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ABSTRACT 

 
 Concurrency control algorithms that are used in a real-time database must satisfy the 
timing requirements of the transactions as well as maintain the consistency of the data. 
Concurrency control techniques vary in the amount of concurrency they allow in a system. 
As more concurrency is allowed, it is more likely that transactions will meet their timing 
constraints. In lock-based concurrency control techniques, the problem of deadlock must 
be addressed. Additionally, if these techniques are used in a real-time system, the problem 
of priority inversion must be addressed.  
 The priority ceiling protocols prevent deadlock and bound priority inversion in a real-
time system. The original protocol was designed to be used with exclusive locking. The 
read/write priority ceiling protocol was developed later to allow more concurrency in real-
time databases that use read/write locking. Since neither protocol uses the semantics of 
objects, they are not appropriate for use with semantic concurrency control techniques 
used in real-time object oriented databases. Any gain in concurrency achieved by using 
semantics would be reduced to the lower concurrency for which that particular protocol 
was designed. 
 This thesis presents the affected set priority ceiling (ASPC) protocol. This protocol is 
compatible with semantic concurrency control techniques that support data logical 
consistency. Proofs will be presented to show that the affected set priority ceiling protocol 
prevents deadlock and bounds priority inversion in the same manner as the existing 
priority ceiling protocols. 
 This thesis also describes how the affected set priority ceiling protocol is implemented 
in a testbed real-time database system and compared to the existing protocols. The tests 
indicate that the ASPC protocol performs as well as the existing protocols, and under 
certain conditions performs better than the existing protocols. 
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Chapter 1 
 
 

Introduction 
 
 
This thesis describes a priority ceiling protocol that uses the semantic information of 
objects in a real-time database. It also presents proofs that the protocol prevents deadlock 
and bounds priority inversion. Finally, the thesis describes a prototype implementation on 
which the tests were conducted, and analyzes the results. 
 
1.1  Motivation 
 
Real-time databases are required for applications that have time constrained data and time 
constrained transactions, such as automated vehicle control, manufacturing, and air-traffic 
control [Ram93]. Concurrency control algorithms that are used to control access to the 
data must satisfy the timing requirements of the transactions as well as maintain the 
consistency of the data.  
 Concurrency control techniques vary in the amount of concurrency they allow in a 
system. As more concurrency is allowed, it is more likely that transactions will meet their 
timing constraints. In lock-based concurrency control techniques, the problem of deadlock 
must be addressed. Additionally, if these techniques are used in a real-time system, the 
problem of priority inversion must be addressed. Priority inversion occurs in a real-time 
system when a low priority transaction prevents a higher priority transaction from 
executing. Two real-time priority ceiling protocols that prevent deadlock and limit 
priority inversion are presented in [SRL90, SRSC91]. 
 The original priority ceiling protocol [SRL90] was designed to be used with exclusive 
locking. The read/write priority ceiling protocol [SRSC91] was developed later to allow 
more concurrency in real-time databases that use read/write locking. Since neither 
protocol uses the semantics of objects, they are not appropriate for use with semantic 
concurrency control techniques [BR92, DiP95] used in real-time object oriented 
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databases. Any gain in concurrency achieved by using semantics would be reduced to the 
lower concurrency for which that particular protocol was designed. 
 This thesis presents the affected set priority ceiling (ASPC) protocol. This protocol is 
compatible with semantic concurrency control techniques that support data logical 
consistency in real-time object-oriented databases. Proofs will be presented to show that 
the ASPC protocol prevents deadlock and bounds priority inversion in the same manner as 
the existing priority ceiling protocols. 
 
1.2  Goal of Research 
 
The goal of this research is to develop a priority ceiling protocol for use in an object-
oriented database. This protocol will use the semantic information of the objects in the 
database, thereby providing the potential for more concurrency than either the original or 
read/write priority ceiling protocols. The protocol developed by this research will also 
prevent deadlock and bound priority inversion. 
 
1.3  Approach Used 
 
In order to achieve the goal, the existing priority ceiling protocols were examined and 
evaluated. The protocols consist of a static and dynamic algorithm. The original and 
read/write priority ceiling protocols use the same dynamic algorithm. However, the static 
algorithm is dependent on the concurrency control being used, i.e., exclusive locking for 
the original protocol, and read/write locking for the read/write protocol. 
 The goal of this research was to alter the static algorithm of the priority ceiling 
protocol to use semantic locking information. The semantic locking techniques of [BR92, 
DiP95] were used to modify the static algorithm of the priority ceiling protocol. The 
dynamic algorithm remains the same as the original and read/write protocols. 
 
1.4  Outline 
 
Chapter 2 is a review of lock-based concurrency control, priority inheritance, deadlock 
prevention, and the original and read/write priority ceiling protocols. Chapter 3 describes 
the ASPC protocol and presents the proofs for deadlock prevention and bounded priority 
inversion. Chapter 4 describes the prototype implementation that was used to evaluate the 
protocols. Chapter 5 presents the results of the performance tests using simulated 
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workloads. Chapter 6 compares the protocols, explains the contributions and limitations of 
this thesis, and discusses future work. 



 4 4

 
 
 
Chapter 2 
 
 
Related Work 
 
 
This chapter gives some background on the work that has been done in the area of lock-
based concurrency control and deadlock prevention. The chapter then describes priority 
inheritance, which is a technique used to bound priority inversion in real-time systems. 
Finally, the original and read/write priority ceiling protocols are explained and illustrated 
with an example. 
 
2.1  Concurrency Control 
 
In a conventional database, mutual exclusive locking is often used to maintain the 
consistency of the data. In addition, two phase locking is normally used to maintain the 
serializability of the transactions. Two phase locking is a well known technique which 
requires that a transaction cannot acquire any locks once it has released a lock. 
Serializability means that transactions will interact concurrently and leave the data in a 
state equivalent with one of the possible serial executions of the transactions. 
 There are a variety of concurrency control techniques [BHG86, YWLS82], each using 
a different level of granularity to resolve conflicts between locks. Figure 2.1 shows a 
hierarchy of some of the general locking techniques available. 
 

Locking Technique

read/write

affected set

sem antic

Concurrency
least

m ost

 exclusive

 

Figure 2.1: Locking and Concurrency 
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Exclusive locking requires that an entire object be locked no matter what part of an 
object a transaction may be accessing. Read/write locking is less restrictive because it 
allows many readers to access an object as long as a transaction is not writing to the 
object. Since read/write locking potentially allows many readers to access an object, it 
offers more concurrency than exclusive locking. 
 Affected Sets.  An object is defined as having attributes and methods. An attribute 
is a data variable of an object. A method is a function of the object which is used to access 
attributes contained within the object. The read affected set (RAS) of a method contains 
all attributes of the object that the method reads.  The write affected set (WAS) of a 
method contains all attributes of the object that the method writes.  Under read/write 
affected set semantics, two methods m1 and m2 are compatible if and only if: 

 
(WAS(m1) ∩  WAS(m2) = Ø) ∧  
(WAS(m1) ∩  RAS(m2) = Ø) ∧  
(RAS(m1) ∩  WAS(m2) = Ø) 

 
 Consider the following example to show how the r/w affected sets potentially allow 
more concurrency than simple read/write locking. An object has two methods that write to 
two different attributes, i.e., write_speed() and write_depth(), which write to the speed 
and depth attributes respectively. Using read/write locking, any transaction that uses either 
method would be granted an exclusive write lock on the object, preventing any other 
transaction access. Using r/w affected set locking, a transaction executing write_speed() 
would not prevent any other transaction from executing write_depth() because their 
affected sets do not intersect, thereby allowing more concurrency than read/write locking. 
 Semantics. For the past three years our research group at the University of Rhode 
Island has been performing research in real-time object-oriented databases. This work has 
included specification of the RTSORAC model [PDPW94] for real-time object-oriented 
databases, and the specification, implementation, and analysis of an associated semantic 
locking technique for concurrency control [DiP95]. The semantic locking technique allows 
the designer of individual objects to determine the allowable level of concurrency within 
an object, based on the semantics of the object. These semantics may require the 
relaxation of serializability. A critical issue in the field of real-time databases involves the 
conflicting requirements of logical and temporal consistency. In order to maintain the 
logical consistency of the data and/or transactions, transactions may be blocked and miss 
their deadlines, or they may not be able to write data within the data's timing constraints. 
On the other hand, by allowing a transaction to preempt a conflicting transaction in order 
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to write time-constrained data, the logical consistency of the data or of the transactions 
may be compromised. The semantic locking technique allows the object designer to 
explicitly express this trade-off between logical and temporal consistency. 
 The RTSORAC model extends the traditional object-oriented notion of an object to 
include attributes that have a value, a timestamp, and an amount of imprecision. The 
imprecision that is recorded accumulates due to the relaxation of serializability by the 
semantic locking concurrency control technique. RTSORAC objects also include 
constraints and a compatibility function. The constraints can be placed on the attributes to 
express logical and temporal correctness of the object. 
 The user-defined compatibility function determines how the methods of the object may 
interleave. It is through this function that the object designer expresses the semantics of 
allowable concurrency. The flexibility of the compatibility function allows the object 
designer to specify different levels of concurrency for different objects. For instance, one 
object may require serializability, while another object may tolerate a less restrictive form 
of correctness. To enforce serializability the object designer may use affected set semantics 
to determine compatibility. 
 A less restrictive form of correctness may be needed to express the trade-off between 
temporal and logical consistency. In such a case, the semantics of compatibility between 
methods are based on dynamic information, including current temporal consistency and 
imprecision of data. For example, if a method m1 that reads an attribute a is currently 
executing, it would violate the logical consistency of m1's return value if another method 
m2 that writes a were to execute. However, if the timing constraint of a has been violated, 
i.e., it has become old, then allowing m2 to execute would restore the temporal 

consistency of a. When determining each potential allowable interleaving of method 
executions, the compatibility function can also examine the amount of imprecision that 
could be introduced by the possible interleaving. 
 
2.2  Deadlock 
 
In both conventional and real-time databases, transactions compete for access to 
resources. If a request for a resource is denied, the requesting transaction enters a wait 
state. Deadlock occurs when transactions are waiting for resources that are held by other 
waiting transactions [SPG92]. An example of deadlock follows : Consider two 
transactions, T1, and T3, sharing two  objects OA and OB. 

 
Transaction T1 locks OA. 
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 T3 preempts T1 and locks OB. 
 T3 is blocked when it attempts to lock OA. 
 T1 resumes, but is blocked when it attempts to lock OB. 
 
Neither transaction can execute. Deadlock has occurred. Deadlock can happen if and only 
if four particular conditions occur simultaneously in a system; (1) mutual exclusion, (2) 
hold and wait, (3) no preemption, and (4) circular wait [SPG92]. 
 (1) Mutual exclusion is required by the database to maintain the consistency of the 
data and therefore cannot be eliminated. 
 (2) Hold and wait is a situation when a transaction that currently holds at least one 
lock is also waiting to acquire additional locks held by other transactions. This situation 
can be avoided by requiring a transaction to acquire all locks before beginning execution. 
This solution can significantly lower the concurrency of the transactions since locks are 
held for a longer period of time than they would otherwise be. More importantly, 
starvation can occur because a transaction may have to wait indefinitely to acquire a lock 
that it needs to begin execution [SPG92]. 
 (3) No preemption means that a lock can only be released by the transaction that holds 
it. This requirement is needed to maintain the consistency of the data. 
 (4) Circular wait exists when some transaction T1 is waiting for a lock that is held by 
T2, T2 is waiting for a lock that is held by T3, T3 . . ., Tn-1 is waiting for a lock held by Tn, 
and Tn is waiting for a lock held by T1. This problem can be avoided by ordering all locks 

and requiring all transactions to request locks in that predetermined order. Consider the 
previous deadlock example with the constraint that locks must be acquired in alphabetical 
order. 
  Transaction T1 locks OA. 
  T3 preempts T1 and is blocked when it attempts to lock OA. 
  T1 resumes and locks OB. -- Deadlock is avoided. 
 
There are two problems with this solution. The first is that the lock requests must be 
ordered. The second is exactly how to pick an order that makes sense while still offering 
the most concurrency. 
 As can be seen, of the four conditions necessary for deadlock, eliminating a circular 
wait seems to be the best way of preventing deadlock in a database that uses two phase 
locking.  
 
2.3  Priority Inheritance [SRL90] 
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In a real-time database, transactions must meet timing constraints. To help the transaction 
scheduler meet these timing constraints, the transactions are typically assigned priorities. 
One major problem in a real-time system is the priority inversion [SRL90] that occurs 
when a low priority transaction obtains a lock that blocks a high priority transaction. If 
nothing is done to address this problem, the inversion can be unbounded, with a high 
priority transaction waiting for an indefinite amount of time. Unbounded priority inversion 
makes it impossible to determine the worst-case blocking times, thereby making it 
impossible to reason about a schedule for the transactions. 
 As an example, consider three transactions, T1, T2, and T3, in ascending order of 
priority, and an object O shared by T1 and T3.  
 
 T1 locks object O. 
 T3 preempts T1 and begins execution.  
 T3 attempts to lock object O and when it is blocked, T1 resumes execution.  
 
The duration of the blocking is unbounded since T2 can preempt T1 any number of times 
before T1 can release object O. 

 Priority inversion can be bounded if the priority of the blocking transaction is raised 
temporarily to the priority of the blocked transaction during the time that the lock is held. 
If a low priority transaction T1 blocks a higher priority transaction T3, T1 inherits the 
priority of T3. When T1 releases its lock, it acquires its previous priority. Using the 

example from above: 
 
 T1 has a lock on object O. 
 T3 preempts T1 and begins execution.  
 T3 attempts to lock object O and when it is blocked, priority inheritance is used.  
 T1 is raised to the priority of T3, or inherits T3's priority.  
 T2 cannot preempt T1 since it has a lower priority than T1's inherited priority.  
 T1 releases object O, and its priority is lowered to 1. 
 T3 is allowed to preempt T1 and lock object O. 
 T3 executes to completion, at which time T2 is allowed to run. 
 
Although T2 is blocked by T1 with the inherited priority, it is acceptable because it is 
better than the previous situation when T3 could be indirectly blocked by T2 for an 

indefinite amount of time. Priority inheritance is also transitive [SRL90] . For example, 
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consider the three transactions T1, T2, and T3. If T1 blocks T2, and T2 blocks T3, T1 
would inherit the priority of T3 via T2.  

 It has been proven that the priority inheritance protocol places an upper bound on 
inversion [SRL90]. The bound will be the smaller of the following numbers for a given 
transaction:  
 1) The number of lower priority transactions.  
 2) The number of locks used by the transaction. 
The priority inheritance protocol still has two problems. The first is that although the 
inversion is bounded, it can be excessive depending on the number of transactions and 
locks in a given system. The second problem is that deadlock is not prevented. 
 
2.4  The Priority Ceiling Protocols 
 
The priority ceiling protocols prevent deadlock and bound priority inversion to at most 
one critical section locked by a lower priority transaction. Proofs to support this claim are 
presented in [SRL90, SRSC91], and section 3.2 of this thesis. The priority ceiling 
protocols are based on a major assumption about the system. Every object and every 
transaction in the system must be known a priori in order to gain all of the information 
needed to execute the protocols. Thus, no dynamic information may be used to determine 
concurrency control. 
  There are three basic priority ceiling steps (PC Steps) to any of the priority ceiling 
protocols, including the one developed in this thesis: 
 
 1. Before running, the protocol determines a priority ceiling (PC) for each critical  
  section that may be locked. The granularity of these critical sections is the core  
  difference among the various priority ceiling protocols. 
 
 2. At run-time, when a transaction T requests a lock, the lock can be granted only if 

T's priority is strictly higher than the ceiling of locks held by all other transactions. 
 
 3. If transaction T2's lock request is denied because T1 (of lower priority transaction) 

holds a lock with a priority ceiling equal to or greater than T2's priority, T1 inherits 
the priority of T2 until T1's lock is released. 

 
Note that no checking of conflict is necessary when granting a lock. This is because, 

conflict in a priority ceiling protocol is captured in the definition of the priority ceiling. 
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Each of the protocols described follow these PC Steps. The difference among them arises 
in how conflict is defined among locks and thus, how the priority ceiling is defined. Each 
priority ceiling protocol will be explained in terms of these three steps using an example to 
illustrate the potential benefit of using a finer granularity critical section.  
 
2.4.1 The Original Priority Ceiling Protocol 
 
In the original priority ceiling protocol, exclusive locks are placed on entire objects. Thus, 
the critical section in this version of the protocol is an object lock. PC Step 1 is to 
determine a priority ceiling for each critical section. The priority ceiling of a lock is 
defined as the priority of the highest priority transaction that will ever use this lock. This 
value is assigned using a priori information about the transactions and the locks they 
access.  
 Consider four transactions, T1, T2, T3, and T4, where the transaction's subscript 
indicates its priority (1 = lowest, 4 = highest), sharing two objects OA and OB. For this 

example, the transactions will execute as follows: 
 

   T1 :     . . . lock(OB) . . . lock(OA) . . . release locks . . .  
     T2 :  . . . lock(OA) . . . lock(OB) . . . release locks . . .  
     T3 :  . . . lock(OA) . . . release lock . . .  
     T4 :  . . . lock(OA) . . . lock(OB) . . . release locks . . . 
 

Figure 2.2: Example Original Priority Ceiling Protocol Transaction Definition 
 
 Using this information, the priority ceiling of OA is equal to 4, and the priority ceiling 
of OB is equal to 4. A transaction T can lock a critical section only if it passes the 

following test (PC Step 2): 
 
   The priority of transaction T must be strictly higher than the priority       
  ceiling of locks held by all other transactions. 
 
Figure 2.3 is a timeline graph representing one possible concurrent interaction of these 
transactions: 
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Figure 2.3: Example Original Priority Ceiling Protocol Transaction Timeline 
 
 

Time Event PC Step applied Explanation 
 
 0  Transaction T1 begins. 
 
 1  Transaction T1 locks OB.    (PC Step 2)  -- The lock is granted. 
 
 2  T2 preempts T1. 
 

 3  T2 attempts to lock OA.    (PC Step 2)  -- The priority of T2 is not 

                   greater than the PC of 
                   OB. 
 
 T2 is blocked.            -- Deadlock is avoided. 
 T1 resumes at priority 2.    (PC Step 3)  -- Priority inversion is  

                limited. 
 
 4  T3 preempts T1.  
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 5  T3 attempts to lock OA.    (PC Step 2)  -- The priority of T3 is not 

                   greater than the priority 
                   ceiling of OB. 
 T3 is blocked. 
 T1 resumes at priority 3.   (PC Step 3)  -- Priority inversion is   

                limited. 
 
 6  T4 preempts T1.  
 
 7  T4 attempts to lock OA.    (PC Step 2)  -- The priority of T4 is not 

                   greater than the priority 
                   ceiling of OB. 
  T4 is blocked. 
  T1 resumes at priority 4.   (PC Step 3) 
  T1 attempts to lock OA.   (PC Step 2)  -- The lock is granted since 

                 only T1 holds a lock. 

 
 At this point T1 will continue execution until it releases all of its locks at time 8, and 
lowers its priority (PC Step 3). At that time T4 will be allowed to lock object OA, and 
complete. Order is maintained as follows: if a transaction T has a priority that is greater 

than the priority ceilings of all objects currently locked by other transactions, then 
transaction T is not going to use any of those objects, and a deadlock cannot occur. 
 The additional benefit of this protocol is a bounded priority inversion of at most one 
critical section held by a lower priority transaction. Using the example from above, it can 
be seen that any transaction with a priority less than  T4 attempting to acquire a lock will 
be blocked by the priority ceiling of the lock held by the lower priority transaction T1. This 
means that T4 will only be blocked as long as T1 holds the lock on OB.  

 One drawback of this protocol for real-time systems is that locking an entire object is 
very restrictive and can unnecessarily inhibit concurrency that is important to the fast 
execution that is often needed in real-time databases. As can be seen in the example from 
above, only one transaction can hold locks at any time. 
 
2.4.2 The Read/Write Priority Ceiling Protocol 
 
In a database that allows select, insert, and update functionality, a division can be made 
between read and write operations. Instead of acquiring an exclusive lock on an entire 
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object, a transaction can request read and write locks. Bounding priority inversion and 
preventing deadlock with read/write locking has been addressed by the read/write priority 
ceiling protocol [SRSC91]. 
 In the r/w priority ceiling protocol, since each object can allow both readers and 
writers, each object will require two static priority ceilings, and one dynamic priority 
ceiling that are defined as follows: 
 
The write priority ceiling  is set equal to the highest priority transaction that will ever 
write the object. 
 
The absolute priority ceiling  is set equal to the highest priority transaction that will ever 
read or write the object. 
 
The r/w priority ceiling  is set at run-time. If a transaction is allowed to read an object, the 
r/w priority ceiling is set equal to the write priority ceiling. This prevents any transactions 
from writing the object, however, this value will possibly allow higher priority transactions 
to read the object. If a transaction is allowed to write an object, the r/w priority ceiling is 
set equal to the absolute priority ceiling to prevent all other transactions from reading or 
writing the object. 
 Once again, consider the four transactions, T1, T2, T3, and T4, sharing two objects OA 
and OB. However, we can now use the additional information regarding which 

transactions are reading and which are writing. For the sake of this example, the 
transactions will execute as follows: 
 
   T1 :  . . . read_lock(OB) . . . read_lock(OA) . . . release locks . . .  
   T2 :  . . . write_lock(OA) . . . write_lock(OB) . . . release locks . . .  
   T3 :  . . . write_lock(OA) . . . release lock . . .  
   T4 :  . . . read_lock(OA) . . . read_lock(OB) . . . release locks . . .  
 

Figure 2.4: Example Read/Write Priority Ceiling Protocol Transaction Definition 
 
 We can now determine the static priority ceilings for each object (PC Step 1). The 
absolute priority ceiling of object OA is set equal to the priority of T4 since it is the highest 
priority transaction accessing that object. The absolute priority ceiling of object OB is also 
set equal to the priority of T4. The write priority ceiling of object OA is set equal to T3 
because it is the highest priority transaction that will write OA. Likewise, the write priority 
ceiling of object OB is set equal to T2. The priority ceilings are shown in Figure 2.5.  
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Object OA  Object OB 

Abs PC 4  Abs PC 4 
Write PC 3  Write PC 2 

 
Figure 2.5: Example Read/Write Priority Ceilings 

 
 In the read/write priority ceiling protocol, a critical section is a read/write lock. A 
transaction T can lock a critical section only if it passes the following test (PC Step 2): 
 
   The priority of transaction T must be strictly higher than the r/w               
  priority ceiling of locks held by all other transactions. 
 
Using the same sequence of events as in the previous protocol example: 
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Figure 2.6: Example Read/Write Priority Ceiling Protocol Transaction Timeline 
 
 
 
Time Event PC Step applied   Explanation/Action 
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 0  Transaction T1 begins.   (PC Step 2) -- The lock is granted. 
 
 1  Transaction T1 read_locks OB                 -- r/w PC of OB = write PC of 
                  OB = 2 
 2  T2 preempts T1. 
 
 3 T2 attempts to write_lock OA  (PC Step 2) -- The priority of T2 is not 

                 greater than the r/w PC of 
                OB. 
  T2 is blocked and              -- Deadlock is avoided.  
  T1 resumes at priority 2.   (PC Step 3) -- Priority inversion is limited. 

 
 4  T3 preempts T1. 
 
 5  T3 attempts to write_lock OA  (PC Step 2)  -- The priority of T3 is 

greater  
                 than the r/w PC of OB = 2. 
 
  T3 is granted the write_lock on OA    -- r/w PC of OA = absolute PC 
                 of OA = 4 
 
At this point the read/write protocol allowed more concurrency than the original protocol 
by granting T3 the lock on OA. Continuing the example, 
 
 6  T4 preempts T3. 
 
 7  T4 attempts to read_lock OA   (PC Step 2) -- The priority of T4 is not 

                  greater than the r/w PC of  
                 OA = 4. 
  T4 is blocked. 
  T3 resumes at priority 4.   (PC Step 3) 
 
 8  T3 releases the write_lock on OA 

   and lowers its priority.   (PC Step 3) 
   T4 is granted the read_lock on OA    -- r/w PC of OA = write PC of  
                  of OA = 3 
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In this example, the read/write locks were executed in a way which allowed more 
concurrency, while still preventing deadlock. Although this protocol allows more 
concurrency, it loses effectiveness when individual functions performed on the object can 
both read and write an object. If each method wrote some piece of information in the 
object, all locks on the object would be write locks, and this protocol would provide no 
more concurrency than the previous one. 
 
2.5  Summary of Lock-based Priority Inversion Work 
 
 As a review, we can associate each locking technique with the priority ceiling protocol 
that provides the same level of locking granularity, as shown in Figure 2.7. The original 
priority ceiling protocol works by placing a single ceiling on an entire object, thereby 
placing an exclusive lock on that object. The r/w priority ceiling protocol places two 
ceilings on an object, thus possibly allowing many readers for an object at any given time 
and only one writer. 
 

Locking Technique

read/write

r/w affected set

semantic

Concurrency

least

most

Priority Ceiling Protocol

original

read/write

affected set (this thesis)

(future work)

 exclusive

 
 

Figure 2.7: Locking and Priority Ceiling Techniques 
 
 The existing priority ceiling protocols may be used with affected set locking, however, 
the concurrency level provided by affected sets will be reduced to that of the priority 
ceiling protocol being used. The priority ceiling protocol must be redefined in order to 
capture the semantics of the read/write affected sets. 
 The research of this thesis has developed the affected set priority ceiling protocol, 
which uses the static affected set information of an object to achieve a finer granularity of 
locking than either exclusive or read/write locking. Arbitrary semantic locking is 
considered to be future work, and is examined in the conclusion of this thesis. 
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Chapter 3 
 
 
The Affected Set Priority Ceiling Protocol 
 
 
The previous priority ceiling protocols place a priority ceiling on an entire data object and 
therefore allow less potential concurrency than semantic-based techniques, such as that 
described in Chapter 2, that use locks on methods of database objects. 
 The ASPC protocol uses the affected sets [BR92] of each method of each object to 
determine the compatibilities of the methods of an object. The semantic locking technique 
[DiP95] uses affected set information, but also allows the object designer to specify 
additional conditions under which methods may execute concurrently. Because priority 
ceiling protocols are based on static information, establishing priority ceilings where 
arbitrary semantics are allowed is not straightforward. Thus, the approach in this thesis 
focuses on affected set semantics. 
 Using affected set semantics, the critical section is a method lock. Thus, the ASPC 
protocol assigns a conflict priority ceiling to each method of each object. The conflict 
priority ceiling of a method m is the priority of the highest priority transaction that will 
ever lock a method that is not compatible with method m (based on affected set semantics 
- see Section 2.1). 
 This protocol requires more information than the previous protocols in order to 
determine the priority ceilings. Since more information is required about each object, the 
process of assigning the ceilings is more involved than in the previous protocols. 
Therefore, PC Step 1 is divided into 4 sub-steps to determine the ceilings for the ASPC 
protocol: 
 a. Determine the read/write affected sets for each method. 
 b. Determine the compatibilities of the methods using the affected sets. 
 c. Determine the highest priority transaction that will access each method. 

d. Determine a priority ceiling for each method using the information from sub-steps 
b and c. 
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At run-time the priority ceilings are used the same way as in the original and read/write 
priority ceiling protocols. 
 The first section of this chapter illustrates the ASPC protocol by using the same 
example that was used for the original and read/write protocols. In the second section, the 
ASPC protocol is proven to prevent deadlock and bound priority inversion of a high 
priority transaction to at most one critical section (method lock) held by a lower priority 
transaction. 
  
3.1  The Algorithm by Example 
 
 The ASPC protocol will be explained by using the ongoing example in this thesis. Step 
1.a is to determine the affected sets for each method of an object. We can define the two 
objects OA and OB, and determine the affected sets: 

 
    Object OA :    
     Attribute speed; 
     Attribute altitude; 
 
     method read_speed();      /* RAS = speed */ 
     method write_speed();    /* WAS = speed */ 
     method  read_altitude();   /* RAS = altitude */ 
     method write_altitude();   /* WAS = altitude */ 
 
    Object OB : 
     Attribute speed; 
     Attribute depth; 
 
     method read_speed();    /* RAS = speed */ 
     method  read_depth();    /* RAS = depth */ 
     method  write_speed_depth();  /* WAS = speed, depth */ 

 
Figure 3.1: Example Objects 

 
 Transactions are required to access attributes by using the appropriate methods. For 
simplicity these objects were defined to have distinct read and write methods, however, 
methods are not restricted to this behavior. Notice that object OA has separate methods to 
write each attribute, while OB has a method that writes to two attributes. Each object is 

analyzed to determine the read/write affected set for each of its methods, as shown by the 
RAS and WAS annotations.  
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 Once the read/write affected sets have been determined, PC Step 1.b is to determine 
the method compatibilities using affected set semantics. The method compatibilities can be 
evaluated and expressed in a matrix of YES and NO values, indicating whether two 
methods in an object can or cannot execute concurrently. Figure 3.2 displays the method 
compatibilities for objects OA and OB. 

 
Object OA 

 read_speed write_speed read_altitude write_altitude 

read_speed YES NO YES YES 

write_speed NO NO YES YES 

read_altitude YES YES YES NO 

write_altitude YES YES NO NO 

 
Object OB 

 read_speed read_depth write_speed_depth  

read_speed YES YES NO 

read_depth YES YES NO 

write_speed_depth NO NO NO 

 
Figure 3.2: Example Compatibility Tables 

 
 Notice that two methods may interact concurrently if they are only reading attributes, 
or if they are accessing different attributes. Methods that write to the same attributes may 
not execute concurrently. 
 Now that we have established the method compatibilities, we need to know how a 
transaction will obtain a method lock. A method lock will be obtained by identifying both 
the object and method within that object. In an implementation, enumerated types may be 
used to associate numerical identifiers to each object and method. The next piece of 
information that is needed is how the transactions are going to interact. Using the ongoing 
example, we can change the read and write locks to specific method locks (m_lock).  
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T1 : ... m_lock(OB, read_speed) ... m_lock(OA, read_speed) ... release locks  
T2 :  ... m_lock(OA, write_speed) ... m_lock(OB, write_speed_depth) ... release locks 
T3 :  ... m_lock(OA, write_speed) ... m_lock(OA, write_altitude) ... release locks 
T4 :  ... m_lock(OA, read_altitude) ... m_lock(OB, read_depth) ... release locks 
 

Figure 3.3: Example ASPC Protocol Transaction Definition 
 

 Step 1.c is to determine the highest priority transaction that will lock each method. 
This  is done by examining the transaction definitions (Figure 3.3). Step 1.d is to 
determine the conflict priority ceiling for each method using the definition of the conflict 
priority ceiling stated at the beginning of this chapter. To see the process more easily, 
another matrix can be created which will be used in conjunction with the compatibility 
matrices determined earlier. First, object OA will be evaluated. 

 

Object OA 

                          method -> read_speed write_speed read_altitude write_altitude 

Highest Priority Transaction T1 T3 T4 T3 

Conflict Priority Ceiling 3 3 3 4 

 
Figure 3.4: Example Affected Set Priority Ceilings for Object OA 

 
 To obtain the conflict priority ceiling of read_altitude, identify all methods in the 
compatibility matrix that conflict with this method. Looking at the read_altitude column 
(or row) in the compatibility matrix of object OA, we see that only the write_altitude 

method conflicts with the read_altitude method. The conflict priority ceiling of 
read_altitude is therefore set to the priority of the highest priority transaction that will use 
write_altitude, which is 3. The conflict ceiling of write_altitude is set equal to the priority 
of the highest priority transaction that will use either read_altitude or write_altitude, 
which is 4. The other conflict priority ceilings are set in a similar manner. 

 We will now repeat this process for object OB. 
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Object OB 

                          method -> read_speed read_depth write_speed_depth 

Highest Priority Transaction T1 T4 T2 

Conflict Priority Ceiling       2 2 4 

 
Figure 3.5: Example Affected Set Priority Ceilings for Object OB 

 
The highest priority transaction to conflict with read_speed and read_depth is T2, since 
only T2 uses write_speed_depth. Therefore, the conflict priority ceilings of read_speed 

and read_depth are set equal to 2. Finally, the conflict priority ceiling of 
write_speed_depth is set equal to 4. 
 The ASPC protocol allows a transaction T to receive a lock on a critical section if and 
only if (PC Step 2): 
 
  The priority of transaction T must be strictly higher than the conflict                
 priority ceiling of locks held by all other transactions. 
 
Using the same sequence of events as in the previous protocol examples: 
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Figure 3.6: Example ASPC Protocol Transaction Timeline 
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Time Event PC Step applied   Explanation 
 
 0  Transaction T1 begins.     (PC Step 2)  
 
 1  T1 m_lock(OB, read_speed)    (PC Step 2) -- The lock is granted. 
 
 2  T2 preempts T1. 
 

 3  T2 attempts m_lock(OA, write_speed) (PC Step 2) -- The priority of T2 is  

                   not greater than the  
                   conflict PC of  
                   (OB, read_speed) = 2. 
   T2 is blocked. 
   T1 resumes at priority 2.     (PC Step 3) -- Deadlock is avoided. 
 
 4  T3 preempts T1. 
 
 5  T3 attempts m_lock(OA, write_speed) (PC Step 2) -- The priority of T3 is  

                   greater than the   
                   conflict PC of  
                   (OB, read_speed) = 2. 
   T3 is granted the m_lock. 
 
 6  T4 preempts T3. 
 
 7  T4 attempts m_lock(OA, read_altitude) (PC Step 2) -- The priority of T4 is  

                   greater than the   
                   conflict PC of  
                   (OB, read_speed) = 2 

                                  and 
                   (OA, read_speed) = 3. 
   T4 is granted the m_lock. 

 
 Once T4 completes, T3 will resume and eventually release its locks. After T3 
completes, T1 will resume and after releasing m_lock(OB, read_speed), will revert back to 
priority 1 (PC Step 3). This allows T2 to preempt and run to completion. Finally, T1 will 

complete. Note that in this example, the ASPC protocol allows two more locks to be 
granted than the original protocol and one more than the read/write protocol. 
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Furthermore, the blocking time for the high priority transaction, T4, is reduced. In the 
example of the original protocol, T4 is blocked as long as T1 holds its locks. With the 
ASPC protocol, T4 is not blocked at all. 

 This example provides the intuition for the effectiveness of the ASPC protocol. It 
indicates that the finer granularity ceilings can provide more concurrency than the other 
protocols, and that blocking time for high priority transactions can be reduced. This 
possible reduction in blocking time is the result of the potentially shorter critical sections 
(method vs. object locks) of the ASPC protocol. 
 
3.2  Analytical Results 
 
 Now that the ASPC protocol has been illustrated, it must be shown that it does in fact 
prevent deadlock and bound priority inversion to one method lock held by a lower priority 
transaction. The following proofs were adapted from [SRL90, SRSC91] and have been 
modified for the ASPC protocol. To prove deadlock prevention, Theorem 1 uses Lemma 
1 to prove that a circular wait cannot occur using the ASPC protocol. Since a circular 
wait is one of the necessary conditions for a deadlock to occur, deadlock is prevented by 
the ASPC protocol. 
 
Assumption. A transaction cannot deadlock with itself. 
 
Lemma 1 Under the ASPC protocol, each transaction will execute at a higher priority 

level than the level that the preempted transaction can inherit. 
Proof: 
 

By the definition of the ASPC protocol, when a transaction T locks a set of 
methods, the highest priority level T can inherit is equal to the highest conflict 
priority ceiling of the methods locked by T. Hence, when a transaction TH's 

priority is higher than the highest conflict priority ceiling of the methods locked by 
T, the transaction TH will execute at a priority that is higher than the priority that 

the preempted transaction T can inherit. QED 
 
Theorem 1 The ASPC protocol prevents deadlock. 
Proof: 
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First, by the assumption stated above, a transaction cannot deadlock with itself. 
Thus, a deadlock can only be formed by a cycle of transactions waiting for each 
other. Let the n transactions involved in the deadlock be {T1, ..., Tn, n > 1}. Note 

that each of these n transactions must hold a lock, since a transaction that does not 
hold any lock cannot contribute to the deadlock. In order to have more than one 
transaction hold a lock, a transaction still holding a lock must have been preempted 
by a higher priority transaction that acquires a lock itself. Suppose that while 
transaction Tj held a lock, transaction Ti preempts Tj and acquires a lock. By 
Lemma 1, transaction Tj can never inherit a priority which is higher than or equal 
to that of transaction Ti, before transaction Ti completes. However, if a deadlock 

is formed, then by the transitivity property of priority inheritance (PC Step 3) in 
the ASPC protocol, all the transactions in the deadlock will eventually inherit the 
highest priority of all the transactions in the deadlock. This is a contradiction of 
Lemma 1, which states that each transaction will execute at a higher priority level 
than the level that the preempted transaction can inherit. QED 

  
 The following proofs show that the ASPC protocol bounds priority inversion to one 
method lock held by a lower priority transaction. 
 
Lemma 2 Under the ASPC protocol, a transaction TH can be blocked by a lower priority 

transaction TL, only if TL has obtained a lock when TH arrives. 

Proof:  
 
 Consider the two cases when TH arrives: 

Case 1. TL is running but has not acquired a lock when TH arrives and attempts 
to acquire a lock. Applying PC Step 2, TH is granted the lock and continues since 

no locks are held by other transactions. 
 
Case 2. TL is running and has acquired a lock L when TH arrives and attempts 
to acquire a lock. Applying PC Step 2, TH is granted the lock if and only if the 
priority of TH is higher than the conflict priority ceiling of lock L. 
 
It follows from PC Step 2 of the priority ceiling protocols that if TL does not hold 
a lock, it cannot block a higher priority transaction TH. QED 
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Lemma 3 Under the ASPC protocol, a transaction T that does not hold a lock cannot 
continue execution until all running and blocked higher priority 
transactions complete. 

Proof:  
 
Assume that a low priority transaction T is running and does not hold a lock when 
a series of higher priority transactions {T1, ... Tn, n > 1} begin executing. Since 

transaction T does not hold a lock, it follows from Lemma 2 that it cannot block a 
higher priority transaction. Since transactions {T1, ... Tn} have a higher priority 
than T, T will not be allowed to run until transactions {T1, ... Tn}, running and 

blocked, have completed. QED 
 
Lemma 4 Under the ASPC protocol, a transaction T can be blocked by at most a 

single lock of a lower priority transaction TL.  

Proof:  
 

Suppose that transaction T is blocked by a lower priority transaction TL which has 

two or more locks that do not overlap. By Theorem 1, there is no deadlock and 
transaction TL will release its current lock at some instant t1. Once transaction TL 
releases its current lock at time t1, transaction TL is preempted by T by using PC 
Step 3. By Lemma 3, TL cannot acquire another lock until transaction T has 
completed its execution. By Lemma 2, TL can no longer block transaction T and it 

follows that transaction T can be blocked for at most a single lock of a lower 
priority transaction TL. QED 

 
Theorem 2  Under the ASPC protocol, a transaction T can be blocked by at most a 

single lock of one lower priority transaction. 
Proof:  

 
Suppose that T can be blocked by n locks held by lower priority transactions, 
where n > 1. By Lemma 4, T must be blocked by n different lower priority 
transactions. Suppose that the first two lower priority transactions that block T are 
T1 and T2. By Lemma 2, in order for both of these transactions to block T, both of 

them must hold locks when T becomes ready for execution. Let the lowest priority 
transaction T1 obtain its lock first. And let the highest priority ceiling of all locks 
held by T1 be P1. By PC Step 2, in order for transaction T2 to obtain a lock while 
T1 already has one, the priority of T2 must be higher than the priority ceiling P1. 
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Since we assume that transaction T can be blocked by T1, by PC Step 2, the 
priority of T cannot be higher than the priority ceiling P1. Since the priority of T2 is 
higher than P1 and the priority of T is no higher than P1, transaction T's priority 
must be lower than the priority of T2. This contradicts the assumption that the 
priority of transaction T is higher than both T1 and T2. Thus, it is impossible for T 
to have a priority higher than both T1 and T2 and be blocked by both of them 

under the ASPC protocol. Therefore, under the ASPC protocol, a transaction T 
can be blocked by at most a single lock of one lower priority transaction. QED 

 
Summary. Notice that the proofs do not rely on how the priority ceilings are determined. 
The ceilings are used to enforce the semantics of the concurrency control, and at the same 
time prevent deadlock and bound priority inversion. The results of this section show that 
the ASPC protocol solves two problems with the semantic locking technique [DiP95]; 
deadlock and unbounded priority inversion. 
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Chapter 4  
 

 

Implementation 
 
 
The ASPC protocol was designed and implemented as part of a prototype real-time data 
manager being developed at MITRE. This implementation was used as a testbed for 
evaluating the ASPC protocol. The entire prototype design developed at MITRE is 
comprised of many components, including a real-time infrastructure class library, real-time 
monitoring and control processes, a data manager, a real-time database, and a test 
application. This thesis was concerned with the implementation of the data manager 
design, which consists of a user interface, query manager, meta data manager, transaction 
manager, constraint manager, object manager, storage manager, and a persistent 
database. The data manager in this prototype is responsible for controlling the concurrent 
access of the objects in the database. This thesis was concerned with the design of the 
meta data manager, transaction manager, and the object manager. The meta data manager 
stores and controls access to the meta data for all of the objects and transactions in the 
database. The transaction manager uses the meta data manager to determine the 
concurrent interaction of transactions. Transactions are executable code that access the 
objects in the database. The object manager stores and retrieves objects from the database. 
 The implementation of the MITRE prototype is currently still underway. The 
prototype is being developed on 486DX2 66 computers running the Lynx 2.3 operating 
system. Lynx is a POSIX [Gal95] compliant operating system, having the features 
required by POSIX.1, POSIX.4, and POSIX.4a standards. The objects and meta data 
manager are implemented in shared memory. Shared memory is a POSIX.4 feature, and 
allows multiple processes to access the objects and meta data as if the memory were in 
their own address space. 
 The prototype is currently designed for one application running as a single process. 
This was done so the implementation could use the Lynx priority inheritance mutex and 
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condition variable, which can only be used within a single process. Within this process, 
multiple transactions may run and have access to the shared memory objects and meta 
data. Each transaction is a thread as described in the POSIX.4a standard. A thread can be 
thought of as a light-weight process, each thread in a process having access to that 
process's memory. 
 A process gains access to the shared memory by instantiating a transaction manager in 
its own address space. The transaction manager class maps in the shared memory. The 
process and transactions have no direct access to the shared objects or meta data. A 
transaction must acquire an exclusive, read, write, or method lock. The transaction is 
given a shadow copy of the attributes in the shared object which are specified by the lock's 
read/write affected sets. Once the method or methods have finished, the transaction 
releases the lock, but must commit any writes if the changes are to be reflected in the 
shared memory object. 
 
4.1  System Description 
 
 Two models were used in the overall design and implementation for this thesis. The 
RTSORAC (Real Time Semantic Objects, Relationships And Constraints) model 
[PDPW94] was used as the basis for the object and transaction descriptions. The ASSET 
(A System for Supporting Extended Transactions) [BDGJR95] facility was used as the 
basis for the transaction manager design.  
 
4.1.1 RTSORAC Model 
 
The RTSORAC model was developed at the University of Rhode Island specifically for 
real-time databases. The model consists of a data manager, a set of object types that 
describe the structure of database objects, a set of transactions, and a set of relationship 
types which describe interactions between objects. The MITRE prototype has its own 
design for a data manager, and, in addition, relationships are currently not addressed in the 
MITRE design. 
 
Object Types. An object type in the RTSORAC model allows an object to address both 
logical and temporal constraints of the objects attributes. The MITRE prototype is 
currently only concerned with logical consistency of data, and therefore, this thesis will 
use a subset of the RTSORAC object type by excluding the temporal aspects.  
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 For this thesis, an object type is defined by ‹ N, A, M ›. The field N is the name of the 

object type. The field A is the set of attributes, or data members, each of which has a 
value. The M field is the set of methods that are used by transactions to access the object's 

attributes. A method is defined by ‹ Arg, Op ›. Arg is the set of arguments and has the 

same structure as an attribute. Op is a sequence of programming language operations that 
represents the executable code of a method. 
 
Transactions. A transaction is defined by ‹ MI, L, C/A, P ›. MI is the set of method 

invocations a transaction performs. The L field is the set of lock requests and releases. A 
transaction is required to request a lock before each method invocation on an object in the 
database. Two-phase locking (2PL) is supported by this model, but it is not a requirement.  
 The C/A field specifies whether the transaction is to be committed or aborted. This 
field is not present in the RTSORAC model. A transaction must commit to make writes to 
the database, otherwise the changes will be lost. A transaction that reads from the 
database is not required to commit or abort, except to notify other transactions of its 
status.   
 The P field represents the priority of the transaction. This priority is used by both the 
scheduler and the transaction manager. The scheduler will allow the highest priority 
transaction to execute until it completes or suspends itself. The transaction manager uses 
the priority in the priority ceiling protocol analysis when a transaction makes a lock 
request. 
 
4.1.2 ASSET Facility 
 
The transaction manager was modeled after the ASSET [BDGJR95] design. Reference  
[BDGJR95] specifies that ASSET is not a model, but a flexible transaction facility. This 
philosophy allows a user of ASSET to create a model for a particular application. 
 The transaction manager basic primitives in ASSET, that were used in the MITRE 
design, are as follows: initiate(func, args), begin(txnid), commit(txnid), and abort(txnid). 
Initiate initializes meta data structures and reserves system resources for a transaction that 
will execute the function func with arguments args. If successful, initiate returns a 
transaction identifier; otherwise, initiate returns null. Begin actually starts the execution of 
a transaction's function. If successful, begin returns 1; otherwise begin returns 0. 
Transactions are atomic, meaning that either all of a transaction's changes are made to the 
database, or none of them are. Commit must be used by a transaction to make changes to 



 30 30

the database. Commit returns 1 if the specified transaction commits or has committed; 
otherwise, if that txnid has aborted, commit returns 0. Abort is used to disregard all of the 
changes that a transaction made. Abort returns 1 if the specified transaction is aborted; 
otherwise, if the transaction has committed, abort returns 0. 
 Two additional primitives were added to allow transactions access to the database 
objects. Request_lock(txnid, obid, lock_mode) is used to obtain access to a database 
object obid. The lock_mode parameter refers to the type of concurrency being used, i.e., 
exclusive, read, write, or affected set. Release_lock(txnid, obid, lock_mode) changes the 
status of the lock, which may allow another transaction to execute. 
 
4.2  Shared Memory Management 
 
Shared memory enables different processes to share data in a common address space. 
Objects, object meta data, and structures used by the meta data manager are stored in 
shared memory. To ease the use of the POSIX shared memory feature, the MITRE 
prototype used a dynamic shared memory manager developed by John K. Black at the 
University of Rhode Island. This C++ class allows the dynamic allocation and deallocation 
of shared memory objects. Each object is retrieved by use of an application assigned object 
identification number. 
 Since the priority ceiling protocols require a priori knowledge of the objects and 
transactions, the objects and object meta data structures are statically instantiated in 
shared memory. An overloaded new operator is used for this purpose. In addition, all 
structures used by the meta data manager are also placed in shared memory at this time. 
The correct number of meta data manager structures is determined by using the 
knowledge of the maximum number of objects, transactions, and locks that will be used in 
the worst case. 
 When the MITRE project was started, it was not known that static allocation of the 
shared memory would be sufficient. The dynamic memory manager class is currently only 
being used during allocation of the shared memory, at which time the meta data manager 
obtains pointers to all shared objects. No overhead is added while the application is 
running, and the implementation has the capability to add dynamic objects if they are 
required at a later date. 
  
 
4.3  Transaction Implementation 
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Transactions request locks on objects or the methods of objects. These requests are either 
granted or denied by using the priority ceiling protocol. Transactions in the prototype are 
C++ programs that execute as threads. The MITRE prototype requires that all threads be 
instantiated by using an infrastructure thread class. An infrastructure thread is a C++ class 
used to encapsulate the operating system calls needed to execute a thread. Use of the 
infrastructure class ensures that the thread is assigned an appropriate priority, and that the 
thread can be monitored if required. The infrastructure classes, including threads, mutexes, 
and semaphores, as well as the priority server, were implemented by Ruth Sigel of 
MITRE. Each transaction has access to the transaction manager instantiated in the 
process, and thus has access to the shared memory objects. 
 
4.4  Transaction Manager Implementation 
 
The transaction manager uses the priority ceiling protocol to control the concurrent 
execution of the transactions. The transaction manager is implemented as a C++ class and 
contains the primitives described in section 4.1.2 as public member functions. The class 
has a private meta data manager, which allows the transaction manager access to the 
shared memory objects. The request_lock and release_lock methods execute the priority 
ceiling protocols. The explanation of the pseudocode may be found in section 4.6. 
 
4.5  Meta Data Manager Implementation 
 
The meta data manager contains all of the structures required to implement the priority 
ceiling protocol. The meta data manager is implemented as a C++ class and is based, in 
part, on the implementation described in [BDGJR95]. The structures and implementation 
required for the priority ceiling protocols was obtained from [BR89]. 
 
4.5.1 Support Structures 
 
The ASSET [BDGJR95] implementation describes three major structures: the Transaction 
Descriptor (TD), the Lock Request Descriptor (LRD), and the Object Descriptor (OD). 
Each of these C++ structures required additional fields in order to implement the priority 
ceiling protocols. The structures are listed below with their major fields, indicating the 
applicable reference. 
 

TD: 
  id [BDGJR95] 
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  status [BDGJR95] {initiated, running, committed, aborted} 
  list of LRDs currently locked [BDGJR95] 
  base priority [BR89]  // the normal (non-inherited) priority for a transaction 
  blocker's old priority [BR89]  //  before the blocking low priority transaction   
          inherited the higher priority 
 
 LRD: 
  a pointer to the TD of the transaction that holds this lock [BDGJR95] 
  a pointer to the OD of the object held by this lock [BDGJR95] 
  the lock mode {exclusive, read [BDGJR95], write [BDGJR95], method number} 
  status {granted, pending} [BDGJR95] 
 
 OD: // implemented as a C++ templated class 
  id [BDGJR95] 
  shared memory object  
  an array of priority ceilings to support all three protocols [BR89] 
 
 Since the priority ceiling protocol is being implemented within the data manager, and 
not the objects, it made sense to store the meta data required for the priority ceiling 
protocols within the meta data manager structures and not directly in the object. 
 
4.5.2 The Meta Data Class 
 
The meta data manager has as private members, a hash table for TDs, an array of OD 
pointers (one for each object in shared memory), a priority queue for granted requested 
locks (GRL), and a last-in-first-out (LIFO) list for pending transactions (PTL). The user 
of the prototype initializes constants which enable the meta data manager to allocate the 
proper number of TD, LRD, and OD structures. 
 The hash table is used to locate a transaction by its id, which is the same as the thread 
id assigned by the operating system. The ASSET [BDGJR95] implementation, which was 
not being used for real-time, suggests the use of a hash table for locating the TDs because 
of its excellent average case performance. Although a hash table has poor worst case 
performance, it can be bounded given a certain number of transactions, and it can be easily 
replaced if the performance is not acceptable. The array of OD pointers is used to locate 
an object in shared memory. The array indices are the same as the object ids.  
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 The GRL queue and LIFO PTL are described in the implementation of [BR89]. The 
GRL is a priority queue of currently held locks (LRD structures) enqueued in highest to 
lowest order based on the priority ceiling of the lock. This queue is used to determine if a 
transaction may be granted a lock. The LIFO PTL is a list of pending transactions (TD 
structures). Each time a high priority transaction is blocked by a lock held by a lower 
priority transaction, the high priority transaction is placed in this LIFO list until the lower 
priority transaction releases the blocking lock. Use of the GRL and PTL structures will be 
explained in detail in the next section since they are directly related to the ASPC protocol. 
 The meta data manager also has a mutex and condition variable which are used to 
control access to the meta data. The mutex provides mutual exclusion access of the meta 
data, and the condition variable is used to signal other transactions when a lock has been 
released. 
 
4.6  Object Type Implementation 
 
The object type in the MITRE prototype is a subset of the RTSORAC object type. The 
schema is specified by C++ classes that are of the handle/body idiom [Cop92]. The body 
contains the object's attributes and meta data, and is stored in shared memory. In the 
conventional handle/body design, the handle contains a pointer to a body object, which is 
assigned when the handle is instantiated, along with the methods used to access the body. 
The RTSORAC model uses this idiom, however, the MITRE implementation required 
atomic transactions. Therefore, the handles are given a shadow copy of the object to 
enforce atomicity, and a pointer to the object's meta data in shared memory. Currently, the 
copy is instantiated in the process's own address space. This could be changed so that the 
copy is instantiated in shared memory by using the dynamic shared memory manager.  
 Any shared memory object or shadow copy object class that is to be used by the 
prototype must be derived from a base class. This base class contains fields that are 
required for all schema classes, such as the number of attributes. Attributes are themselves 
specified by C++ classes, and are parameterized (C++ templates) so that any C++ basic 
type can be used. The Attribute class has a private value variable that may be accessed in 
two ways. The first way is with two public methods, one to read and one to write the 
actual private value variable. The second way to access the value member is by using the 
overloaded equal operator for the class. 
 The meta data is stored in shared memory at a known location for each class. 
Therefore, each object instantiated for a class shares the meta data, such as the number of 
methods and attributes, and the read/write affected sets. In addition, the transaction 
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manager needs to know the offsets of the attributes within the body to transfer values 
between the shadow copy object and the shared memory object. The user is required to 
specify a constructor which takes as arguments, pointers to the attributes within the body. 
When the meta data is placed in shared memory, this constructor is called, and an offset 
table is initialized that contains each attributes' offset with respect to the object's location. 
The get_attr(object pointer, attribute number) method of the base class is used to convert 
the relative offset into a pointer to an attribute. 
 
4.6.1 Instantiating an Object 
 
First, the user must specify a schema object in the handle/body form, along with the class 
meta data (number of attributes, number of methods, and the read/write affected sets). 
Base classes were implemented for attributes, bodies, and meta data. The handle does not 
need to be derived at this time. Second, since the priority ceiling protocols need both 
affected set information and transaction priority information, the user must also specify the 
highest priority transaction that will access each method of the object.  
 The class meta data is determined by using a parser, or in the case of the testing 
analysis, the class meta data was generated automatically. The parser was written using 
GNU flex (lexical analyzer) and bison (parser), and takes as input the object schema files 
(both the header and source files). The only requirement is that the attributes be accessed 
using the read and write member functions of the Attr class. The parser determines the 
RAS and WAS by identifying the read/write Attr method calls within the object's methods. 
 The meta data for the objects is placed in shared memory first. When the meta data 
constructor is called, a temporary object is instantiated, and the attribute offset table is 
created. The object can now be instantiated in shared memory using the parameterized OD 
class. The OD class takes as parameters, the type of the body class, and the number of 
methods in the handle class. The constructor of the OD class takes as arguments, a pointer 
to the class meta data, and an array of the highest priority transactions that will access the 
methods. Each array index/location is associated with a method. Presently, the user 
determines the highest priority transaction that accesses each method. In the future, a 
parser can be implemented which could analyze the transactions to determine these 
priorities. The OD constructor computes the priority ceilings as described in section 4.7.1. 
 
4.7  Affected Set Priority Ceiling Protocol Implementation 
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All three priority ceiling protocols were implemented as part of the data manager using the 
same functions and meta data structures. Once the implementation was completed for the 
ASPC protocol, the implementation was able to support all three protocols. Each object 
sets a conflict priority ceiling for each method, an exclusive priority ceiling, a read priority 
ceiling, and a write priority ceiling. A transaction then has the flexibility to request an 
exclusive lock, read lock, write lock, or method lock. 
 
4.7.1 Calculating the Ceilings 
 
The constructor of the OD class uses the read/write affected sets and an array of 
transaction priorities to calculate the priority ceilings. Since the ceilings are calculated 
each time an object is instantiated, objects of the same class type may have different 
ceilings. The method ceilings are calculated by comparing both the RAS and WAS of each 
method against the RAS and WAS of all methods in the object. The priority ceiling of 
method m is the priority of the highest priority transaction that will ever lock a method 
that conflicts with method m.. The pseudocode for calculating the conflict priority ceilings 
follows: 
  
 while  ( n  <  number of methods ) 
  priority ceiling of method[n]  =  -1 
  while  ( m  <  number of methods ) 
   term1 = method[n].WAS  ∩   ( method[m].RAS  ∪   method[m].WAS ) 
   term2 = method[n].RAS  ∩   method[m].WAS   
 
   if  ( ( term1 OR term2 )  AND  PC of method[n]  <  hi_prio_txn_array[m] ) 
    PC of method[n]  =  hi_prio_txn_array[m] 
 
  end inner while. 
 end outer while. 
 

Figure 4.1: Pseudocode for Calculating the Conflict Priority Ceiling 
 
 The priority ceilings for the exclusive and read/write protocols are also calculated. The 
exclusive lock and write lock (absolute priority) ceilings are the same, and are equal to the 
highest priority in the hi_prio_txn_array. The read lock (write priority) ceiling is 
determined by using the highest priority in the inputted array that corresponds to a method 
with a write affected set that is not null: 
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 while  ( n  <  number of methods ) 
  if  ( method[n].WAS  !=  0  AND  PC of method[n]  <  hi_prio_txn_array[n] ) 
   PC of method[n]  =  hi_prio_txn_array[n] 
 end while. 
 

Figure 4.2: Pseudocode for Calculating the Write Priority Ceiling 
 
 The ceilings are stored in a priority ceiling array that has a size equal to the number of 
methods plus three locations. The first three locations in the array are used for the 
exclusive, read, and write lock priority ceilings. The remaining locations are used for the 
method lock conflict priority ceilings, and are accessed using an enumerated type. 
  
4.7.2 Using the Ceilings 
 
The request_lock and release_lock public member functions of the transaction manager 
class execute the priority ceiling protocols. When a lock is requested, it is either granted 
or blocked. If the lock is granted, it is placed in the GRL priority queue. If the transaction 
is blocked by a priority ceiling, the blocked transaction is placed in the PTL in LIFO order 
and the priority of the blocking transaction is raised to the priority of the blocked 
transaction. The pseudocode algorithm for requesting a lock is as follows: 
 
  Lock the mutex. 
  if  ( the running transaction's id  ==  the GRL transaction's id  OR 
     the running transaction's priority  >  the GRL priority ceiling ) 
   Enqueue the LRD in the GRL queue.   // grant the lock. 
  else 
   Place the running transaction's TD in the PTL. 

Store the blocking transaction's current priority in this TD's blockers_prio field. 
   Raise the priority of the blocking transaction. 
   Wait on a condition variable.      // suspend until awakened 
  Unlock the mutex. 
 

Figure 4.3: Pseudocode for Requesting a Lock 
When a lock is released, the lock is removed from the GRL priority queue. The 

running transaction then checks to see if it is blocking the first PTL transaction. If it is 
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blocking, it tests if the first PTL transaction's priority is higher than the priority ceiling of 
the lock at the front of the GRL queue (PC Step 2). If the PTL transaction can run, the 
currently running transaction lowers its priority, allowing the blocked transaction to run 
(PC Step 3). If the PTL transaction cannot run, or there is no PTL transaction waiting, the 
current transaction continues running. The pseudocode algorithm for releasing a lock is 
shown in Figure 4.4. Since any given lock may block several higher priority transactions, 
the blocking transaction must stay in the while loop until all blocked higher priority 
transactions that can run have been signaled. 

 
  Lock mutex. 
  if  ( the lock is found in the transaction's TD lock list ) 
   Dequeue the LRD from the GRL. 
   while  ( the running transaction's id  ==  the first PTL transaction's blockers_id  
      AND the first PTL transaction's priority  >  the GRL priority ceiling ) 
    Remove the first TD from the PTL. 
    Broadcast the condition variable.  // wake up the blocked transaction. 
    Lower the running transaction's priority to the priority stored in this TD's  
    blockers_prio field. 
    Wait on the condition variable.      // suspend until awakened. 
   end while. 
  end if. 
  Unlock mutex. 
 

Figure 4.4: Pseudocode for Releasing a Lock  
 
 All three protocols use the same request_lock and release_lock member functions, 
however, there is a difference between the exclusive priority ceiling protocol and the other 
two protocols. The exclusive priority ceiling protocol assigns the ceilings such that a 
transaction will never acquire a lock that has a priority ceiling that is less than the 
transaction's priority. The difference is that the r/w and ASPC protocols allow a 
transaction to acquire a lock that has a priority ceiling that is less than its priority. This is 
due to how the ceilings are assigned in order to reduce conflict. 
 Since a given transaction will run before transactions with priorities lower than its 
own, it is only necessary to insert locks into the GRL queue that  have a priority ceiling 
that is greater than or equal to a transaction's base priority. The transaction's priority 
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prevents lower priority transactions from running, while the priority ceiling prevents 
higher priority transactions from executing. 
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Chapter 5 
 
 
Evaluation 
 
 
The three priority ceiling protocols were compared using the prototype system described 
in Chapter 4. Each test involved generating a set of synthetic system configurations and a 
set of synthetic workloads. On each system configuration, the corresponding workload 
was executed using each of the priority ceiling protocols. This chapter begins with a 
description of the construction of the testbed. Next, the performance model and 
performance parameters are discussed. This chapter then describes the measurements used 
to compare the protocols and how the testing was performed. Finally, the results are 
presented and analyzed. 
 The test model used in this thesis was developed and implemented by Lisa Cingiser 
DiPippo. Dr. DiPippo used the testbed to evaluate the semantic locking mechanism for her 
Ph.D. dissertation [DiP95].  
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Figure 5.1: Construction of Testbed Configuration 



 40 40

5.1  Testbed Construction 
 
The testbed was implemented by Lisa DiPippo, except where modifications are identified. 
Figure 5.1 illustrates how a system configuration and workload is generated. The range 
file stores the data ranges from which the parameters are randomly generated. The 
workload and configuration generation program reads from the data ranges file and uses a 
seed value to produce a random number within the specified range for each parameter (see 
Section 5.3 for performance parameters). The workload and configuration program 
produces the object parameters in the system configuration file and the transaction 
parameters in the workload file. The object builder program reads from the system 
configuration file and produces schema files that contain the C++ specifications of the 
objects and the objects' meta data in the system. In addition, the object builder program 
produces a file containing information for storing the objects in shared memory (object 
creator file). Since transactions require read/write information of the methods for 
read/write locking, the object builder program was modified to produce an affected set file 
to be used by the transaction builder program. The transaction builder program reads from 
the workload file and affected set file and produces a file containing C++ code for the 
transactions of the workload specification. The transaction builder program was modified 
to produce a file containing arrays initialized with the highest priority transactions that will 
access each object's methods. 
 Once the system configuration and the workload are generated, the test is run using 
the prototype system described in Chapter 4, with one exception. The prototype system 
was designed to assign priorities based on the period of a thread (rate monotonic), 
however, the tests used non-periodic threads. Therefore, the threads were scheduled using 
least slack time analysis, as was done in [DiP95], and the priorities were set accordingly. 
Figure 5.2 shows how a test is run. First, the object creator program is compiled including 
the schema files and the highest priority transaction array file. The object creator program 
is run, placing the objects of the system configuration into shared memory. Next, the 
controller program is compiled including the schema files, and the transaction file. The 
controller process is run and maps the shared memory segment into its own address space. 
The controller process spawns transactions which execute as threads. The transactions 
run, accessing objects using the transaction manager and the chosen priority ceiling 
protocol. The controller process records the results of the test in a statistics file. This 
procedure was repeated for each test that was performed, changing the range file to vary 
specific parameters, and changing the seed value to get different random configurations. 
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Figure 5.2: Running a Test 
 
5.2  Performance Model 
 
The performance model was taken from [DiP95], and is based on the canonical 
concurrency control simulation model of [ACL87], with some modifications. Figure 5.3 
shows the logical queuing model of [ACL87] which is central to their simulation model for 
concurrency control algorithm performance.  
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Figure 5.3: Agrawal Performance Model 
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 The terminals in Figure 5.3 represent sources of transactions. When a transaction 
originates at a terminal and the maximum number of transactions are active, the new 
transaction enters the ready queue. When the transaction comes off the ready queue, it 
enters the concurrency control queue (cc queue) and makes its concurrency control 
requests to the concurrency control module. If the request is granted, the transaction goes 
to the object queue to access the requested objects, cycling through all of the objects in 
the request. The transaction returns to the cc queue to make its next request. If a request 
is denied, the transaction enters the blocked queue where it waits to reenter its request. 
 The performance model used for this thesis does not conform exactly with the model 
of [ACL87]. The transactions are started at specified times, and not placed in a ready 
queue. The range of start times represents the inter arrival time, which is a better measure 
of system load in real-time databases [DiP95, AGM88, HSTR89] than placing the 
maximum number of transactions in the system. 
 In the performance model of this thesis, the cc queue of Figure 5.3 is represented by 
the GRL priority queue, the blocked queue is represented by the PTL LIFO list, and the cc 
control module is represented by the priority ceiling protocol. The object queue and the 
cycle for requests of Figure 5.3 are not used. When a transaction is granted a lock, the 
transaction executes on an object immediately. The control module of the performance 
model has three actions, BLOCK, ACCESS, and COMMIT. Transactions request 
commits through the transaction manager, at which time, changes are transferred to the 
shared memory objects. Transactions do not restart once they commit. 
 
5.3  Performance Parameters 
 
The parameters of the performance model are based on the parameters of the Agrawal  
model and are displayed in Table 5.1. Several parameters were not used for testing the 
priority ceiling protocols. The restart_delay is not used, since transactions are not 
restarted. The obj_io and num_disks  parameters also were not used since the objects are 
in shared main memory. Other parameters were not varied, such as the num_terms, which 
is represented by the controller program as the only source of transactions. The number of 
CPUs (num_cpus) is always one. There are four additional parameters that were required 
during the testing of the priority ceiling protocols. These parameters appear in Table 5.2. 
Since the testing is for a real-time database, transactions were given deadlines (trans_dl). 
Since the ASPC protocol uses the semantics of an object to determine the conflict priority 
ceiling, the number of attributes and number of methods, as well as the number of 
attributes accessed by each method will have a bearing on the eventual value of the 
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conflict priority ceiling. The more attributes of an object a method accesses, the more 
likely it will conflict with other methods in the object. 
 

Parameter  Meaning 
db_size number of objects 
tran_size Mean size of transactions 
max_size Size of largest transaction 
min_size Size of smallest transaction 
write_prob Probability that transaction writes object 
int_think_time Mean intratransaction think time 
restart_delay Mean transaction restart delay 
num_terms Number of terminals 
mpl Multiprogramming level 
ext_think_time Mean time between transaction 
obj_io I/O time for accessing an object 
obj_cpu CPU time for accessing an object 
num_cpus Number of CPUs 
num_disks Number of disks 

 
 Table 5.1: Performance Parameters for Agrawal Performance Model 

 
 

Parameter  Meaning 
trans_dl Transaction deadline 
nattrs Number of attributes per object 
nmethods Number of methods per object 
nattrs_method Number of attributes accessed by each method 

 
Table 5.2:  Additional Performance Parameters for Thesis Performance Model 

 
System Configuration. The system configurations that were used in the testing 
consisted of groups of objects. The configurations were designed in order to vary the data 
contention between the transactions, thereby testing the performance of the ASPC 
protocol against the previously existing protocols under various conditions which may or 
may not benefit a particular protocol. 
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 The number of objects was 10 (db_size in Table 5.1), unless otherwise specified. The 
number of attributes in an object was also 10. The number of methods per object was 
between 10 and 20, and was picked randomly for each object. The number of attributes 
per method was 10% of the available attributes in the object, or 20% to 30% of available 
attributes, in order to vary the data contention for each object. Random attributes were 
generated for each method. The read/write affected sets are also determined at this time by 
randomly choosing to read or write, or read and write each attribute touched by a method. 
The execution time for each method was generated as an integer number of 
KiloWhetstones [DSW90]. The execution time was converted into seconds and 
nanoseconds based on the prototype implementation. This execution time is analogous to 
the int_think_time parameter in Table 5.1. 
 
Workload. The tests used 20 transactions accessing a single system configuration. 
Because the transactions accessed the objects by invoking methods, each workload was 
dependent on the system configuration. The transaction size (tran_size, max_size, and 
min_size of the Agrawal model) was varied by randomly choosing the number of methods 
from a range of 1 to 4, unless otherwise specified. The start time range of the transactions 
was varied from 5 to 35 seconds, unless otherwise specified. The start time range was 
used to represent the system load, so the mpl parameter of the Agrawal model was not 
used. The deadlines of the transactions was varied depending on the particular workload. 
The execution time of a transaction was calculated by adding the execution times of each 
of the methods that the transaction invoked. The execution time of the transaction 
manager methods (request_lock, release_lock, commit, and abort) was not considered in 
the calculation of the transaction execution time. The slack time was calculated by 
subtracting the execution time from the relative deadline. The priority of the transaction 
was determined based on a least slack time priority assignment scheme, which has been 
shown to be optimal under certain circumstances [CSK88]. 
 Each method invocation was generated by first randomly selecting an object from the 
system configuration, and then randomly selecting a method for the selected object. Each 
transaction requested locks using two-phase locking. The transaction requested a lock 
when it was needed, and the transaction held the lock until the end of its execution. 
Transactions that missed their deadlines were aborted and not restarted. 
 
 
5.4  Comparison Techniques 
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 The implementation of the meta data manager's OD support structure calculates the 
priority ceilings for the original, read/write, and ASPC protocols when an object is 
created. Since the dynamic use of the priority ceilings is the same for each priority ceiling 
protocol, the same implementation was used to compare the three protocols discussed in 
this thesis. 
 When a workload is generated, the transactions are adjusted to use the appropriate 
lock granularity, i.e., exclusive, read/write, or affected set (method). The transactions 
were also adjusted so that no unnecessary locking was performed. For example, if a 
transaction requested 4 methods of an object, it would only request one lock for the 
original protocol, while 4 method locks were requested for the ASPC protocol. The same 
analysis was performed for the read/write protocol. 
 
5.5  Performance Measurements 
 
Traditionally the measure of a concurrency control protocol is the throughput of 
transactions [ACL87]. However, because the priority ceiling protocols are used in real-
time systems, it is more important to measure temporal consistency than it is to measure 
throughput. One way to measure temporal consistency of transactions in a real-time 
system is through the percentage of transactions that miss their deadlines [HSTR89, 
AGM88]. 
 
5.6  Testing 
 
Each test that was performed generated 15 system configurations and 15 corresponding 
transaction sets. The results of each test were averaged over these 15 trials producing an 
error of at most 1% in most cases. A test was conducted for each of the three protocols. 
The interarrival time of transactions was varied to illustrate how the protocols perform 
under different system loads. A range of start times was used for a transaction as a 
measure of interarrival time. The smaller the range of start times for a set of transactions, 
the closer the interarrival time, and hence the heavier the load. 
 
Test Suite T1: Average Case. These tests were chosen to see how the protocols 
perform on average with random transactions. The deadlines for transactions were 
randomly chosen from a range of 1 to 10 seconds for short deadlines, and 4 to 20 seconds 
for long deadlines. Each test randomly chose 1 to 4 method invocations per transaction, 
10 to 20 methods per object, and 1 of the 10 attributes for each method in an object. The 
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method execution was randomly chosen from a range of 5 to 10 KiloWhetstones for short 
deadlines and 10 to 15 KiloWhetstones for long deadlines. Both tests used 10 objects. 
 Having 10 to 20 methods, and one attribute per method may seem low, but only the 
read/write and ASPC protocols are impacted by these parameters. Having one attribute 
simulates select, insert, and update calls in a database. Each method randomly chooses 
between reading (select), writing (insert), or reading and writing (update) an attribute. 
Since the read/write protocol was designed for use in real-time databases, these 
parameters should create an unbiased environment in order to compare it with the ASPC 
protocol. 
 
Test Suite T2: Data Contention. The number of objects, the number of methods, as 
well as the number of attributes accessed by each method was varied. These parameters 
contribute to the amount of conflict a transaction will encounter when attempting to 
request a lock. The number of methods and the number of attributes per method having an 
impact on the read/write and ASPC protocols, since the ceilings of these protocols depend 
on the data contention within an object. 
 
Test Suite T3: Priority Inversion. This test was designed to give an indication of 
the performance of the protocols under a worst case priority inversion situation. The 
transactions were started in pairs of a low and high priority transactions with a random 
relative difference in start times of 100, 200, or 300 ms. The low priority transaction 
began execution before the high priority transaction, and was guaranteed to meet its 
deadline. The difference in the start times within a pair of transactions gave the low 
priority transaction enough time to acquire a lock. Each pair started after the deadline of 
the low priority transaction in the previous pair had expired. 
 
5.7  Results 
 
The results show in general that the ASPC protocol performs as well as the previous 
protocols, with the potential of performing slightly better under certain system loads.  
 
Test Suite T1: Average Case. Taking the error into account, there was no 
difference between the original and read/write priority ceiling protocols for either short or 
long deadlines. The ASPC protocol did 2% better (43% compared to 46% with 0.5% 
error) in the 10 second start range for short deadlines, and 2% better in the 20 second 
start range, where transactions missed 18% of their deadlines. The ASPC protocol did at 
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least 3% better than the other protocols for long deadlines in the start ranges of 5, 10, and 
15 seconds. Once again, many deadlines were missed in these ranges, 44%, 35.5%, and 
27% respectively for each start range. 
 The numbers indicate that the ASPC protocol allows up to 3% more transactions to 
meet their deadlines than the other two protocols. These results also indicate that on 
average, priority inversion is not a problem. However, the important thing to remember is 
that in a real-time system, worst-case situations are of paramount concern. It doesn't 
matter that priority inversion doesn’t occur often in the average case, the fact that it 
occurs at all may cause a high priority transaction to miss its deadline and cause a 
catastrophic failure in the system. 
 One test that was not performed was when transactions had the same start time. This 
was proven to be the worst-case situation for independent transactions [Liu73]. In this 
situation the transactions execute in priority order, highest to lowest, and no blocking 
occurs. Since the ASPC protocol has the potential of turning a single object lock into as 
many locks as there are methods in that object, any added execution time will potentially 
cause a transaction to miss its deadline. A scheduling analysis of the transactions would 
give a better indication as to the impact of added execution time in both the average 
random start-time case and the average simultaneous start-time case. This analysis was 
done for the original priority ceiling protocol [Raj91] and will be discussed in section 6.2. 
 
Test Suite T2: Data Contention. Two test suites were performed to measure the 
affect of increasing the data contention. The first test used the ranges for the Average 
Case long deadlines, except that each object had 5 to 10 methods, and each method 
accessed 2 to 3 attributes. Decreasing the number of methods per object, and increasing 
the number of attributes touched by each method greatly increased the contention for the 
data. All three protocols performed equally as well under these conditions. One way to tell 
if there will be any difference between the protocols is to examine the priority ceilings of 
the locks. If there is absolutely no difference between the ceilings, then there will be no 
advantage to using the read/write or ASPC protocols instead of the original protocol. 
Figure 5.4 shows a sample object from this test and its priority ceilings.  
 
 
 
 
Object  O:          method conflict priority ceilings 
  Original PC = 38    M0 PC = 28   M1 PC = 30  M2 PC = 30  
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  Absolute PC = 38    M3 PC = 38  M4 PC = 30  M5 PC = 14 
  Write PC = 38     M6 PC = 30  
                

Figure 5.4: Sample Test Object With Priority Ceilings 
 
 The priorities used in the test ranged from 2 to 40 (40 being the highest priority). 
Since the absolute and write priority ceilings are both equal to the original priority ceiling, 
nothing is gained by using the read/write protocol. The ceilings on the methods show that 
there is still potential for the ASPC protocol to perform better in certain situations. Once 
again, just because the average results of this test indicate that there is no difference 
between the protocols, the ceilings of the methods show that there is still a potential for 
less priority inversion. 
 The second test used one object and 4 to 8 method invocations per transaction. The 
method execution was 2 to 7 KiloWhetstones so that the 4 to 20 second deadlines could 
still be used. An important measure that this test will indicate is the overhead of locking in 
the ASPC protocol. When the transactions are using the original protocol, they will only 
need to request one lock. When the transactions are using the read/write protocol, they 
may need to request two locks, a read lock followed by a write lock. Since the ASPC 
protocol requires a lock for each method, transactions may need to request as many as 8 
locks.  
 Examination of the priority ceilings for this test showed that there were some method 
ceilings lower than the absolute and write priority ceilings. However, all three protocols 
performed equally as well. This means that requesting extra locks will not have an adverse 
effect in the average case. Since the protocols are all implemented the same way, replacing 
one protocol with another will not affect performance in a lock for lock replacement. 
However, adding extra locks will add some execution time to a transaction. The locks will 
provide a benefit to the system if they reduce blocking times by lowering the priority 
ceilings.  
 In systems with high data contention, for example, in Figure 5.4, if all of the method 
conflict priority ceilings were 38, there would be no benefit in using the ASPC protocol. 
Transactions would request more locks, adding execution time, without a decrease in 
blocking times (lowered ceilings). A scheduling analysis will indicate the situations where 
a transaction can add extra execution time and still be schedulable. 
 
Test Suite T3: Priority Inversion. Two tests were performed using 15 seeds 
each. The first test suite consisted of 5 objects, each with 10 methods (1 to 2 
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KiloWhetstones), each method accessing 1 attribute randomly chosen from the object. 
Each transaction had 4 method invocations randomly chosen from the objects. The second 
test consisted of 5 objects, each with 5 to 10 methods (4 to 8 KiloWhetstones), each 
method accessing 2 to 3 attributes randomly chosen from the object. Each transaction had 
one method invocation. High priority transactions in both tests had deadlines of 200 to 
600 ms. 
 The results were analyzed to determine the case where the protocols did the best. 
Discarding the high and low data values, the ASPC protocol allowed 19 transactions to 
meet their deadlines in both tests, where the other protocols only allowed 17. The ASPC 
protocol allowed the same transactions to finish as the other protocols, plus two additional 
transactions. The data from these tests was also analyzed using the standard statistical 
methods for testing the hypothesis: 
 
  H0: original PC protocol missed deadlines <= ASPC protocol missed deadlines 
  H1: original PC protocol missed deadlines > ASPC protocol missed deadlines 
 
where H0 is the original hypothesis, and H1 is the alternate hypothesis. There is sufficient 

evidence to reject the original hypothesis within a 2.5% confidence interval. This also 
applies to the read/write protocol. 
 This result supports the claim made for the Data Contention test that the conflict 
priority ceilings of the methods indicated a potential for less priority inversion, even 
though the protocols performed equally as well on average. 
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Chapter 6 
 
 
Conclusion 
 
 
6.1  Contributions 
 
 The goal of this thesis was to develop a priority ceiling protocol that could use the 
information of affected set semantics. This thesis has presented the ASPC protocol which 
prevents deadlock and bounds priority inversion, while at the same time preserving the 
concurrency level of the affected set semantics. It is also an important step towards 
applying priority ceiling techniques to real-time object-oriented databases. Furthermore, 
the generality of the ASPC protocol makes it a natural step in extending priority ceiling 
techniques to control concurrent access to objects. 
 The test results show that the ASPC protocol can improve average performance of a 
real-time system by 2% with respect to the original and read/write priority ceiling 
protocols. In the situation for a worst case priority inversion, the gain in performance can 
be seen as well. 
 
6.2  Comparison with Related Work 
 
The previous priority ceiling protocols were tested in simulations in [Raj91]. These 
simulations compared basic priority inheritance (with ordered locks to prevent deadlock) 
with the original priority ceiling protocol. The simulations also compared other protocols 
in the priority ceiling family that were not previously mentioned in this thesis. The 
simulations were performed to analyze the effects of the worst-case blocking time of a 
task on the actual schedulability of randomly chosen task sets. The tasks were scheduled 
and then their execution times were increased until the breakdown utilization was reached. 
Breakdown utilization is the point when the system is overloaded and a task will miss its 
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deadline. The protocol that performs the best is the one with the highest breakdown 
utilization percentage. 
 Two experiments were conducted, one using 5 locks (semaphores) and the other using 
10 locks. Each transaction executed for a certain duration ti, acquired a lock and entered a 
critical section for a time tj, released the lock, and then executed for an additional time tk. 

The tests allowed nested locks, and the locks were ordered for the protocols that did not 
prevent deadlock. Additionally, the duration of time a transaction spent in each phase (ti, 
tj, and tk) was equal. Random task sets were generated, and scheduled under the different 

protocols. 
 The breakdown utilization for each protocol was averaged over multiple task sets. The 
results showed that the original priority ceiling protocol performed best. The original 
priority ceiling protocol had a breakdown utilization of 83.45%, while the basic priority 
inheritance protocol had a breakdown utilization of 82.19%. This is a difference of 1.26% 
for average utilization with random phasing (start times). Unfortunately, the read/write 
protocol was not tested in these simulations, nor was it tested against other priority ceiling 
protocols in [SRSC91]. 
 The results in [Raj91] indicate that there is not much difference between the protocols 
in the average case. The simulations in this thesis were not conducted in the same manner 
because scheduling was not performed, however, with random transactions, and random 
start times for a given workload, the ASPC protocol performed 2% to 3% better than 
either the original or read/write protocols. These numbers cannot be compared directly to 
the numbers obtained in [Raj91], but they are an indication that ASPC protocol is capable 
of achieving a higher average breakdown utilization for transactions with random start 
times. 
 The average breakdown utilization for transactions with simultaneous start times was 
also determined in [Raj91]. This test showed that the original priority ceiling protocol 
performed 1.3% better than the basic priority inheritance protocol.  The ASPC protocol 
was not tested for this case. This test will give an indication of the overhead involved 
when extra method locks are added to a transaction. 
 Comparing the protocols from an implementation point of view, all three of the 
protocols tested in this thesis use the same algorithm to request and release locks. The 
difference in the protocols arises in how the ceilings are determined. As was shown in 
section 4.7.1, the process of determining the method ceilings is not difficult, assuming the 
user has access to a parser or tool that can determine the read/write affected sets for each 
method. The fact that the computation is on the order of O(n2) is not an issue because the 
calculations can be done off-line, before the system is started. 
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6.3  Limitations and Future Work 
 
There are several drawbacks to the ASPC protocol for real-time databases. First, like all 
priority ceiling protocols, it requires a substantial amount of static, a priori information 
about the system. It is this extra static information that allows priority inversion bounding 
and deadlock prevention, but it can be a prohibitive assumption for dynamic real-time 
systems. Second, the ASPC protocol enforces serializability of methods, which may be 
overly restrictive for real-time databases. Finally, the ASPC protocol does not address 
temporal consistency nor does it explicitly handle the trade-off between temporal and 
logical consistency. 
 Future work will be performing simulations in a manner similar to [Raj91] in order to 
obtain a more accurate assessment of the ASPC protocol. This will involve a scheduling 
analysis of the transactions, and a knowledge of the execution times to request, release, 
commit, and abort a transaction. 
 One use of the ASPC protocol could be for attribute locking within a method. Recall 
that for this thesis, attributes were objects themselves with a private value variable 
accessible by two public methods, one to read and one to write the private value. The 
conflict priority ceilings could be applied to the read/write methods of the attributes. 
Methods of the object containing the attributes could request locks on the attributes, 
thereby further reducing the granularity of the locks. The methods would most likely have 
to use two phase locking to maintain serializability of the methods, and the number of 
locks would be substantially increased over method locking described in this thesis. This 
application of the ASPC protocol could be useful if the execution time of the extra locks 
was outweighed by the reduction in blocking times (lowered ceilings). 
 Extending the ASPC protocol further to address any static semantics is also an 
interesting area of research. Recall that,  in general, the priority ceiling protocol will 
prevent deadlock and bound priority inversion regardless of how the priority ceilings are 
determined. The ceilings maintain the semantics of the concurrency control technique 
while preventing deadlock, and priority inheritance bounds the priority inversion. 
 For example, in lieu of using affected set semantics, a system may want to use security 
semantics, where there are three levels of security: secret, confidential, and unclassified. 
For these semantics, a critical section is a security lock. A compatibility matrix can be 
determined based on the system semantics for the security levels. The highest priority 
transaction to access an object for each security level is then determined (analogous to 
determining the highest priority transaction to use each method of an object). The conflict 
priority ceiling of each security level for an object can then be determined. 
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 The extension of the ASPC protocol to allow the arbitrary semantics of the semantic 
locking technique is complicated. The fundamental problem is that priority ceiling 
protocols rely on static knowledge to determine ceilings, while arbitrary semantic 
conditions, such as current temporal consistency status, are dynamic in nature. An 
examination of [CL89] may give insights on how to apply dynamic priority ceilings to the 
semantic locking technique. The protocol described in [CL89] can be used with the 
dynamic earliest deadline first scheduling algorithm [Raj91]. 
 The ASPC protocol is a compromise that allows more concurrency than previous 
priority ceiling techniques, and solves the deadlock and priority inversion problems of the 
semantic locking technique. To bound priority inversion and prevent deadlock in full 
semantic locking, further research is required. The ASPC protocol is a step towards this 
future work.  
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