
Object-based Semantic Real-time Concurrency Control With

Bounded Imprecision�

Lisa Cingiser DiPippo and Victor Fay Wolfe

Department of Computer Science

University of Rhode Island

Kingston, RI 02881

Abstract

This paper describes a concurrency control technique for real-time object-oriented databases
that supports logical consistency and temporal consistency, as well as bounded imprecision
that results from their trade-o�s. The concurrency control technique uses a semantic locking

mechanismwithin each object and user-de�ned conditional compatibility over the methods of the
object. The semantics can specify when to sacri�ce precise logical consistency to meet temporal
consistency requirements. It can also specify accumulation and bounding of any resulting logical
imprecision. We show that this technique, under certain general restrictions, can preserve global
correctness and bound imprecision by proving it can guarantee a form of epsilon serializability

specialized for object-oriented databases.

Index terms: bounded imprecision real-time object-oriented databases, semantic concurrency con-

trol

1 Introduction

Real-time applications such as air tra�c control, autonomous vehicle control, and automated man-

ufacturing involve large amounts of environmental sensor data. These applications are supported

by real-time database management systems (RTDBMS) [1]. In addition to supporting typical log-

ical consistency requirements, a RTDBMS concurrency control technique must maintain temporal

consistency constraints. Data temporal consistency constrains how \old" data can be while still

being considered valid. Transaction temporal consistency constrains when transactions can execute

and be considered correct.

Traditional DBMS concurrency control techniques are designed to enforce only logical consis-

tency constraints, but not temporal consistency constraints on data values and transaction exe-

cution. For instance, a typical serializability-based concurrency control technique might disrupt

an earliest-deadline-�rst transaction scheduling order by blocking a transaction with a tight dead-

line in favor of a transaction with a looser deadline in order to maintain logical consistency by

�This work has been sponsored by the Naval Undersea Warfare Center and the National Science Foundation

1

preserving the serialization order of transactions. Serializability-based techniques can also be a

problem in a RTDBMS because they restrict allowed concurrency, often more than is required for

logical correctness [2]. This over-restriction impedes a real-time transaction scheduler's ability to

preserve transaction temporal consistency because requiring serializability reduces the likelihood of

creating a schedule that meets timing constraints [3]. Data temporal consistency is also ignored by

serializability-based concurrency control techniques. For instance, a serializability technique would

block a transaction tupdate that updates temporally inconsistent data if another transaction tread

is reading the data. This blocking might cause tread to receive temporally inconsistent data. On

the other hand, relaxing serializability by allowing transaction tupdate to preempt transaction tread

could violate the logical consistency of tread. As this example indicates, the requirements of meeting

logical and temporal consistency constraints can con
ict with each other.

There have been proposals for techniques that relax serializability [2, 4, 5, 6, 7, 8]. Many of

these techniques use semantic knowledge of the system to determine logical correctness, instead

of mandating a serializable schedule. However, these techniques were not intended for RTDBMSs

and thus do not incorporate semantics associated with temporal consistency. A survey of real-time

database concurrency control issues is presented in [9]. Many of these techniques relax serializability,

but still neglect data temporal consistency considerations. The exception is work presented in [10],

that replaces serializability with a correctness criterion called similarity. Similarity is a semantically

de�ned relation between a pair of data values that indicates that the values are recorded \close

enough" in time to be considered equal. It is used to de�ne a concurrency control technique

that incorporates temporal consistency considerations. This technique, however, does not directly

address both logical consistency and temporal consistency.

We have designed a concurrency control technique [3] called semantic locking that supports

expression and enforcement of the trade-o�s between logical and temporal consistency constraints

for real-time object-oriented database management systems. Our technique is designed for soft real-

time data management, which means that it makes an e�ort to preserve temporal consistency, but

can o�er no a priori guarantee of meeting timing constraints. Due to its lack of guarantees, the

technique is not appropriate for hard real-time data management, where timing constraints must

be predictably met. In our semantic locking technique, concurrency control is distributed to the

individual data objects, each of which controls concurrent access to itself based on a semantically-

de�ned compatibility function for the object's methods [3]. This semantically-de�ned compatibility

is similar to that described in [8, 11] which use the notion of commutativity to de�ne operation

2

con
ict. The semantics allowed in our technique are richer than those allowed in [8, 11] because

our semantics include, among other things, expression of conditions under which logical consistency

should be relaxed in order to maintain temporal consistency. For instance, in the above example, the

semantics could express that transaction tupdate be allowed to write the data item that transaction

tread is reading only under the condition that temporal consistency of the data item is threatened

or violated.

If a RTDBMS concurrency control technique sacri�ces logical consistency to maintain temporal

consistency, it may introduce a certain amount of logical imprecision into data and/or transactions.

For instance, in the above example, if the concurrency control technique allows transaction tupdate

to write the data item while transaction tread is reading the data item, then tread might get an

imprecise view of the data. The data item itself might become imprecise if two transactions that

write to it are allowed to execute concurrently. While imprecision in a database is not desirable, it is

often tolerable. For instance, in an air tra�c control application, a transaction that queries for the

position of all airplanes within an airspace may read-lock the position data items for a long duration

in order to gather all of the data. During this transaction's execution, it could be desirable to allow

updates to the read-locked data items in order to maintain their temporal consistency. Updates of

read-locked data could introduce imprecision into the querying transaction's view of the positions

of the tracked aircraft. However, the application may specify that it is su�cient for the values of the

relative position data to be within a speci�ed range of exact values. That is, the application may

allow some bounded imprecision in the transaction's return values. However, allowing imprecision

to become unbounded in the database is not acceptable.

In this paper, we describe our semantic locking technique and how it can specify accumulation

and bounding of logical imprecision that results from the trade-o� of logical consistency for temporal

consistency. We also derive two general restrictions on the expressed semantics and show that

these restrictions are su�cient for bounding logical imprecision in the system. We formally prove

the su�ciency of the restrictions by demonstrating that our semantic locking concurrency control

technique, under the restrictions, guarantees a form of epsilon serializability (ESR) [12] specialized

for object-oriented databases. ESR is a formal correctness criterion that speci�es that a schedule

for transaction execution is correct if the results of the schedule (both data values and transaction

return values) are within speci�ed limits of a serializable schedule. By demonstrating that our

technique can maintain a version of ESR, we show that it can provide logical correctness while

better enforcing temporal consistency.

3

Section 2 presents our model of a real-time object-oriented database. Section 3 describes the

semantic locking technique. Section 4 �rst describes the ESR correctness criteria and extends it

to our model of a real-time object-oriented database. The section then presents the two general

restrictions on the expressed semantics and proves that the semantic locking technique, under

these restrictions, meets the object-oriented ESR correctness criteria. Section 5 summarizes and

compares our work to related work.

2 RTSORAC Model

Our RTDBMS semantic locking concurrency control technique is based upon our model of a real-

time object-oriented database called RTSORAC (Real-Time Semantic Objects, Relationships And

Constraints) [13]. This model extends object-oriented data models by incorporating time into ob-

jects and transactions. This incorporation of time allows for explicit speci�cation of data temporal

consistency and transaction temporal consistency. The RTSORAC model is comprised of a database

manager, a set of object types, a set of relationship types and a set of transactions. The database

manager performs typical database management operations including scheduling of all execution

on the processor, but not necessarily including concurrency control. We assume that the database

manager uses some form of real-time, priority-based, preemptive scheduling of execution on the pro-

cessor. Database object types specify the structure of database objects. Relationships are instances

of relationship types; they specify associations among the database objects and de�ne inter-object

constraints within the database. Transactions are executable entities that access the objects and

relationships in the database. This paper focuses on bounding imprecision in objects and transac-

tions, so in presenting the RTSORAC model, we concentrate describing the model for object types

and transactions. The model for relationship types is described in more detail in [13].

We illustrate our real-time object-oriented database model using a simpli�ed submarine com-

mand and control system. The application involves contact tracking, contact classi�cation and

response planning tasks that must have fast access to large amounts of sensor data [14]. This sen-

sor data is considered precise and thus provides a periodic source of precise data to the database.

Since sensor data is only valid for a certain amount of time, the database system must ensure

the temporal consistency of the data so that transactions, such as those for contact tracking and

response planning, get valid data. The data in the system may be accessed by transactions that

have timing constraints, such as those involved with tracking other ships in a combat scenario.

Transactions in this application may also allow for certain amounts of imprecision depending on

4

UpdateSpeed

UpdateBearing

IncPosition

GetSpeed

GetCountry

...

M

C A

CF

N: SUBMARINE

Speed

Bearing

Position

Size

Torpedoes

Speed.value>=0

Speed.time > Now - 5

Speed.ImpAmt<=1.0

..

.

Figure 1: Example of Submarine Object Type

the semantics. For instance, a transaction that requests position information involving a friendly

ship may allow more imprecision than a transaction tracking ships in a combat scenario. Figure 1

illustrates an example of a Submarine object type in the database schema.

2.1 Object Types

An object type is de�ned by hN;A;M;C;CF i. The component N is the name of the object type.

The component A is a set of attributes, each of which is characterized by hvalue; time; ImpAmti.

Here, value is an abstract data type that represents some characteristic value of the object type.

The �eld a:time de�nes the age of attribute a. If an attribute a allows any amount of imprecision,

then it must belong to a metric space. A metric space is a set of values on which a distance

function is de�ned. The distance function has the properties of positivity and symmetry and it

upholds the triangle inequality [12]. The �eld a:ImpAmt is the same type as a:value. It represents

the amount of imprecision that has been introduced into the value of a. The attributes of the

submarine include Speed, Bearing and Country. While Speed and Bearing may allow a certain

amount of imprecision in their values (they are of the real number metric space), Country is not a

metric space attribute and must therefore remain precise at all times.

An object type'sM component is a set of methods that provides the only means for transactions

to access instances of the object type. A method is de�ned by hArg;Op; Exec;OCi. Arg is a set of

arguments each of which has the same structure as an attribute (value,time,ImpAmt). An input

argument is one whose value is used by the method to update attributes. A return argument is

one whose value is computed by the method and returned to the invoking transaction. We de�ne

5

the sets InputArgs and ReturnArgs to represent the subsets of Arg that contain the method's

input arguments and the method's return arguments respectively. Op is a sequence of programming

language operations, including reads and writes to attributes, that represents the executable code

of the method.

Exec is the worst case execution time of the method (run time on processor, not including

blocking time). Although determining the worst case exeuction time of methods can, in general, be

a di�cult problem, techniques such as bounding loops, bounding recursion, and bounding dynamic

memory allocation can make possible reasonable worst case bounds based on counting instruction

executions [15]. An object-oriented method design technique [16] that encourages creating methods

with bounded execution times will also facilitate this speci�cation. User-speci�ed and compiler-

determined execution time bounding techniques are discussed in [15].

OC is a set of constraints on the execution of the method including absolute timing constraints

on the method as a whole or on a subset of operations within the method [13]. In Figure 1

IncPosition is a method of the Submarine object type which adds the value of its input argument

to Position:value.

The C component of an object type is a set of constraints that de�nes correct states of an

instance of the object type. A constraint is de�ned by hPr; ERi. Pr is a predicate which can

include any of the three �elds of attributes: value, time, and imprecision. Notice that both logical

and temporal consistency constraints as well as bounds on imprecision can be expressed by these

predicates. For instance, in Figure 1 the predicate Speed:time > Now � 5 expresses a temporal

consistency constraint on the Speed attribute requiring that it not be more than �ve seconds old.

A logical constraint on Speed is represented by the predicate Speed:value >= 0. The predicate

Speed:ImpAmt � 1:0 de�nes the maximum amount of imprecision that may be allowed in the

value of the Speed attribute. The component ER of a constraint is an enforcement rule which

is a sequence of programming language statements that is executed when the predicate becomes

FALSE (i.e. when the constraint is violated).

The CF component of an object type is a boolean compatibility function with domain M �

M � SState. The compatibility function uses semantic information about the methods as well as

current system state (SState) to de�ne compatibility between each ordered pair of methods of the

object type. We describe the CF component in detail in Section 3.1.

6

2.2 Transactions

A transaction is de�ned by hMI;L; C;P i. MI is a set of method invocation requests where each

request is represented by hM;Arg; temporali. The M component of a method invocation request

is an identi�er for the method being invoked. Arg is the set of arguments to the method. Recall

that a method argument can be a return argument or an input argument. A return argument

r 2 Arg speci�es a limit on the amount of imprecision allowed in the value returned through r as

import limitr. An input argument i 2 Arg speci�es the value, time and imprecision amount to be

passed to the method, as well as the maximum amount of imprecision that may be exported by

the transaction through i, export limiti. Note, the concurrency control technique we describe in

Section 3 does not limit the amount of imprecision that a transaction may export. However, for

generality, the model supports such a limit. The temporal �eld of a method invocation request

speci�es whether a transaction requires that temporally consistent data be returned.

The L component of a transaction is a set of lock requests and releases. Each lock request is

associated with a method invocation request. A transaction may request a lock prior to the request

for the method invocation, perhaps to enforce some transaction logical consistency requirement.

In this case, the lock request is for a future method invocation. The transaction may also request

the lock simultaneously with the method invocation, in which case the lock is requested for a

simultaneous method invocation. This model of a transaction can achieve various forms of two-

phase locking (2PL) [17] by requesting and releasing locks in speci�c orders. Other more
exible

transaction locking techniques that do not follow 2PL can also be supported.

The component C of a transaction is a set of constraints on the transaction. These constraints

can be expressed on execution, timing, or imprecision [13]. The priority P of a transaction is

used by the database manager to perform real-time transaction scheduling (for a survey of real-

time transaction scheduling see [9]). Each method invocation requested by the transaction is to

be executed at the transaction's priority. Because a transaction is made up of a set of method

invocations, our model assumes that a transaction cannot perform any intermediate computations.

Consider a situation in which a user of the submarine database wants precise location infor-

mation on all submarines in the database. A transaction to perform such a task would request a

lock and a simultaneous invocation of the GetPosition method on each submarine object in the

database, specifying an imprecision import limit of zero for the arguments that return the locations.

The transaction would hold the locks for these methods until all of the invocations are complete.

7

3 The Semantic Locking Technique

This section describes our real-time concurrency control technique for database objects under the

RTSORAC model. The technique uses semantic locks to determine which transactions may invoke

methods on an object. The granting of semantic locks is controlled by each individual object which

uses its compatibility function to de�ne conditional con
ict. Our description of the technique con-

centrates on concurrency control within individual objects because we are concerned with bounding

imprecision within objects and transactions. We brie
y address inter-object concurrency control

at the end of this section.

3.1 Compatibility Function

The compatibility function (CF) component of an object (Section 2.1) is a run-time function,

de�ned on every ordered pair of methods of the object. The function has the form:

CF (mact; mreq) =< BooleanExpression >

where mact represents a method that has an active lock, and mreq represents a method for which

a lock has been requested by a transaction.

The boolean expression may contain predicates involving several characteristics of the object or

of the system in general. The concept of a�ected set that was introduced in [18], is used as a basis for

representing the set of attributes of an object that a method reads/writes. We modify this notion

to statically de�ne for each method m a read a�ected set (ReadAffected(m)) and a write a�ected

set (WriteAffected(m)). The compatibility function may refer to the time �eld of an attribute as

well as the current time (Now) and the time at which an attribute a becomes temporally invalid

(deadline(a)) to express a situation in which logical consistency may be traded-o� to maintain or

restore temporal consistency. The current amount of imprecision of an attribute a (a:ImpAmt)

or a method's return argument r (r:ImpAmt) along with the limits on the amount of imprecision

allowed on a (data �a [19]) and r (import limitr) can be used to determine compatibility that

ensures that interleavings do not introduce too much imprecision. The values of method arguments

can be used to determine compatibility between a pair of method invocations, similar to techniques

presented in [7].

Imprecision Accumulation. In addition to specifying compatibility between two locks for

method invocations, the semantic locking technique requires that the compatibility function ex-

press information about the potential imprecision that could be introduced by interleaving method

8

invocations. There are three potential sources of imprecision that the compatibility function must

express for invocations of methods m1 and m2:

1. Imprecision in the value of an attribute that is in the write a�ected sets of both m1 and m2.

2. Imprecision in the value of the return arguments of m1, when m1 reads attributes written by

m2.

3. Imprecision in the value of the return arguments of m2, when m2 reads attributes written by

m1.

Compatibility Function Examples. Figure 2 uses the submarine example of Section 2.1 to

demonstrate several ways in which the compatibility function can semantically express conditional

compatibility of method locks. Example A shows how a compatibility function can express a trade-

o� of logical consistency for temporal consistency when a lock is currently active for GetSpeed and

a lock on UpdateSpeed is requested. Under serializability, these locks would not be compatible

because GetSpeed's view of the Speed attribute could be corrupted. However, if the timing con-

straint on Speed is violated, it is important to allow UpdateSpeed to restore temporal consistency.

Therefore, the two locks can be held concurrently as long as the value that is written to Speed

by UpdateSpeed (S2:value) is close enough to the current value of Speed (Speed:value). This

determination is based on the imprecision limit of GetSpeed's return argument S1 and the amount

of imprecision that UpdateSpeed will write to Speed through S2 (S2:ImpAmt). Also shown is

the potential accumulation of imprecision that could result from the interleaving. In this case,

GetSpeed's return argument S1 would have a potential increase in imprecision equal to the dif-

ference between the value of Speed before the update takes place (Speed:value) and the value of

Speed after the write takes place (S2:value), plus the amount of imprecision that is written to

Speed by UpdateSpeed (S2:ImpAmt).

Example B in Figure 2 illustrates how an attribute can become imprecise. Two invocations

of UpdateSpeed may occur concurrently if a sensor writes one value and a human user, who has

additional environmental information, also updates the Speed. Two locks on UpdateSpeed may be

held concurrently as long as the di�erence between the values written by the associated invocations

does not exceed the allowed amount of imprecision for the Speed attribute. In this case, the object's

Speed attribute would have a potential increase in imprecision equal to the value of jS1:value �

S2:valuej if this interleaving were allowed.

9

Compatibility Imprecision Accumulation

A: CF (GetSpeed(S1); UpdateSpeed(S2)) = Increment S1:ImpAmt by
(Speed:time < Now� 5) AND S2:ImpAmt+ jSpeed:value � S2:valuej
(jSpeed:value� S2:valuej < import limitS1�

(S1:ImpAmt+ S2:ImpAmt))

B: CF (UpdateSpeed1(S1); UpdateSpeed2(S2)) = Increment Speed:ImpAmt by
(jS1:value� S2:valuej < data �Speed� jS1:value� S2:valuej

Speed:ImpAmt)

C: CF (IncPosition(A); GetPosition(P)) = Increment P:ImpAmt by jA:valuej
jA:valuej � import limitP � P:ImpAmt

Figure 2: Compatibility Function Examples

Example C of Figure 2 represents a compatibility function involving a method that is more com-

plex than the other examples. The method IncPosition reads the Position attribute, increments

it by the value of input argument A and then writes the result back to the Position attribute.

A lock for an invocation of this method may be held concurrently with a lock for an invocation

of GetPosition only if the amount by which IncPosition increments the Position is within the

imprecision bounds of the return argument P of GetPosition. In this case, GetPosition's return

argument P would have a potential increase in imprecision equal to the value of IncPosition's

argument A if this interleaving were allowed.

3.2 Semantic Locking Mechanism

The semantic locking mechanism must handle three actions by a transaction: a semantic lock

request, a method invocation request and a semantic lock release. As described in Section 2.2, a

semantic lock may be requested for a future method invocation request or for a simultaneous method

invocation request. Future method invocation requests can be useful if a transaction requires that

all locks be granted before any execution occurs, as with strict two-phase locking. Figures 3 and

4 show the procedures that the semantic locking mechanism executes when receiving a semantic

lock request and a method invocation request respectively. A priority queue is maintained to hold

requests that are not immediately granted.

3.2.1 Semantic Lock Request

When an object receives a semantic lock request for method invocation mreq , the semantic locking

mechanism evaluates the compatibility function to ensure thatmreq is compatible with all currently

10

Semantic Lock Request for mreq Step

granted := TRUE /* initialization */
for every ((mact 2 ActiveLocks) OR LA

((mact in priority queue) AND
(mact:priority > mreq:priority)))

if CF (mact;mreq) then LA1

save ImpAmts for return args of mact

Increment imprecision LA2

else
granted := FALSE

endif
end for
if not granted then

Enqueue(mreq) in priority queue LB

else
Add mreq to ActiveLocks LC

endif
endif

Compatibilities

Enqueue
Request

Done

NO YES

Semantic Lock
Request

Add Lock
to

Active Locks Set

LA

LB LC

Figure 3: Mechanism for Semantic Lock Request

active locks and with all queued lock requests for method invocations that have higher priority

than mreq (Figure 3, Step LA1). For each compatibility function test that succeeds, the mechanism

accumulates the imprecision that could be introduced by the corresponding interleaving (Step LA2).

Recall that the boolean expression in the compatibility function can include tests involving value,

time and imprecision information of the method arguments involved. A semantic lock request for

a future method invocation does not have values for arguments at the time of the request. Thus,

when evaluating the compatibility function for CF (mact; mreq), if either mact or mreq is a future

method invocation, then any clause of the compatibility function that involves method arguments

must evaluate to FALSE.

If all compatibility function tests succeed, the semantic locking mechanism grants the semantic

lock and places it in the active lock set (Step LC). If any test fails, the mechanism places the request

in the priority queue to be retried when another lock is released (Step LB).

3.2.2 Method Invocation Request

When an object receives a method invocation request, the semantic locking mechanism evaluates a

set of preconditions and either requests a semantic lock for the invocation if necessary or updates

the existing semantic lock with speci�c argument amounts. After the preconditions are successfully

11

Method Invocation Request for mreq Step

InitialImprecision(mreq) A

if any Precondition fails then B

Enqueue(mreq) in priority queue L

else
for every a 2WriteAffected(mreq) C1

save original a:ImpAmt

a:ImpAmt := mreq :ExportImp(a)
end for
for every r 2 ReturnArgs(mreq) C2

save original r:ImpAmt

r:ImpAmt := mreq :ImportImp(r)
end for
if already locked then D

Allow Execution of mreq I

Semantic Lock Update J

Check the queue K

else
Semantic Lock Request E

if lock granted then F

Allow Execution of mreq H

else
for every a 2WriteAffected(mreq) G

restore original a:ImpAmt

for every r 2 ReturnArgs(mreq)
restore original r:ImpAmt

for every saved return argument r
of an active method invocation
restore original r:ImpAmt

endif
endif

Method
Invocation

Preconditions

Already
Locked?

Semantic Lock
Update

Enqueue
Request

Check the
Queue

Done

YESNO

YESNO

Initial
Imprecision

Update
Imprecision

Semantic
Lock

Request

Granted?
YES

Restore
ImpAmts

L

A

B

C

H
K

J

G

F

E

D

Allow
Method

Execution

NO

Allow
Method

Execution

I

Figure 4: Mechanism for Method Invocation Request

12

evaluated and locks are granted or updated, the semantic locking mechanism allows the method

invocation to execute. The mechanism also accumulates the imprecision that could result if the

requested method were to execute. In the following paragraphs we describe the steps in Figure 4

of the semantic locking mechanism for a method invocation request mreq .

Initial Imprecision Calculation. Given method invocation request mreq , the semantic locking

mechanism �rst computes the potential amount of imprecision that mreq will introduce into the

attributes that it writes and into its return arguments. This computation takes into account

the imprecision in the attributes read by the methods and in the input arguments as well as

any computations that are done by the method on these values (Figure 4, Step A). An initial

imprecision procedure computes the amount of imprecision that mreq will write to each attribute a

in the write a�ected set of mreq (mreq:ExportImp(a)). The procedure also computes the amount

of imprecision that mreq will return through each of its return arguments r (mreq:ImportImp(r)).

The procedure computes these values by using the amount of imprecision already in the attribute or

return argument and calculating how the method may update this imprecision through operations

that it performs. This initial imprecision procedure may be created by the object designer or by a

compile-time tool that examines the structure of mreq to determine how the method will a�ect the

imprecision of attributes in its write a�ected set and of its return arguments.

Preconditions Test. The next phase of the semantic locking mechanism for method invocation

request mreq tests preconditions that determine if executing mreq would violate temporal consis-

tency or imprecision constraints (Step B). The mechanism evaluates the following preconditions

when mreq has been requested:

Preconditions

mreq:temporal =) (8a2ReadAffected(mreq)(Exec(mreq) < deadline(a)�Now)) (a)

8a2WriteAffected(mreq)(mreq:ExportImp(a)� data �a) (b)

8r2ReturnArgs(mreq)(mreq:ImportImp(r)� import limitr) (c)

Precondition (a) ensures that if a transaction requires temporally valid data, then an invoked

method will not execute if any of the data that it reads will become temporally invalid during

its execution time. Precondition (b) ensures that executing the method invocation will not allow

too much initial imprecision to be introduced into attributes that the method invocation writes.

13

Precondition (c) ensures that the method invocation executes only if it does not introduce too much

initial imprecision into its return arguments.

If any precondition fails, then the semantic locking mechanism places the request on the priority

queue (Step L) to be retried when another lock is released. If the preconditions hold, the semantic

locking mechanism updates the imprecision amounts for every attribute a in the write a�ected set

of mreq with the value mreq :ExportImp(a). Similarly, it updates the imprecision amounts for every

return argument r of mreq with the value mreq:ImportImp(r) (Step C). The mechanism saves the

original values for the imprecision amounts of the attributes and return arguments involved so that

they can be restored if the lock is not granted.

Because the preconditions can block a transaction if the data that it accesses is too imprecise for

its requirements, there must be some way of restoring precision to data so that transactions are not

blocked inde�nitely. Certain transactions that write precise data are characterized as independent

updates [19]. Such a transaction, which may come from a sensor or from user intervention, restores

precision to the data that it writes and allows transactions that are blocked by the imprecision of

the data to be executed.

Associated Semantic Lock. The semantic locking mechanism next determines whether or not

mreq is already locked by a semantic lock requested earlier (Step D). If not, a semantic lock is

requested (Step E) as described in Section 3.2.1. If the lock is granted, the semantic locking

mechanism allows the method invocation to execute (Step H). Otherwise, the mechanism restores

the original values of any imprecision amounts that were changed (Step G).

If the semantic lock associated with mreq was granted earlier, the semantic locking mechanism

allows mreq to be executed (Step I). The mechanism then performs a semantic lock update (Step

J). This procedure entails updating the existing semantic lock associated with mreq with speci�c

argument information that was not available when the lock was granted. Updating existing locks

potentially increases concurrency among methods because with values of arguments, the compat-

ibility function is more likely to evaluate to TRUE. After the semantic lock is updated, the lock

requests waiting on the priority queue are checked for compatibility with the newly updated lock

(Step K).

3.2.3 Releasing Locks.

A semantic lock is released explicitly by the holding transaction. Whenever a semantic lock is

released, it is removed from the active locks set and the priority queue is checked for any requests

14

that may be granted. Since the newly-released semantic lock may have been associated with a

method invocation that restored logical or temporal consistency to an attribute, or the lock may

have caused some incompatibilities, some of the queued lock requests may now be granted. Also,

method invocation requests that are queued may now pass preconditions if temporal consistency

or precision has been restored to the data. The requests in the queue are re-issued in priority order

and if any of these requests is granted, it is removed from the queue.

3.3 Inter-Object Concurrency Control

The semantic locking mechanism described in this paper maintains consistency for individual ob-

jects and transactions. In addition, transactions in the current technique can obtain multiple locks

and therefore can enforce inter-object consistency themselves. This enforcement is similar to tech-

niques used in traditional database systems { it requires that transactions are written to maintain

inter-object consistency.

Extending semantic locking to provide system enforcement of inter-object consistency is possi-

ble, but outside the scope of this paper. We outline the approach here. As mentioned in Section

2, inter-object constraints are expressed in RTSORAC relationships. An inter-object constraint

is de�ned on the methods of the objects participating in the relationship and is enforced by the

enforcement rule of the constraint. An enforcement rule of an inter-object constraint may invoke

methods of the participating objects. Thus, to automatically support an inter-object constraint,

the semantic locking technique should propagate semantic lock requests through relationships to

ensure that the enforement rule that maintains the inter-object constraint can execute. For in-

stance, assume that a semantic lock is requested on a method m1 of an object o1 that participates

in relationship r. Relationship r has an inter-object constraint c between o1 and an object o2. The

enforcement rule of constraint c requires that a method m2 be executed under some conditions of

m1's execution. So, upon a request for a semantic lock on m1, the semantic locking mechanism

should also propagate a semantic lock request form2 to o2. All propagated locks should be granted

before the original lock request is granted. Propagated semantic locks would be released when the

original lock is released.

This paper concentrates on semantic locking and imprecision management for individual objects,

which is a signi�cant problem. We are working on extending the semantic locking technique to

automatically support inter-object constraints as outlined here, but a further description is outside

the scope of this paper.

15

3.4 Implementation

We have implemented the RTSORAC model in a prototype system that extends the Open Object

Oriented Database System (Open OODB) [20] to support real-time requirements. These real-time

extensions execute on a Sun Sparc Classic workstation under the Solaris 2.4 operating system.

RTSORAC objects are implemented in main memory using Solaris' shared memory capability.

Transactions can access objects in the shared memory segment as if the objects were in their own

address space. This design provides fast, predictable access to data objects. Before accessing

objects, transactions execute the semantic locking mechanism to provide concurrency control. Per-

formance measurements on the prototype system indicate that requesting a semantic lock requires

approximately 60 �s if there are no other locks on the object. This time increases linearly for each

active lock and each pending request. The implementation is described fully in [21].

We have completed some preliminary performance tests using the prototype implementation.

The tests compared our semantic locking technique with other lock-based concurrency control

techniques, such as object locking, read/write locking and commutativity-based locking. Overall,

the results indicated that our semantic locking technique allowed transactions to meet as many

if not more deadlines than the other techniques tested. For a full description of the performance

testing and results, see [22].

4 Bounding Imprecision

In this section we show how our semantic locking technique can bound imprecision in the objects

and transactions of the database. To do this, we prove that the semantic locking technique, under

two general restrictions on the design of each object's compatibility function, ensures that the

epsilon-serializability (ESR) [12] correctness criteria, de�ned for object-oriented databases, is met.

First, we summarize the de�nition of ESR from [12, 19] and then extend its de�nition to object-

oriented databases. Second, we present the two general restrictions on the compatibility function.

Third, we formally prove the su�ciency of these restrictions for ensuring that our semantic locking

technique maintains object-oriented ESR. Finally, we describe an example of how the restricted

semantic locking technique bounds imprecision in the submarine tracking example.

4.1 Epsilon Serializability

Epsilon serializability (ESR) is a correctness criterion that generalizes serializability by allowing

bounded imprecision in transaction processing. ESR assumes that serializable schedules of trans-

16

actions using precise data always result in precise data in the database and in precise return values

from transactions. A value resulting from a schedule H is imprecise if it di�ers from the corre-

sponding value resulting from each possible serializable schedule of the transactions in H . In order

to accumulate and limit imprecision, ESR assumes use of only data items that belong to a metric

space (de�ned in Section 2) [12].

A transaction speci�es limits on the amount of imprecision that it can import and export with

respect to a particular data item. Import limitt;x is de�ned as the maximum amount of imprecision

that transaction t can import with respect to data item x, and export limitt;x is de�ned as the limit

on the amount of imprecision exported by transaction t to data item x [12]. For every data item

x in the database, a data �-speci�cation (data �x) expresses a limit on the amount of imprecision

that can be written to x [19].

The amount of imprecision imported and exported by each transaction, as well as the im-

precision written to the data items, must be accumulated during the transaction's execution.

Import imprecisiont;x represents the amount of imprecision imported by transaction t with respect

to data item x. Similarly, export imprecisiont;x represents the amount of imprecision exported by

transaction t with respect to data item x. Data imprecisionx de�nes the amount of imprecision

written to the data item x.

ESR de�nes Safety as a set of conditions that speci�es boundaries for the amount of impreci-

sion permitted in transactions and data. Safety is divided into two parts: transaction safety and

data safety. Safety for transaction t with respect to data item x is de�ned in [12] as follows:1

TR-Safetyt;x �

(
import imprecisiont;x � import limitt;x
export imprecisiont;x � export limitt;x

Data safety is described informally in [19]. We formalize the de�nition of data safety for data item

x:

Data-Safetyx � data imprecisionx � data �x

The original de�nition of ESR [12, 19] can now be stated as: ESR is guaranteed if and only if all

transactions and data items are safe. Or, more formally as:

De�nition 1 ESR is guaranteed if and only if TR-Safetyt;x and Data-Safetyx are invariant for

every transaction t and every data item x.

1In [12] the terms import inconsistencyt;x and export inconsistencyt;x are used. We have renamed them to
import imprecisiont;x and export imprecisiont;x.

17

It is this de�nition that we adapt for the object-oriented data model and use to show that our

semantic locking technique maintains bounded imprecision.

4.2 Object-Oriented ESR

The above de�nitions of data and transaction safety were general; we now de�ne safety more

speci�cally for the RTSORAC real-time object-oriented database model. Although this model al-

lows arbitrary attributes and return arguments, we assume in the following de�nitions and theorem

that each attribute value is an element of some metric space.

Data Safety. Data in the RTSORAC model is represented by objects. Safety for an object o is

de�ned as follows:

Object-Safetyo � 8a2oA(a:ImpAmt � data �a)

where oA is the set of attributes of o. That is, if every attribute in an object meets its speci�ed

imprecision constraints, then the object is safe.

Transaction Safety. Transactions in the RTSORAC model operate on objects through the meth-

ods of the object. Data values are obtained through the return arguments of the methods and are

passed to the objects through the input arguments of methods. Let tMI be the set of method

invocations in a transaction t and let oM be the set of methods in an object o. We denote the

method invocations on o invoked by t as tMI u oM . We de�ne safety of a transaction (OT) t with

respect to an object o as follows:

OT -Safetyt;o �

(
8m2(tMIuoM)8r2ReturnArgs(m)(r:ImpAmt � import limitr)
8m2(tMIuoM)8i2InputArgs(m)(i:ImpAmt � export limiti)

That is, as long as the arguments of the method invocations on object o invoked by OT t are within

their imprecision limits, then t is safe with respect to o.

We can now de�ne Object Epsilon Serializability (OESR) as:

De�nition 2 OESR is guaranteed if and only if OT -Safetyt;o and Object-Safetyo are invariant

for every object transaction t and every object o.

This de�nition of OESR is a specialization of the general de�nition of ESR.

18

4.3 Restrictions on The Compatibility Function

The RTSORAC compatibility function allows the object type designer to de�ne compatibility

among object methods based on the semantics of the application. We now present two restrictions

on the conditions of the compatibility function that are su�cient to guarantee OESR. Intuitively,

these restrictions allow read/write and write/write con
icts over a�ected sets of methods as long

as speci�ed imprecision limits are not violated.

The imprecision that is managed by these restrictions comes from interleavings allowed by the

compatibility function. Any imprecision that may be introduced by calculations performed by

the methods is accumulated the initial imprecision procedure before the compatibility function is

evaluated (see Section 3.2.2).

Let a be an attribute of an object o, and m1 and m2 be two methods of o.

Restrictions

R1: If a 2 WriteAffected(m1)
T
WriteAffected(m2) then the compatibility function forCF (m1; m2)

and CF (m2; m1) may return TRUE only if it includes the conjunctive clause:

jz1� z2j � (data �a� a:ImpAmt), where z1 and z2 are the values written to a by m1 and m2

respectively. Furthermore, the compatibility function's associated imprecision accumulation

must specify the following for a: a:ImpAmt := a:ImpAmt+ jz1 � z2j.

R2: If a 2 ReadAffected(m1)
T
WriteAffected(m2) then for every r 2 ReturnArgs(m1) let z

be the value of r using a's current value, let x be the value written to a my m2 and let w be

the value of r using x. Then:

a) the compatibility function for CF (m2; m1) may return TRUE only if it includes the

conjunctive clause: jz � wj � (import limitr � r:ImpAmt). Furthermore, the compat-

ibility function's associated imprecision accumulation must specify the following for r:

r:ImpAmt := r:ImpAmt+ jz � wj.

b) the compatibility function for CF (m1; m2) may return TRUE only if it includes the con-

junctive clause: jz�wj � (import limitr�(r:ImpAmt+x:ImpAmt)). Furthermore, the

compatibility function's associated imprecision accumulation must specify the following

for r: r:ImpAmt := r:ImpAmt+ x:ImpAmt+ jz � wj.

Restriction R1 captures the notion that if two method invocations interleave and write to the

same attribute a, the amount of imprecision that may be introduced into a is at most the distance

19

between the two values that are written (jz1�z2j). To maintain safety, this amount cannot be greater

than the imprecision limit less the current amount of imprecision for a (data �a�a:ImpAmt). The

accumulation of this imprecision in a:ImpAmt is also re
ected in R1.

As an example of restriction R1, recall the compatibility function example of Figure 2B of Sec-

tion 3.1. Notice that the Speed attribute is in the write a�ected set of the method UpdateSpeed and

thus restriction R1 applies to the compatibility function CF (UpdateSpeed1(S1); UpdateSpeed2(S2)).

The value written to the Speed attribute by UpdateSpeed1 is S1 and the value written to Speed by

UpdateSpeed2 is S2. Thus, the compatibility function, CF (UpdateSpeed1(S1); UpdateSpeed2(S2))

may return TRUE only if jS1 � S2j � (data �Speed � Speed:ImpAmt).

Restriction R2 is based on the fact that if a method invocation that reads an attribute (m1)

is interleaved with a method invocation that writes to the same attribute (m2), the view that m1

has of the attribute (in return argument r) may be imprecise. In R2a the amount of imprecision in

m1's view of the attribute is at most the distance between the value of the attribute before m2's

write takes place and the value of the attribute after m2's write takes place (jz�wj). This amount

cannot be greater than the imprecision limits imposed on r less the current amount of imprecision

on r (import limitr � r:ImpAmt); it also must be accumulated in the imprecision amount of r.

Restriction R2b di�ers from R2a in that when R2b applies, m1 is currently active and m2 has

been requested. The initial imprecision procedure for m1 computes the amount of imprecision that

m1 will return through r (m1:ImportImp(r)) before m2 is invoked, and thus r:ImpAmt does not

include the amount of imprecision that m2 might introduce into a (x:ImpAmt). Because allowing

the interleaving between m1 and m2 could cause any imprecision introduced into a to be returned

by m1 through r, the additional amount of imprecision introduced to a by m2 (x:ImpAmt) must

be taken into account when testing for compatibility between m1 and m2. It must also be included

in the accumulation of imprecision for r.

Figure 2A of Section 3.1 presents an example of a compatibility function that meets restriction

R2b. Notice that the function will evaluate to TRUE only if the di�erence between the value of the

Speed attribute before the update takes place (Speed:value) and the value of the attribute after

the update takes place (S2:value) is within the allowable amount of imprecision speci�ed for the

return argument of the GetSpeed method. Notice also that this allowable amount of imprecision

must take into account the amount of imprecision already in the return argument (S1:ImpAmt)

and the amount of imprecision in the argument used to update the Speed attribute (S2:ImpAmt).

Each of the restrictions requires that non-serializable interleavings be allowed only if certain

20

conditions involving argument amounts evaluate to TRUE. Thus, for CF (m1; m2), if either m1 or

m2 is a future method invocation, then the restrictions require that only serializable interleavings

be allowed because argument values of future method invocations are not known. Therefore, no

imprecision will be accumulated when one or both method invocations being tested for compatibility

is a future method invocation.

We call the concurrency control technique that results from placing Restrictions R1 and R2 on

the compatibility function, the restricted semantic locking technique.

4.4 Correctness

We now show how the restricted semantic locking technique guarantees OESR. First, we prove a

lemma that Object-Safety remains invariant through each step of the semantic locking mechanism.

We then prove a similar lemma for OT-Safety. Both of these lemmas rely on the design of the re-

stricted semantic locking technique, which contains tests for safety conditions before each potential

accumulation of imprecision.

It is su�cient to demonstrate that safety is maintained for semantic lock requests for simulta-

neous method invocations only, since this is the only part of the semantic locking mechanism that

can introduce imprecision into data and transactions. A semantic lock request for a future method

invocation m does not introduce imprecision because the argument amounts are not known. Thus

restrictions R1 and R2 require that no imprecision be accumulated when interleaving m with any

other method invocation. Lock releases also do not introduce imprecision.

Lemma 1 If the restricted semantic locking technique is used, then Object-Safetyo is invariant

for every object o.

Proof:

Let o be an object and oA be the set of attributes in o. We assume that o is initially

safe and that the restricted semantic locking technique is used. Consider the steps

in the semantic locking mechanism (Figure 4) in which the imprecision amount of a,

a:ImpAmt, is updated:

� (Step C) Imprecision is accumulated if the preconditions for a requested method

invocationm hold and a 2 WriteAffected(m). Since the preconditions hold, Step

C1 ensures a:ImpAmt = m:ExportImp(a), and from Precondition (b):

m:ExportImp(a)� data �a. Combining these two relations we have that a:ImpAmt �

21

data �a, which is the requirement for Object Safety. Thus, Object Safety remains

invariant after Step C.

� (Step LA) Imprecision is accumulated in Step LA2 if the compatibility function

evaluation in Step LA1 for method invocations m1 and m2 evaluates to TRUE

and a 2 WriteAffected(m1)
T
WriteAffected(m2). In this case, the imprecision

after Step LA2 is a:ImpAmtnew = a:ImpAmtold + jz1 � z2j, where z1 and z2

are the values written to a by m1 and m2 respectively. From Restriction R1 we

have that jz1 � z2j � data �a � a:ImpAmtold. This inequality can be rewritten as

a:ImpAmtold+ jz1�z2j � data �a. Combining this relation with the above relation

involving a:ImpAmtnew yields: a:ImpAmtnew � data �a, which is the requirement

for Object Safety. Thus, Object Safety remains invariant after Step LA. 2

Lemma 2 If the restricted semantic locking technique is used, then OT -Safetyt;o is invariant for

every transaction t with respect to every object o.

Proof:

Let o be an object, t be a transaction, m be a method invocation on o invoked by t,

r be a return argument of m, and i be an input argument of m. We assume that t

is initially safe with respect to o and that the restricted semantic locking technique is

used. We show that r:ImpAmt � import limitr �rst for the case when a semantic lock

for m is requested by t and then for the case when t holds the semantic lock for m.

Case 1. Transaction t requests a semantic lock for m and a semantic lock is held for

another method invocation m1. Consider the situations in which r:ImpAmt is

updated by the semantic locking mechanism:

� (Step C) Imprecision is accumulated if the preconditions for m hold. Since the

preconditions hold, Step C2 ensures r:ImpAmt =m:ImportImp(r), and from

Precondition (c): m:ImportImp(r) � import limitr. Combining these two

relations we have that r:ImpAmt � import limitr, which is the requirement

for OT Safety. Thus, OT Safety remains invariant after Step C.

� (Step LA) Imprecision is accumulated in Step LA2 if the compatibility function

evaluation in Step LA1 forCF (m1; m) evaluates to TRUE and ReadAffected(m)T
WriteAffected(m1) 6= ;. In this case, the imprecision after Step LA2 is

r:ImpAmtnew = r:ImpAmtold + jz � wj, where z is the value of r using the

22

current value of a, and w is the value of r using the value written by m1 to a.

From Restriction R2a we have that jz � wj � import limitr � r:ImpAmtold.

This inequality can be rewritten as r:ImpAmtold + jz � wj � import limitr.

Combining this relation with the above relation involving r:ImpAmtnew yields:

r:ImpAmtnew � import limitr, which is the requirement for OT Safety. Thus,

OT Safety remains invariant after Step LA. 2

Case 2 Transaction t holds the semantic lock form and a semantic lock is requested for

m1. In this case, r:ImpAmt can only be updated in Step LA of the semantic locking

mechanism and only when the compatibility function evaluation in Step LA1 for

CF (m;m1) evaluates to TRUE and ReadAffected(m)
T
WriteAffected(m1) 6=

;. In this case, the imprecision after Step LA2 is r:ImpAmtnew = r:ImpAmtold +

x:ImpAmt+ jz�wj, where x is value written to a by m1, z is the value of r using

a's current value and w is the value of r using x. From Restriction R2b we have

that jz�wj � import limitr�(r:ImpAmtold+x:ImpAmt). This inequality can be

rewritten as r:ImpAmtold+x:ImpAmt+ jz�wj � import limitr. Combining this

relation with the above relation involving r:ImpAmtnew yields: r:ImpAmtnew �

import limitr, which is the requirement for OT Safety. Thus, OT Safety remains

invariant after Step LA. 2

The other OT safety property, i:ImptAmt � export limiti, is trivially met because the

semantic locking technique does not limit the amount of imprecision that is exported

by a transaction to other transactions or to objects. As stated in [19], if transactions

execute simple operations, the export limit can be omitted and the transaction can

rely completely on data � speci�cations for imprecision control. The simple model of

transactions of Section 2.2 allows us to de�ne for all input arguments i, export limiti =

1. Thus, regardless of the value of i:ImpAmt, OT safety is invariant. 2

Theorem 1 If the restricted semantic locking technique is used, then OESR is guaranteed.

Proof: Follows from De�nition 2, Lemma 1, and Lemma 2. 2

Theorem 1 shows that if the restricted semantic locking technique is used, the imprecision

that is introduced into the data and transactions is bounded. Because OESR is guaranteed across

all objects and all transactions, this result shows that the restricted semantic locking technique

maintains a single, global correctness criterion that bounds imprecision in the database.

23

4.5 Example

We use an example of a Submarine object, which is an instance of the object type in Figure 1

of Section 2, to illustrate how the semantic locking technique maintains the imprecision limits of

a data object and therefore guarantees OESR. The object's method UpdateSpeed(S) writes the

value S to the value �eld of the object's Speed attribute. We assume that the Speed attribute is

initially precise (Speed:ImpAmt = 0), that the only active lock is for a simultaneous invocation

of UpdateSpeed(10:0), and that the object's priority queue is empty. Let a transaction request

a lock for a simultaneous invocation of UpdateSpeed(10:6), where the value 10:6 has 0:3 units of

imprecision in it. As indicated in Figure 1, the imprecision limit on Speed is data �Speed = 1:0.

When the Submarine object receives the request for the UpdateSpeed(10:6) method invoca-

tion it executes the semantic locking mechanism of Figure 4. First it computes the initial impreci-

sion procedure (Step A). Speed is the only attribute in the write a�ected set of UpdateSpeed and

UpdateSpeed has no return arguments, so the initial imprecision procedure computes

UpdateSpeed:ExportImp(Speed). Because the invocation UpdateSpeed(10:6) writes 10.6 to Speed

with 0.3 units of imprecision, UpdateSpeed:ExportImp(Speed) = 0:3.

The preconditions for the requested UpdateSpeed(10:6) method invocation are tested next (Step

B). Precondition (a) trivially holds because ReadAffected(UpdateSpeed)=;. Precondition (b)

also holds since UpdateSpeed:ExportImp(Speed) = 0:3 � 1:0. Since UpdateSpeed has no return

arguments, Precondition (c) holds as well.

Step C1 of the semantic locking mechanism then initializes the imprecision amount for the Speed

attribute to the value of UpdateSpeed:ExportImp(Speed), so Speed:ImpAmt = 0:3.

Because the semantic lock was requested for a simultaneous method invocation, the condition in

Step D is TRUE and a semantic lock request is performed (Step E). In Step LA1, the object's seman-

tic locking mechanism checks the compatibility of the requested invocation of UpdateSpeed(10:6)

with the currently locked invocation of UpdateSpeed(10). Recall from Figure 2 and the exam-

ple in Section 4.3 that CF (UpdateSpeed1(S1); UpdateSpeed2(S2)) = jS1:value � S2:valuej �

data �Speed � Speed:ImpAmt. The test of the compatibility function uses the imprecision amount

for Speed that was stored in Step C and thus: jS1:value � S2:valuej = j10 � 10:6j = 0:6 and

data �Speed � Speed:ImpAmt = 1:0 � 0:3 = 0:7. Since 0:6 � 0:7, the method invocations are

compatible in Step LA1.

Now the object's semantic locking mechanism executes Step LA2 to accumulate imprecision for

the Speed attribute into the imprecision amount for Speed stored in Step C. Recall from Figure

24

2: CF (UpdateSpeed1(S1); UpdateSpeed2(S2))) Speed:ImpAmt := Speed:ImpAmt+ jS1:value�

S2:valuej. Thus, the mechanism computes a new value for the imprecision amount for the Speed

attribute as: Speed:ImpAmt := 0:3 + 0:6 = 0:9:

Because there are no other active locks to check for compatibility, the compatibility func-

tion evaluates to TRUE. The object's mechanism grants a semantic lock for the invocation of

UpdateSpeed(10:6) and adds the lock to the object's active lock set (Step LC). Finally the se-

mantic locking mechanism allows the execution of UpdateSpeed(10:6) (Step H). Note that the

imprecision amount for the Speed attribute is now 0.9. Both UpdateSpeed method invocations

execute concurrently and the imprecision limits are maintained.

Although we have only demonstrated relatively simple method interleavings in this example

(essentially two writes to a single attribute), the use of read a�ected and write a�ected sets in the

semantic locking technique allows it to perform in a similar fashion for more complicated object

methods.

5 Conclusion

This paper has presented a model and an object-based semantic real-time concurrency control

technique capable of enforcing both temporal and logical consistency constraints within real-time

database objects. Moreover, it demonstrated that the technique can bound the imprecision that is

introduced when one constraint is traded o� for another. This was done by showing that, under

certain general restrictions, the technique guarantees a global correctness criterion { a specialization

of epsilon serializability for object-oriented databases.

Although our technique is designed for soft real-time databases and therefore o�ers no guar-

antees of meeting timing constraints, the support that it provides for real-time is in its treatment

of temporal consistency requirements. The user-de�ned compatibility function provides support

for maintaining data temporal consistency by allowing the speci�cation of the trade-o� between

temporal and logical consistency. Because our technique allows for relaxing serializability among

transactions, the likelihood that the real-time scheduler will be able to determine a schedule that

maintains transaction timing constraints is increased.

Our technique di�ers from most previous real-time concurrency control work [9] and the seman-

tic concurrency control work in [2, 5, 6] because it is based on an object-oriented data model. It

di�ers from the object-based concurrency control work in [7, 8, 11, 18, 23] because it incorporates

temporal consistency requirements. It di�ers from all of these approaches and the real-time concur-

25

rency control work in [10] in that it can manage and bound imprecision that can be accumulated

due to trading o� logical consistency for temporal consistency. It di�ers from other ESR-based tech-

niques [24] because it can limit logical imprecision to be introduced only if temporal consistency of

data or transactions is threatened.

Our semantic locking technique is closest to the concurrency control protocol presented in [8].

This protocol uses commutativity with bounded imprecision to de�ne operation con
icts. It is

similar to our protocol in that the user de�nes the allowed amount of imprecision for a given

operation invocation and the protocol uses a modi�ed commutativity table to determine if the

operation can execute concurrently with the active operations. However, the protocol in [8] does

not take temporal considerations into account. Furthermore, our restrictions on the compatibility

function, de�ned in Section 4.3, provide the user with a guide for de�ning the compatibility function

to maintain correctness. There is no similar guide in [8] for de�ning commutativity with bounded

imprecision.

Two drawbacks of our technique are the complexity posed to the system designer and the

additional overhead required for the run-time system to grant locks. One reason for the complexity

is that applications that require real-time database management, such as submarine command and

control, are generally more complex than those that can be supported by traditional databases.

Adding support for imprecision maintenance, while providing a potential increase in concurrency,

also adds to the complexity of the technique. We are currently developing a tool to ease some

of the burden on system designers. The tool computes read and write a�ected sets of methods,

along with other static characteristics, and proposes default object compatibility functions and

imprecision accumulation. The designer can then interactively modify the compatibility function

or the constraints of objects or transactions based on application-speci�c semantic information.

Although the performance measurements for our technique in our prototype system indicate

that it takes on the order of hundreds of microseconds (depending on the number of current locks

and requests) to execute semantic locking, the extra overhead is not prohibitive. It does indicate

that semantic locking is not appropriate for applications with short method executions and lock

durations. For longer-lived method executions and transactions, the increased concurrency of se-

mantic locking will easily justify the increased overhead. Unfortunately, bounding the overhead

and the blocking time that are introduced by the semantic locking technique is not feasible due to

the complexity of the technique; this limits its usefulness in hard real-time databases. However, the

results of preliminary performance studies comparing the semantic locking with other lock-based

26

concurrency control techniques, indicate that the semantic locking technique is generally better at

meeting timing constraints than the other techniques tested.

We believe that the generality of our technique (a conditional compatibility function and se-

mantic locking mechanism distributed to each object), the treatment of temporal consistency, the

de�nition of restrictions that are su�cient to bound imprecision, and the de�nition of an object-

oriented version of ESR, are valuable contributions towards expressing and enforcing imprecision in

object databases as well as providing support for maintaining both temporal and logical consistency

found in real-time databases.

Acknowledgements. We thank Joan Peckham, Janet Prichard, Paul Fortier, and Krithi Ra-

mamritham for their helpful comments and suggestions. We thank John Black for his work in

implementing the prototype system and his feedback along the way.

27

References

[1] K. Ramamritham, \Real-time databases," International Journal of Distributed and Parallel Databases,
vol. 1, no. 2, 1993.

[2] H. Garcia-Molina, \Using semantic knowledge for transaction processing in a distributed database
system," ACM Transactions on Database Systems, vol. 8, pp. 186{213, June 1983.

[3] L. B. C. DiPippo and V. F.Wolfe, \Object-based semantic real-time concurrency control," in Proceedings
of IEEE Real-Time Systems Symposium, December 1993.

[4] N. S. Barghouti and G. E. Kaiser, \Concurrency control in advanced database applications," ACM

Computing Surveys, vol. 23, pp. 269{316, September 1991.

[5] N. A. Lynch, \Multilevel concurrency { a new correctness criterion for database concurrency control,"
ACM Transactions on Database Systems, vol. 8, pp. 484{502, December 1983.

[6] A. A. Farrag and M. T. Ozsu, \Using semantic knowledge of transactions to increase concurrency,"
ACM Transactions on Database Systems, vol. 14, pp. 503{525, December 1989.

[7] P. M. Schwartz and A. Z. Spector, \Synchronizing shared abstract types," ACM Transactions on Com-

puter Systems, vol. 2, no. 3, pp. 223{250, 1984.

[8] M. Wong and D. Agrawal, \Tolerating bounded inconsistency for increasing concurrency in database
systems," in Proceedings of the 11th Principles of Database Systems, pp. 236{245, 1992.

[9] P. S. Yu, K.-L. Wu, K.-J. Lin, and S. H. Son, \On real-time databases: Concurrency control and
scheduling," Proceedings of the IEEE, vol. 82, pp. 140{157, January 1994.

[10] T.-W. Kuo and A. K. Mok, \SSP: A semantics-based protocol for real-time data access," in Proceedings
of IEEE Real-Time Systems Symposium, December 1993.

[11] R. F. Resende, D. Agrawal, and A. E. Abbadi, \Semantic locking in object-oriented database systems,"
in 9th OOPSLA, October 1994.

[12] K. Ramamritham and C. Pu, \A formal characterization of epsilon serializability," IEEE Transactions

on Knowledge and Data Engineering, vol. 7, October 1995.

[13] J. Prichard, L. C. DiPippo, J. Peckham, and V. F. Wolfe, \RTSORAC: A real-time object-oriented
database model," in The 5th International Conference on Database and Expert Systems Applications,
Sept. 1994.

[14] G. A. Bussier, J. Oblinger, and V. F. Wolfe, \Real-time considerations in submarine target motion
analysis," in Proceedings of First IEEE Workshop on Real-Time Applications, May 1993.

[15] W. Pugh and T. M. (Editors), \Proceedings of the ACM SIGPLAN workshop on language, compiler
and tool support for real-time systems," June 1994. held in conjunction with ACM SIGPLAN PLDI
Conference.

[16] J. Rumbaugh, \Relations as semantic constructs in object-oriented languages," in ACM OOPSLA

Proceedings, pp. 466{481, October 1987.

[17] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in Database

Systems. New York: Addison Wesley, 1986.

[18] B. Badrinath and K. Ramamritham, \Synchronizing transactions on objects," IEEE Transactions on

Computers, vol. 37, pp. 541{547, May 1988.

[19] P. Drew and C. Pu, \Asynchronous consistency restoration under epsilon serializability," Tech. Rep.
OGI-CSE-93-004, Department of Computer Science and Engineering, Oregon Graduate Institute, 1993.

[20] D. L. Wells, J. A. Blakely, and C. W. Thompson, \Architechture of an open object-oriented database
management system," IEEE Computer, vol. 25, pp. 74{82, October 1992.

28

[21] V. F. Wolfe, L. C. DiPippo, J. Prichard, and J. Peckham, \The design of real-time extensions to
the open object-oriented database system," in The 1st IEEE Workshop on Object-Oriented Real-Time

Dependable Systems, Oct. 1994.

[22] L. C. DiPippo and V. F. Wolfe, \Testing the performance of object-based semantic real-time concurrency
control," Tech. Rep. TR95-245, Department of Computer Science and Statistics, University of Rhode
Island, 1995.

[23] W. Weihl, \Commutativity-based concurrency control for abstract data types," IEEE Transactions on

Computers, vol. 37, pp. 1488{1505, Dec. 1988.

[24] K.-L. Wu, P. S. Yu, and C. Pu, \Divergence control for epsilon-serializability," in Proceedings of Inter-

national Conference on Data Engineering, 1992.

29

