figures 10 and 11), the maximum

error was 13%. In these cases, a signi�cant di�erence between the semantic techniques and the traditional

techniques emerges. Although transactions are longer, the semantic techniques allow more interleaving,

which allows writing transactions to update old data and reading transactions to read the data before it

expires. Another factor involved in the di�erence is deadlock. Recall that if a deadlock situation occurs,

our tests assume that any transactions involved in the deadlock read temporally invalid data. Because the

data contention in the traditional techniques was stricter than in the semantic techniques, deadlock occurred

more in the traditional techniques, and therefore more temporally inconsistent data was read.

Notice the plunge in temporal inconsistency evident in Figure 11 when interarrival rate was very high.

This result is unexpected because under heavy system load, we would expect more data contention and

therefore higher data temporal inconsistency. However, if all transactions start at about the same time, as
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they do under very high interarrival rate, they should run in approximately priority order, with very little

preemption. This would take away most of the contention that might cause deadlock to occur. Thus, the

decrease in temporal inconsistency at very high interarrival rate results from the lower occurence of deadlock.

Test Suite TI2: Vary Method Execution. We examined the performance of the concurrency control

techniques with short method execution (1 to 3 KiloWhetstones), medium length method execution (5 to

8 KiloWhetstones), and long method execution (10 to 15 KiloWhetstones). The purpose of this test was

to see how the length of the methods in the system a�ects the temporal consistency of the data read by

transactions.

The results of all three tests (Figures 12, 13 and 14) indicate that the longer the methods, the higher the

temporal inconsistency overall. Also, in general, the semantic techniques read less temporally inconsistent

data than the other techniques. These results are partly due to the additional concurrency provided by the

semantic techniques, and partly due to the fact that the traditional techniques are more likely to deadlock.

The drop in temporal inconsistency at very high interarrival rate is seen again here, in each of the tests.

The explanation involving the lower occurence of deadlock applies here as well.

Test Suite TI3: Vary Absolute Validity Interval. We chose to test how the techniques compared

under varying values for absolute temporal validity because it is this interval that de�nes the temporal

consistency of the data. We �rst examined the performance when attributes were considered temporally

valid for a very short period of time (low avi, 0 to 1 second). The medium absolute validity interval test

chose avi from a range of 1 to 3 seconds. For the long absolute validity interval, the avi for attributes was

randomly chosen from a range of 3 to 5 seconds.

When absolute validity interval is medium or long, the results were nearly identical, with the semantic

techniques reading practically no temporally inconsistent data, and the traditional techniques higher. Figure

16 shows the results for long absolute validity interval. The medium interal results were very similar.

With short absolute validity intervals (Figure 15), the amount of temporally inconsistent data read by

each technique is greater than for medium or long absolute validity intervals and the di�erence among the

techniques is less signi�cant. This is because when the absolute validity interval is short, there is less time

for transactions using any concurrency control technique to read valid data.

5 Conclusion

In this paper, we reviewed our model of real-time object-oriented databases and our technique for object-

based real-time concurrency control and presented the results of tests comparing our technique with other,

more traditional techniques. In general, the results of the tests we performed demonstrate that the increased

concurrency, provided by our semantic technique, allows for better maintenance of temporal consistency

constraints.
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In the tests we performed to measure how transaction temporal consistency was a�ected, our semantic

techniques usually missed fewer (never more) deadlines than the more traditional techniques. These tests

further indicate that the particular implementations of the semantic locking technique that we tested are best

suited in applications that have medium length transactions, short methods, or medium to long deadlines

with heavy system load.

The results of the tests measuring data temporal consistency were slightly less conclusive. While it is

clear that in the given testing environment, our semantic techniques perform better than the traditional

techniques, it is not clear how much of that di�erence is due to the occurrence of deadlock. Our technique,

as it currently exists, does not provide for deadlock prevention, thus, we chose to test it against other

techniques with no deadlock prevention. This might seem to be an unfair comparison because techniques

such as exclusive locking and read/write locking lend themselves to deadlock prevention in the form of

priority ceiling protocols [SRSC91]. However, similar deadlock prevention techniques are not trivial for the

other object locking concurrency control techniques that we tested.

We are currently examining the possibility of adapting the priority ceiling protocol to our semantic

locking technique. At present we have produced a promising start by applying the priority ceiling protocol

to a�ected sets [STDW96].
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Figure 5: Missed Deadlines - Medium Method Invocations
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Figure 6: Missed Deadlines - Short Methods
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Figure 7: Missed Deadlines - Short Deadlines
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Figure 8: Missed Deadlines - Medium Deadlines
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Figure 9: Missed Deadlines - Long Deadlines
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Figure 10: Temporal Inconsistency - Medium Method Invocations
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Figure 11: Temporal Inconsistency - High Method Invocations
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Figure 12: Temporal Inconsistency - Short Methods
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Figure 13: Temporal Inconsistency - Medium Length Methods
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Figure 14: Temporal Inconsistency - Long Methods
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Figure 15: Temporal Inconsistency - Short Absolute Validity Interval
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Figure 16: Temporal Inconsistency - Long Absolute Validity Interval
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