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ABSTRACT

Distributed object computing environments (DOCEs) must support real-time pro-
cessing if they are to provide the timely execution required by many complex appli-
cations such as telecommunications, automated manufacturing, aerospace automated
control, medical patient monitoring, and multi-media. To this end, any concurrency
control mechanism used by a real-time DOCE (RTDOCE) must enforce timing con-
straints.

One popular DOCE is the Common Object Request Broker Architecture (CORBA).
This DOCE is currently gaining popularity in industrial, government, and academic
projects. However, in order for it to be suitable for real-time computing, CORBA
must be extended to support real-time characteristics including real-time concurrency
control.

Concurrency control in a real-time environment can lead to priority inversion.
Priority inversion occurs when a real-time activity blocks another, higher-priority
real-time activity. This situation can lead to unbounded blocking time for the higher-
priority activity. Therefore, any concurrency control mechanism used in a real-time
system must ensure that priority inversion is bounded.

This report presents an implementation of a dynamic real-time distributed con-
currency control mechanism that has been developed as part of a larger project at
the University of Rhode Island that is designing a RTDOCE based on CORBA. This
mechanism uses basic priority inheritance to bound priority inversion. This report

describes the design and implementation of this mechanism in addition to presenting
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tests results which illustrate that, while the mechanism cannot ensure that all timing
constraints are met, it does contribute to a best effort approach for ensuring that

high priority activities meet their timing constraints.
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Chapter 1

Introduction

This report describes a concurrency control mechanism that was designed for use in
Real-Time CORBA (RTCORBA), a real-time distributed object computing environ-
ment. It is a lock-based mechanism that uses basic priority inheritance to bound
priority tnversion that occurs during access to shared data. This report describes
the implementation of the mechanism. It also presents results that demonstrate that
the mechanism provides a correct implementation of basic priority inheritance, which

contributes to RTCORBA’s best effort approach for enforcing time constraints.

1.1 Motivation

Distributed object computing environments (DOCEs) must support real-time com-
puting if they are to provide the timely execution required by many complex real-time
applications such as telecommunications, automated manufacturing, aerospace auto-

mated control, medical patient monitoring, and multi-media [RTSIG96]. In the con-



text of this report, real-time computing is defined to be computing that is predictable
in terms of the performance of the system. This is in contrast to real-time computing
defined as fast computing. A real-time application is defined to be an application
that must meet timing constraints in order to be correct [WBTK95]. In support
of this requirement, any concurrency control mechanism used by a real-time DOCE
(RTDOCE) must enforce timing constraints.

One popular DOCE is the Common Object Request Broker Architecture (CORBA).
CORBA is a DOCE specification that was created by the Object Management Group
(OMG), a group of over 600 DOCE vendors and users. This DOCE is currently gain-
ing popularity in industrial, government, and academic projects. However, in order
for it to be suitable for real-time computing, the current version of CORBA, CORBA
2.0, must be extended to support real-time characteristics.

CORBA 2.0 defines an interface to the Concurrency Control Service (CCS) in
[OMG96]. The CCS is designed to provide lock-based concurrency control for CORBA
objects. In order to support real-time computing, the CORBA CCS must be modified
for use in a RTCORBA environment.

Concurrency control in a real-time environment can lead to priority inversion
[SRL90]. Priority inversion occurs when a real-time activity blocks another, higher-
priority real-time activity. This situation can lead to an unbounded blocking time
for the higher-priority activity. Therefore, any concurrency control mechanism used
in a real-time system must ensure that priority inversion is bounded. In addition,
the concurrency control mechanism must address the issue of deadlock, the situation

in which activities are indefinitely blocked due to locking conflicts. This will be



addressed further in Chapter 2.

Although work has been done in the area of real-time distributed concurrency
control, it either does not address the issue of priority inversion or it requires a priori
information about the priorities of the activities that will run. Therefore, there is
a need for a real-time distributed concurrency control mechanism that will bound
priority inversion and prevent deadlock while allowing for dynamic workloads. In the
context of this project, a system supports dynamic workloads if it does not require a
priori information about the activities that will run on it.

This report presents an implementation of a dynamic real-time distributed con-
currency control mechanism that was developed for use in CORBA systems as part of
a larger project at the University of Rhode Island that is designing a RTDOCE based
on CORBA. This mechanism uses basic priority inheritance [SR1L90] to bound prior-
ity inversion. This protocol does not require a priori information about the activities
that will run in the CORBA environment. This makes it more suitable for systems
that require dynamic workloads. This report describes the design and implementa-
tion of this priority inheritance mechanism in RTCORBA in addition to presenting
test results. These results illustrate that, while the mechanism cannot ensure that all
timing constraints are met, it does contribute to RTCORBA’s best effort approach

for ensuring that high priority activities meet their timing constraints.



1.2 Goal of Research

The main goal of this research is to develop a Real-Time Concurrency Control Service
(RTCCS) for use in a prototype RTCORBA environment. The RTCORBA project
is a soft real-time system in the sense that it is designed to make a best effort to meet
timing constraints. This is in contrast to a hard real-time system in which violated
timing constraints lead to catastrophic results. The RTCCS provides an extended
form of read/write locking which allows for consistent, concurrent access to shared
data resources. This service uses basic priority inheritance to bound priority inversion
for dynamic workloads.

Another goal of this project is to develop the RTCCS to comply with established
standards whenever applicable. In order to remain compliant with the CORBA 2.0
specification, this implementation complies with the specified interfaces for the CCS
[OMGY6] with a few minor extensions. In addition, the implementation is compliant

with the real-time POSIX operating system interface standard [Gal95].

1.3 Approach

In order to achieve these goals, several existing algorithms for bounding priority in-
version were examined. These included a number of priority ceiling protocols [SRLIO0,
Raj9l]. However, since these protocols require a priori information about the priori-
ties of activities that will run, they are inappropriate for systems that have dynamic
workloads. Therefore, basic priority inheritance, which does not need a priori infor-

mation, was chosen to bound priority inversion in our implementation of the CCS.



1.4 Outline

Chapter 2 provides an overview of CORBA and the RTCORBA project at the Uni-
versity of Rhode Island. It then presents a review of lock-based concurrency control,
priority inheritance, deadlock prevention, and priority ceiling protocols. The chapter
concludes with a presentation of an existing real-time concurrency control mechanism
for CORBA. Chapter 3 describes the design of the RTCCS while Chapter 4 describes
its implementation. Chapter 5 presents the results of correctness and performance
tests done using the RTCCS. Chapter 6 presents the contributions and limitations of

this prototype RTCCS and discusses future work.



Chapter 2

Related Work

This chapter presents a brief summary of CORBA and the RTCORBA project at the
University of Rhode Island. It then presents some background information on lock-
based concurrency control, priority inheritance, and priority ceiling protocols. This
includes a discussion of a priority ceiling protocol designed specifically for distributed

systems. Finally, an existing implementation of a RTCCS for CORBA is examined.

2.1 CORBA

CORBA is a specification for a DOCE with a client/server architecture. Clients in-
teract with servers through the Object Request Broker (ORB), the central piece of
middleware in CORBA. The ORB is responsible for passing requests from clients to
servers and sending results from servers back to clients. These requests are targeted
at specific objects that exist in the server process’ address space. For example, a

server may contain a number of database objects, each with its own data and inter-



face. When a server receives a client request, it invokes the specified method on the
appropriate object. In the case of multithreaded servers, a thread is created to handle
the request, allowing the server process to accept additional client requests.

Each object managed by the server has an interface specified in an interface def-
inition language (IDL) which is part of CORBA 2.0. These IDL interfaces are used
to generate stubs and skeletons. A stub is library code that is linked into a client to
enable it to interact with the server. Likewise, the skeleton code, which is linked into
the server process, enables the server to interact with the client. A client begins its
interaction by binding to the appropriate server. At this point, the client gets an ob-
ject reference to the server object it wishes to interact with. The stub code provides it
with interfaces to all of the available methods on the server object’s interface. When
these methods are called, the ORB is responsible for routing requests and results to
the proper servers and clients.

The CORBA 2.0 specification also defines a set of Object Services. Theses services
include a naming service, transaction service, and concurrency control service, among
others. The Object Services are intended to provide a variety of low-level services to

clients and servers in the CORBA environment.

2.1.1 CORBA Concurrency Control Service

The OMG has recognized the merit of a standard interface for concurrency control
that can be used to manage access to shared resources in an ORB environment by

specifying interfaces to a Concurrency Control Service(CCS). This is one of the Object



Services specified in CORBA 2.0. The motivation behind the inclusion of the CCS is
that it provides a standard interface to a concurrency control mechanism that can be
used by programmers to manage access to shared resources that do not have built-in
concurrency control. For example, the CCS can be incorporated into a linked list
object that was originally designed for single-user usage such that it can support safe,
concurrent access.

The CCS provides an extended form of object-level read/write locking. Locks
can be acquired on behalf of a transaction or on behalf of a client operating outside
of a transaction. In the first case, a second Object Service called the Transaction
Service drives the release of locks as the transaction commits or aborts. The RTCCS
developed for the RTCORBA project does not provide support for this type of locking.
It does provide support for the second form of locking in which the user of the CCS
(i.e., the client that obtained the locks) is responsible for releasing them. In this non-
transactional mode of concurrency control, a LockSet object embodies the locks that
can be obtained on a single resource as well as the methods for obtaining and releasing
specific types of locks. The LockSet is also responsible for ensuring that conflicting
locks are not held by different clients. Any shared resource in the distributed system
that requires concurrency control has its own instantiation of a LockSet object. Clients
that access the resource should do so only after acquiring the necessary locks from
the appropriate LockSet object.

The CCS supports five types of locks. The first two are the standard read (R)
and write (W) locks. The upgrade (U) lock is useful for avoiding a common form of

deadlock that arises when two or more activities with read locks try to get write locks.



Consider the following scenario involving two clients, C'y and (3, that are accessing

shared object O.

1. €y gets a R lock on O.

2. Cy gets a R lock on O.

3. Cy tries to get a W lock on O but is blocked by C}’s R lock.

4. (' tries to get a W lock on O but is blocked by C3’s R lock.

Since each client is blocked by the other, deadlock ensues. This can be remedied by

requiring the clients to obtain an upgrade lock instead of a read lock.

1. Cy gets a U lock on O.

2. () tries to get a U lock on O but is blocked by Cy’s U lock.

3. Cy gets a W lock on O and writes to the object.

4. (' releases its W and U locks on O, allowing (5 to continue unhindered.

The last two locks are the intention read (IR) and intention write (IW) locks.
These two locks are useful when the resource that is being locked is hierarchical in
nature (e.g., a database). The following scenario illustrates how the intention write
lock is used to managed three clients, Cy, C5, and (s, as they access a database. It
should be noted that the database and each of the records in the database requires

its own LockSet.

1. €y gets an TW lock on the database.



Granted Mode Requested Mode
IR|R|U|IW | W
Intention Read (IR) "
Read (R) x| ox
Upgrade (U) N
Intention Write (TW) o | ]
Wite (W) I

Table 2.1: Lock Incompatibilities

2. Cq gets a W lock on record R; in the database.

3. 5 gets an I'W lock on the database.

4. (5 gets a W lock on record R, in the database.

5. Cj tries to get a W lock on the entire database but cannot since the database

has been locked with an IW lock.

The changes being made by € and (' are protected from interference by C5 by the
IW locks they obtained. The intention read lock works in a similar manner for read
operations. Table 2.1 defines the compatibilities between the five types of locks (a *

indicates a conflict between a requested lock and a granted lock).
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2.2 Real-Time CORBA

The work done on this report was funded by the Distributed Hybrid Database Ar-
chitecture project [JWS96] that is being developed as a joint effort between the U.S.
Navy NRaD labs and the RTCORBA group at the University of Rhode Island. The
RTCORBA group is currently working on a client/server implementation of a RT-
DOCE based on CORBA. The efforts of the group are focused on the expression and
enforcement of end-to-end timing constraints on databases in CORBA environments.
In this context, enforcing end-to-end timing constraints means the DOCE enforces
the timing constraints of a real-time activity at all stages of it execution throughout
the DOCE.

Recently, a Real-Time Special Interest Group (RT SIG) in the OMG has begun
to identify those capabilities which it feels would be desirable in a real-time ver-
sion of CORBA (CORBA/RT) [RTSIG96]. The goal of the RTCORBA group is
to design and implement a prototype of CORBA/RT that meets the desired capa-
bilities for expressing and enforcing time constraints as specified in the RT SIG’s
white paper([RTSIG96]). One of these capabilities is the need for priority inheri-
tance to bound priority inversion. Therefore, any concurrency control mechanism in

CORBA/RT should make use of priority inheritance.

2.3 Lock-Based Concurrency Control

When a data resource is accessed by multiple users simultaneously, steps must be

taken to ensure that this concurrent access does not leave the data in an inconsis-
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tent state. One method of ensuring consistency of a shared resource is to require
that clients of the resource obtain locks on the resource. FEzxclusive locking involves
obtaining a lock on the entire resource, preventing any other client from accessing
the resource for any reason. Read/write locking allows for more concurrent access
by allowing multiple clients to read from the resource as long as there are no writers
accessing the data. If a client desires to write to the resource, it is allowed to do so
only when there are no readers or writers accessing the data. This project implements

an extension of this method of locking.

2.4 Basic Priority Inheritance Protocol

The basic priority inheritance protocol was developed to solve the problem of un-
bounded priority inversion. In order to understand the need for priority inheritance,
consider the following example which involves three real-time activities, A;, Ay, and
As, in ascending order of priority. Note that a high priority activity that is ready to
run preempts any lower priority activities that are running. Let O represent a shared
object that will be locked by both A; and Ajs. The following scenario then becomes

possible:
1. A, gets a write lock on O.
2. Az preempts Aj.
3. Aj tries to get a read lock on O but is blocked by A;’s write lock.

4. A; resumes executlon.

12



5. As can preempt A; any number of times since it does not try to lock O.

Since A; can potentially be preempted by A; any number of times, As can be
blocked for an unbounded amount of time since A; cannot release the lock on O until
it completes its critical section (i.e., the code executed under the protection of the
lock). This is unbounded priority inversion. The priority inversion in this example

can be bounded in the following way:

1. A, gets a write lock on O.

2. Az preempts Aj.

3. Aj tries to get a read lock on O but is blocked by A;’s write lock.

4. Ay’s priority is raised to that of As.

5. A resumes execution.

6. Since Ay’s priority is lower than A;’s new priority, Ay cannot preempt A;.

7. When A; completes its execution, it releases the write lock and resets its priority

to its original value.

8. Az is no longer blocked, and since it has the highest priority, it is allowed to

obtain the read lock.

This example makes use of basic priority inheritance. Aj is said to inherit As’s
priority at step 4. It has been shown in [SRL90] that the basic priority inheritance

protocol places an upper bound on priority inversion. The number of critical sections

13



that can block a particular activity A is given by the smaller of the following two

values:

1. The number of activities with priorities lower than that of A.

2. The number of locks that can block the activity A.

This is an important result since it places a bound on a previously unbounded delay.
However, this bound can be substantial if there is chained blocking [SRL90]. Chained
blocking refers to the situation in which a high priority activity is blocked by multiple
activities with lower priorities.

The previous example illustrates direct blocking [SRL9I0]. The basic priority inher-
itance protocol must also contend with transitive, or push-through [SRL90], blocking.
Consider the following example which involves an object O with two locks Ly and L,

that do not conflict with each other but do conflict with themselves.

1. Ay gets lock Ly on O.

2. Ay preempts Aj.

3. Aj gets lock Ly on O and tries to get lock Ly on O but is blocked by Aj.

4. Ay’s priority is raised to that of A,.

5. A resumes execution.

6. As preempts A;.

7. Aj tries to get lock Ly on O but is blocked by Aj,.

14



8. Ay’s priority is raised to that of As.

9. A; resumes execution at Ay’s priority, not As’s.

In this example, A3 is indirectly blocked by Ay, but A;’s priority is not raised
to that of As. This is transitive blocking. To handle this situation, whenever an
activity’s priority is raised due to priority inheritance, all activities that are currently
blocking it must also be raised. This is referred to as transitive priority inheritance.
In this example, when Aj’s priority is raised to that of Az, Ay’s priority must also be
raised to that of As.

Transitive blocking can also occur in the following way.

1. Ay gets a lock L on object O.

2. Aj starts activity A,, and A; suspends until A, completes.

3. As preempts As.

4. As tries to get lock L but is blocked by Aj.

5. Ay’s priority is raised to that of As.

6. As resumes execution at its original priority, not As’s.

In this example, Az is indirectly blocked by Aj, but Aj’s priority is not raised to that
of As. Both A; and A; should undergo priority inheritance since A; cannot release

the lock until A, finishes.
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2.5 Deadlock

Basic priority inheritance does not intrinsically prevent deadlock. Therefore, some
additional mechanism is needed. Deadlock can occur if and only if all of the following

four conditions are present in the system:

1. Mutual exclusion.

2. Hold and wait (situation in which an activity holds a lock while waiting to

obtain another lock).

3. No preemption of locks (i.e., only the activity that holds a lock can release it).

4. Circular wait (e.g., activity A; holds a lock activity A needs to continue exe-

cution, but A, holds a lock which Ay needs to continue execution).

To prevent deadlock, one of these four conditions must be eliminated. Mutual
exclusion and no preemption are needed to maintain consistent resources and therefore
cannot be eliminated. Hold and wait can be eliminated by forcing an activity to obtain
all of the locks it needs before it begins execution. However, this reduces the amount
of concurrency in the system and can lead to starvation since an activity may wait
indefinitely for a lock before it can start execution. Eliminating circular wait is the
last option. This can be done by forcing an ordering of locks. This requires that
all activities obtain locks in the same order. The issue then becomes how to order
the locks such that the amount of concurrent access is maximized. This issue is not

addressed by this project.
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2.6 Priority Ceiling Protocols

Priority ceiling protocols [SRLI0] differ from the basic priority inheritance protocol
in that they bound priority inversion to at most one critical section locked by a lower
priority activity. This eliminates the problem of chained blocking. These protocols
also implicitly prevent deadlock and transitive blocking. Therefore, they perform
better than basic priority inheritance which cannot provide such a low bound, nor
can 1t implicitly prevent deadlock or transitive blocking. However, as will be seen,
there is a loss of flexibility when using priority ceiling protocols. Below are the three

basic steps needed by the priority ceiling protocol:

1. The protocol first determines the priority ceiling for each lock. The priority
ceiling is the priority of the highest priority activity that will access the lock.

This must be done off-line.

2. When an activity requests a lock, it is granted the lock only if its priority is

higher than the priority ceilings of all locks currently held by other activities.

3. If an activity Ay cannot obtain a lock because its priority is lower than or equal
to the priority ceiling of a lock held by activity A; (a lower priority activity),

then A;’s priority is raised to that of A, until A; releases the lock blocking As.

Priority ceiling protocols are less dynamic than the basic priority inheritance pro-
tocol since they must determine the priority ceilings for each lock before the locks can
be used. Since these calculations rely on knowing the priorities of all activities that

may request the locks, dynamic workloads are not possible.
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2.6.1 Distributed Priority Ceiling Protocol

Work presented in [Raj91] demonstrates how a priority ceiling protocol can be used
to bound priority inversion in a distributed environment. This method is called the
Distributed Priority Ceiling Protocol (DPCP).

As previously mentioned, priority inversion occurs when a real-time activity is
blocked by a lower-priority real-time activity. In a distributed environment, there
is the additional concept of remote blocking. In this context, remote will be used
to refer to an activity or resource that is on a processor other than the local one.
Remote blocking occurs when a real-time activity that is trying to access a remote
shared resource is blocked by a remote real-time activity, regardless of the remote
activity’s priority. This includes blocking caused by activities with equal or higher
priorities. The justification for being concerned with the blocking time caused by a
remote activity of equal or higher priority is that such blocking would not occur if
there were no shared resources (i.e., remote blocking does not occur when there are
no shared resources).

The DPCP assumes that binary semaphores are used for synchronization. A
semaphore that is accessed by remote activities is called a global semaphore, and
the critical section it protects is called a global critical section. There are also local
semaphores (semaphores that are only accessed by activities on the same processor)
and local critical sections. The DPCP assumes that global critical sections do not
make nested accesses to local semaphores or to other global semaphores on other

processors. Local critical sections likewise do not make nested accesses to global

18



semaphores. The DPCP also introduces the idea of synchronization processors, which
are processors that execute global critical sections. This protocol requires that all
global critical sections guarded by the same global semaphore are bound to the same
synchronization processor.

In the DPCP, the priority ceiling of a local semaphore is the priority of the highest-
priority activity that can access it. The priority ceiling of a global semaphore is
found by summing the priority of the highest-priority activity that can access it with
the base priority ceiling, a priority which is higher than the priority of the highest-
priority activity in the entire distributed system. This forces the priority ceilings of
all global semaphores to be higher than the priority of the highest-priority activity in
the distributed system while maintaining the same relative priority ordering between
all global semaphores. This means that global critical sections are executed at a
higher priority than all tasks outside critical sections. This is required in order for
the remote blocking time of an activity in a global critical section to be a function of

critical sections only.

2.6.2 Comments About Priority Ceiling Protocols

Although priority ceiling protocols do provide bounds on priority inversion, prevent
deadlock and transitive blocking, they are not equipped to handle dynamic workloads.
They require a priori information about the priorities of the activities that will run
in order to compute priority ceilings. The basic priority inheritance protocol can not

bound priority inversion as low as priority ceiling protocols, but it does not require the
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a priori information about activity priorities. This is important for the RTCORBA

project which needs to support dynamic workloads.

2.7 Programmable Concurrency Control Service

One related effort to extend CORBA’s CCS for use in real-time systems is the Pro-
grammable Concurrency Control Service (PCCS) presented in [BG96]. This work
attempts improve upon the real-time performance of the standard CCS by increas-
ing the amount of concurrent access that can take place. This is done by replacing
the object-level read/write locking that is specified in CORBA with user-specified
method-level locking. The compatibility semantics of these locks can be defined by
the programmer, allowing the programmer to provide a finer locking granularity than
read /write locking. This functionality is implemented in the form of a LockTable ob-
ject. Methods on the LockTable’s interface allow the programmer to explicitly specify
the compatibilities between locks. In this way, the generic semantics of the CCS
LockSet can be replaced with semantics that allow for more concurrent access.

For example, suppose a shared resource has two attributes, speed and heading. In
addition, suppose it has two methods on its interface, write_speed and write_heading,
for writing to these attributes. Let A; be an activity that wishes to call the write_speed
method and Ay be an activity that wishes to call the write_heading method. Since
the two methods do not access the same attribute, there would not be any conflict if
they ran concurrently. However, if the standard CORBA CCS is used, these method

invocations of A; and A, cannot execute concurrently since only one can hold a write
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lock on the resource at a time.

The benefits of using the PCCS are effectively the same as using one CCS LockSet
for each attribute in the resource and one for the entire resource. The intention_write
and intention_read locks ensure that reducing the locking granularity to the attribute
level will not lead to inconsistencies in the resource as a whole. However, the PCCS
does have the advantage that only one LockSet is needed per resource. In terms of its
real-time performance, the PCCS is not adequate. In its current form, the PCCS does
not address the issues of unbounded priority inversion or deadlock. It is real-time in

the sense of being faster than the standard CCS, not more predictable.
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Chapter 3

Design of the RTCCS

This chapter presents the design issues of the RTCCS. The first section briefly ad-
dresses the desirability of priority inheritance in CORBA/RT as expressed by the
CORBA RT SIG. The second section outlines the design decisions made by the

RTCORBA group during the development of the RTCCS.

3.1 Priority Inheritance in CORBA /RT

Although the CCS provides a good starting framework for concurrency control in
DOCEs, it is not sufficient for real-time systems. For example, since read/write
locking is used to maintain the consistency of a resource, clients of the resource may
be suspended if their requests conflict with other clients currently using the resource.
This situation can lead to unbounded priority inversion. In order to be useful for
real-time applications, the CCS must be extended such that it can bound priority

inversion.
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Previous approaches to extending the real-time capabilities of the CCS have not
taken this problem into account. For example, the implementation presented in
[BGI6] increases the amount of concurrent access to a resource by replacing the stan-
dard object-level locking with method-level locking. However, it does not address the
issue of priority inversion. [RTSIG96] specifies that priority inheritance should be

used for any resource access which can lead to unbounded priority inversion.

3.2 Real-Time Concurrency Control Service

The solution to the priority inversion problem for the RTCORBA project was to ex-
tend the standard CCS by implementing basic priority inheritance within the LockSet
object. When a client requests a lock on a resource, its priority is compared to those
of all clients holding conflicting locks on that resource. For all clients that hold con-
flicting locks and have lower priorities than that of the requesting client, the RTCCS
raises their priorities (and the priorities of any clients that may be blocking them) to
the requesting client’s priority. The requesting client is then suspended.

Whenever a lock is released, the releasing client resets its priority to that of the
highest priority client it still blocks (this is possible since clients can hold several
types of locks simultaneously). If it no longer blocks any higher priority clients, the
releasing client is reset to its original priority. Finally, the highest priority blocked

client that can now get its lock is allowed to obtain the lock and continue execution.
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3.2.1 Implicit and Explicit Locking

When using the CCS, two forms of locking are possible: implicit locking and explicit
locking. Tmplicit locking is done within the methods on the resource’s interface. For
example, any method that writes to the resource’s data must obtain a write lock
from the appropriate LockSet object first. This requires that the calls to the LockSet
methods be made in the implementation of the resource’s methods. This simplifies the
usage of the resource since client objects do not need to know the locking semantics of
the resource. However, there is a loss of flexibility when using purely implicit locking.
For example, if a client wishes for a block of method calls to be protected by the
same lock, implicit locking is insufficient. Explicit locking provides more flexibility
since 1t allows the client that is using the resource to request and release locks when
needed. This is done by explicitly obtaining the necessary locks from the appropriate
LockSet object. However, this requires that the client knows which LockSet to use.
More importantly, the client must have knowledge of the locking semantics for the
resource being accessed (i.e., the client must know which locks are required for each
method on the resource’s interface). Aside from the burden this places on the client,
breaking the encapsulation of the resource is not desirable from an object-oriented

design perspective.

3.2.2 Transitive Priority Inheritance

Another issue that must be addressed is that of transitive blocking (see Chapter

2). The two forms of transitive blocking involve a high priority activity As that is
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indirectly blocked by a lower priority activity A, that is either:

1. holding a lock that is blocking activity Ay, the activity that is directly blocking

activity As

2. running under a lock held by A;.

In either case, a transitive blocking chain is formed in which an activity (e.g., As)
is indirectly blocked by another activity further down the chain (e.g., A;). Note that
this is not the same as chained blocking in which an activity is blocked by multiple
activities. The difficulty with transitive priority inheritance is the fact that these
blocking chains can become arbitrarily long, especially when activities are allowed
to lock multiple resources. This can require a great deal of overhead in terms of
data structures and CPU time. Therefore, this implementation of the RTCCS was

designed with the following limitations:

1. No “child” activities can be created under a lock.

2. An activity can only hold locks on one resource at a time.

The first restriction disallows explicit locking in the sense that only code local to the
activity that holds the lock can run while the lock is held. The second restriction is a
special case of the first restriction since obtaining additional locks after the initial one
would constitute starting “child” activities under the initial lock. The only transitive
blocking that is allowed in this project is that which occurs within a LockSet. That

is, blocking chains are allowed to form as long as all of the clients in the chain are
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clients of the same LockSet object and do not start any “child” activities while they

hold locks.

3.2.3 Design Detalils

Before discussing the design of the RTCCS, a brief description of the RTCORBA
project as a whole would be beneficial to the reader. The URI RTCORBA project is

researching the following four topics as they relate to CORBA:

e Real-time method invocations
o Real-time events
o Global priority assignment

e Priority inheritance

Real-Time Method Invocations

In a DOCE, all server executions are initiated by method invocations made by clients.
In a real-time application, a client must be able to specify timing constraints on
method invocations. The CORBA/RT white paper specifies that timing information
should be made available to the ORB, object services, and server implementations.
There are five forms of client-side timing constraints that must be expressible: dead-
lines, earliest start times, latest start times, periodic, and quality of service (QoS)
constraints.

In order to provide this capability, the URI RTCORBA group has defined a new
structure in IDL called RT_FEnvironment. This data structure is used to pass a vari-
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ety of information from clients to servers during timed distributed method invocations
(TDMIs). This includes time constraints, importance information, and an identi-
fication tag specifying the identity of the client (includes thread ID, process ID,
and [P address). The RTCORBA work presented in [DGSWWZ97] and [Zykh97]
provides additional functionality for TDMIs. This includes the RT_Manager_Server
and RT_Manager_Client classes which provide the framework upon which the TDMIs
are structured. These classes are integral to the design and implementation of the

RTCCS.

Real-Time Events

Events may occur in a DOCE (e.g., radar contact made with an airplane), and a
distinct set of clients in the DOCE may be interested in the event. In a real-time
environment, these clients may need to know the absolute time that an event occurred
so that time-constrained responses can be made (e.g., within 1 second of detecting
airplane, update controller’s display). To this end, [RTSIG96] specifies that the real-
time CORBA FEvent Service must provide the ability for CORBA clients and servers

to determine the absolute time when an event has occurred.

Global Priority Assignment

One way to provide distributed real-time scheduling is through the enforcement of
global priority. Global priority can be represented as an ordinal quantity that is
attached to every method invocation and is interpreted in a homogeneous fashion

by the schedulers and queues throughout the CORBA system. That is, if method
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invocation A has a higher global priority value than method invocation B, method
invocation A should always be serviced first.

Enforcement of global priority requires the use of real-time schedulers and priority-
based queues throughout the distributed system. A real-time scheduler typically
strives to execute the highest priority task first and a priority queue typically places
the highest task at its head. If these conditions are violated anywhere in the path of
a real-time method invocation, unbounded priority inversion may occur and no guar-
antees can be made about the real-time behavior of any of the components involved.
[RTSIG96] calls for a Global Priority Service that is available to establish priorities
for all executions in the entire distributed CORBA system.

The RTCORBA project makes use of a Pserver (priority server) running on each
node in the RTCORBA system. All real-time processes and threads, including those
required by the RTCCS, register with the local Pserver, are assigned priorities based
on their timing constraints, and are “aged” as new real-time activities enter the system
[DGSWWZ97]. “Aging” the priorities of the activities is needed in order to maintain
the correct relative ordering of the activities.

The RTCCS depends on the services of the Pserver to obtain priority information
about activities and to request that the priorities of activities be changed. This
functionality is needed in order to implement priority inheritance. The manner in

which this is done will be explored in Chapter 4.
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module CosConcurrencyControl {

enum lock_mode {
read, write, upgrade, intention_read, intention_write

¥
exception LockNotHeld{};

interface LockSet {
void lock(in lock_mode mode);
boolean try_lock(in lock_mode mode);
void unlock(in lock_mode mode) ;
raises(LockNotHeld) ;
void change_mode(in lock_mode held_mode, in lock_mode new_mode);
raises(LockNotHeld) ;

Figure 3.1: Subset of CORBA Concurrency Control Service (CCS) IDL

Design of the RTCCS

The design phase for the RTCCS entailed specifying how the CCS was to be imple-
mented and extended to support priority inheritance. Figure 3.1 is the subset of the
CCS (shown here in its IDL format as found in [OMG96]) that was implemented and
extended.

One of the goals during the development of the RTCCS was to ensure that the
interface to the CCS was changed as little as possible. This was to ensure that the new
RTCCS could be easily incorporated into existing applications that use the standard
CCS. The only change to the standard interface is that a RT_Environment is passed

into each TDMI. This parameter contains information about the time constraints of
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#include "rt_info.1d1l"

module CosConcurrencyControl {

enum lock_mode {
read, write, upgrade, intention_read, intention_write

¥
exception LockNotHeld{};

interface LockSet {
void lock(in lock_mode mode, in RT_Environment rt_env);
raises(RT_Exception);
boolean try_lock(in lock_mode mode, in RT_Environment rt_env);
raises(RT_Exception);

void unlock(in lock_mode mode, in RT_Environment rt_env);
raises(LockNotHeld, RT_Exception);
void change_mode(in lock_mode held_mode, in lock_mode new_mode,

in RT_Environment rt_env);
raises(LockNotHeld, RT_Exception);

Figure 3.2: Real-Time Concurrency Control Service (RTCCS) IDL

the locking client. As will be seen in Chapter 4, this information is needed by the
LockSet to determine when priority inheritance is needed. In addition, each method
can raise a RT _Exception exception. This exception is used to indicate that a timing
constraint has been violated during the TDMI. The revised IDL for the RTCCS is
shown in Figure 3.2.

The design of the RTCCS makes use of several simplifying restrictions:

1. Only implicit locking is allowed.

2. A client can only obtain locks on one LockSet at a time.
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3. A client cannot start “child” activities while the client holds a lock.
4. Locks must be ordered.

The first restriction requires that only the methods on a resource’s interface be allowed
to request locks from the resource’s LockSet. The next two restrictions prevent all
transitive blocking except that which arises between clients of the same LockSet.

Finally, the last restriction supports the prevention of deadlock.

3.3 Summary of RTCCS Design

Although the DPCP bounds priority inversion, prevents transitive blocking, and pre-
vents deadlock, this protocol requires foreknowledge about the activities that will be
running on the system. In dynamic environments in which this information is not
available until runtime, priority ceiling protocols are inappropriate. The PCCS at-
tempts to improve real-time performance by using method-level locking rather than
object-level locking. This may increase the amount of concurrent access, but it does
not address the problems of priority inversion and deadlock.

The RTCCS for this project makes use of basic priority inheritance to bound pri-
ority inversion that arises during TDMIs in the RTCORBA environment. Support for
priority inheritance relies on the global priority assignment and enforcement mech-
anism that have been developed for the RTCORBA project. Timing information
passed to the RTCCS by the TDMIs enables the RTCCS to determine when priority

inheritance needs to be done.
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Basic priority inheritance does not prevent deadlock or transitive blocking. Dead-
lock is prevented by ordering locks. In order to manage transitive blocking, some form
of transitive priority inheritance is needed unless certain restrictions are made. This
is a desired capability in [RTSIG96]. However, this implementation of the RTCCS
does not provide full support for transitive priority inheritance due to the complex
nature of the problem. Instead, it implements priority inheritance among activities

accessing the same shared resource.
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Chapter 4

Implementation of the RTCCS

This chapter presents the implementation of the RTCCS that has been incorporated
into the RTCORBA project. The first section describes the implementation of the
RTCCS and the underlying configuration of the development environment. The sec-

ond section presents an example of how the RTCCS is used.

4.1 RTCCS Implementation

Implementing the RTCCS consisted of first coding the subset of the CORBA CCS
as specified in Chapter 3. This involved defining the IDL interface for the RTCCS
(see Figure 3.2) and coding the implementation of its methods in C++. Support for
priority inheritance was then added. The remainder of this section addresses how this

support was integrated into the CCS.
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4.1.1 LockSet Data Structures

Each LockSet object maintains information about the clients interacting with it.
When a request for a lock is received, the LockSet uses this information to determine
if the lock can be granted (i.e., there is no conflict with granted locks) or, in the case
where there is a conflict, whether or not priority inheritance is needed.

The implementation of the RTCCS LockSet object maintains a linked list of clients
(client List) that are either requesting locks or are holding locks. For each client, the

list maintains the following information:

o The client’s original RT_Environment.

o The RT_FEnvironment of the active LockSet thread, if any, that is associated

with the client.

o lockList, a list of locks currently held by or requested by the client. Each item
in this list includes the lock type, if it is granted or still only requested, and a

count of the number of locks of that type granted to the client.

o blockedClients, a list of clients currently blocked by this client. Each item
in this list includes a pointer to the blocked client’s node in the LockSet’s
client List, the RT_Environment of the blocked client, and the type of lock this

client is blocking with.

o blockingClients, a list of clients that are currently blocking this client. Each

item in this list include a pointer to the blocking client’s node in the LockSet’s
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client List, the RT_Environment of the blocked client, and the type of lock this

client is blocked by.

Note that client Cy blocks client (5 if and only if ] holds a lock that conflicts
with C3’s request and C4’s priority is less than that of C5. In a similar manner, C} is
blocked by 7 if and only if (' holds a lock that conflicts with C5’s request and Cy’s
priority is less than that of Cj.

Each client in the list has a unique thread ID, process 1D, and IP address. This
information is recorded in the RT_FEnvironment that is stored with each entry in
client List. Therefore, the RT_FEnvironment can be used to search clientLuist for a
particular client. In addition, it is used by the RTCCS to obtain the priorities of
activities from the local Pserver to test for priority inversion during lock requests.
The RT_Environment for the active LockSet thread is needed in order to changed
the priority of the thread if priority inheritance is required. For example, if a client
that is suspended in a lock thread blocks a higher priority client, the lock thread
must also undergo priority inheritance.

The information in the lockList is used to detect locking conflicts whenever any
client requests a lock. The counts maintained for each lock type are used to determine
when a client is no longer interacting with the LockSet (allowing the LockSet to
remove the client from its client List).

The information stored in blockedClients is needed in order to restore the priority
of a client that had undergone priority inheritance when it releases a lock. When a

client releases a lock, it must reset its priority to that of the highest priority client
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it still blocks. If blockedClients is empty, the client’s priority is reset to its original
value. The pointer that is maintained in each node is used to identify and remove the
corresponding blockingClients entry in a blocked client whenever the blocking client
releases a lock.

The list blockingClients is needed for the situation in which transitive blocking
occurs. Recall that transitive blocking is allowed to take place as long as it is contained
among the clients interacting with the same LockSet. If a client Cy holds a lock that
blocks a higher priority client Cy, but C; is blocked by other clients (those in its
blockingClients), the priorities of Cy and the clients in its blockingList have to be
raised to that of C'y. This is a recursive process in the sense that the clients blocking
the clients in Cy’s blockingClients list are also raised. This continues until all blocking
clients, whether they directly or indirectly block C5, are raised to C’s priority.

The pointer maintained in each node of blockingC'lients is needed in case a blocked
activity violates a timing constraint while it is blocked. If this occurs, the activity
releases any locks it may hold. The pointers in blockingClients can be used to identify

and remove the corresponding blockedC'lients entries in the blocking clients.

4.1.2 Synchronization Constructs

Each LockSet object uses a mutex to control access to clientList. In addition, each
LockSet uses a condition variable to synchronize clients as they request locks. This

will be illustrated in the next subsection.
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4.1.3 Implementation of LockSet Methods

The RTCORBA project makes use of multithreaded servers to allow the servers to
manage multiple client requests at once. A typical server process contains one shared
resource (e.g., a tracking database) and a LockSet object that provides concurrency
control for the resource. Another scenario has the LockSet and resource located in
separate server processes. The methods on a resource’s interface are responsible for
obtaining whichever locks they require to maintain the resource in a consistent state.
If a client invokes a method on the resource’s interface (e.g., get_speed_of _plane), the
implementation of the resource’s method is responsible for invoking the appropriate
method on the LockSet interface (e.g., get_speed_of plane gets a read lock). There-
fore, while the resource has clients of its own and acts as a “server”, the resource acts

as a “client” of a LockSet object.

The [ock Method

When a resource method requires a lock, the thread that is executing the resource
method request invokes the lock method on the LockSet that is managing access to

the resource’s shared data. The [ock method performs the following steps:

1. Register the lock thread with the local Pserver (sets priority) and start timer
(start of real-time invocation with deadline specified in RT_Environment pa-

rameter).
2. Start an atomic code block (explained below).

3. Lock the LockSet’s mutex.
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4. If the calling client is not in clientList, add it to clientList.

5. If the calling client holds the requested lock, increment its count for that lock,

else:

(a) Add an entry to the client’s lockList indicating that the specified lock has

been requested.

(b) While there is a conflict (make call to lockC'on flict), wait on the LockSet’s
condition variable. Each time the thread is awakened, it must call lock-
Conflict to determine if it can proceed or if it must wait on the condition

variable again.
(¢) Increment the client’s lock count for the requested lock and set its status
to granted.

6. Unlock the LockSet’s mutex.

7. End the atomic block.

8. Turn off the timer and deregister the lock thread from the local Pserver.

If the deadline is missed during the lock method invocation, the lock thread is
deregistered from the Pserver and a RT_Fxception is thrown to the calling client.
The implementation of the try_lock method differs from that of the lock in that a call
to try_lock only tries to obtain the lock once (i.e., it does not wait on the condition

variable and no priority inheritance is done). If the lock can be granted, try_lock

returns with a value of TRUE. Otherwise, it returns FALSE.
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The atomic block is used to block signals during critical sections. When a deadline
is missed in the RTCORBA environment, a signal is raised by the timer in the thread
that missed the deadline. If the signal arrives while the thread is in a critical section
(e.g., holding a lock on a mutex), steps must be taken to ensure that the thread leaves
whatever shared data it is accessing in a consistent state. In the case of the LockSet
object, this situation can arise during invocations of any of its four methods. Methods
in the RT_Manager_Server class allow the thread to block the processing of signals
during these critical sections [Zykh97]. The signals must also be blocked because of
a problem in Orbix 2.0.1MT, the commercial CORBA product on which this project
was developed. If an exception (e.g., RT _Exception) is thrown in a thread or process
that is making a CORBA call, a run-time exception is raised and the program exits.
The workaround for this requires that CORBA calls in a real-time activity be made
from inside atomic blocks.

The lock implementation uses a Boolean function called lockConflict, which is
passed the identity (i.e., a RT_Environment) of a client requesting a lock and the
type of lock it is requesting. The function returns TRUE if the requested lock can be
granted and FALSE if it cannot. The implementation of lockConflict is based on the
locking semantics specified in Table 2.1. This is a modular design, allowing a different
implementation of lockConflict to be inserted in place of the one implemented for this

project. The lockCon fict function performs the following steps:

1. For the specified lock, check if any other clients hold conflicting locks and do

priority inheritance if necessary. This is done by calling otherClientHoldsLock
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for each lock that can conflict with the requested lock.

2. Return TRUE if conflict exists. Otherwise, return FALSE.

The function lockConflict makes uses of a method on the interface of clientlList
called otherClientHoldsLock. The otherClientHoldsLock method performs the follow-

ing steps:

1. For each client (excluding the requesting client) that holds a conflicting lock,
if the client’s current or original priority is lower than that of the requesting

client, then:

(a) Raise the priorities of the blocking client and all clients blocking it to the
requesting client’s priority if the blocking client’s current priority is lower
than that of the requesting client. This includes raising the priority of any

LockSet threads in which the blocking clients may be suspended.
(b) Add the blocking client to the requesting client’s blockingClients list.

(c) Add the requesting client to the blocking client’s blockedClients list.

2. If another client holds the specified lock, return TRUE. Otherwise, return

FALSE.

The requesting client’s priority is compared to the blocking client’s original priority
in the event that the blocking client has a higher inherited priority but is suspended
(i.e., since it is suspended, clients with lower priorities can run). By comparing the
requesting client’s priority with the blocking client’s original priority, the necessary
entries can be added to the appropriate blockingClients and blockedC'lients lists.
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This ensures that the blocking client’s priority is not reset to its original value if,
when it releases the lock that forced its priority inheritance, it still holds a lock that
blocks the requesting client.

If a resource method invocation that is holding locks on a LockSet object misses
its deadline, the RTCCS must ensure that all of the locks are released. This is done
by calling the cleanup method in the lockSetManager class. Each resource method
that can possibly acquire locks on a LockSet object directly must instantiate an
instance of a lockSetManager object. This class acts as the resource’s interface to
the LockSet (i.e., the resource does not directly invoke the LockSet’s methods).
One of the goals of this research project was to remain as CORBA compliant as
possible. In its current form, the specification for the CORBA CCS LockSet interface
does not include a method that allows a client to release all of its locks. Therefore,
the lockSetManager class was created to act as an intermediary between a client
and the LockSet object. The lockSetManager class interface is an extended form of
that specified for the LockSet object. In addition to the usual methods (i.e., lock,
unlock, try_lock, change_mode), the lockSetManager has a cleanup method. As locks
are obtained and released by a client, its lockSetManager object (one for each LockSet
object it interacts with) maintains counts of the types of locks currently held by the
client. The cleanup method simply uses this information to release all locks the client

holds.
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The unlock Method

When a resource method that obtained a lock no longer needs the lock, the thread that
is executing the method invokes the unlock method on the LockSet that is managing

access to the resource’s shared data. The unlock method performs the following steps:

1. Register the unlock thread with the local Pserver (sets priority) and start timer
(start of real-time invocation). This is done only if this call to unlock is not

made from lockSetManager::cleanup (see note below).

2. Start an atomic code block (prevents processing of signals). This is done only

if this call to unlock is not made from lockSetManager::cleanup.

3. Lock the LockSet’s mutex.

4. If the calling client is not in clientList, then:

(a) Unlock the LockSet’s mutex.

(b) End the atomic block and deregister the unlock thread. This is done only

if this call to unlock is not made from lockSetManager::cleanup.

(¢) Throw a LockNotHeld exception to the calling client.

5. If the calling client does not hold the specified lock, then:

(a) Unlock the LockSet’s mutex.

(b) End the atomic block and deregister the unlock thread. This is done only
if this call to unlock is not made from lockSetManager::cleanup.
(¢) Throw a LockNotHeld exception to the calling client.
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6. Decrement the appropriate lock count.

7. If this lock count is now zero, then:

(a) Remove the lock from the calling client’s lockList.

(b) Update the calling client’s blockedClients list by removing all clients that

the calling client no longer blocks.

(c) Restore the priority of the calling client to the priority of the highest
priority client still blocked by this client, or reset to original priority if no
clients are blocked. Currently, this step is done even if this client’s priority

was never changed.
(d) If the calling client no longer holds any locks, remove it from elient List.

(e) Send a broadcast signal to the LockSet’s condition variable (allows waiting

clients to obtain mutex in priority order and attempt to get their locks).

&. Unlock the LockSet’s mutex.

9. End the atomic block. This is done only if this call to unlock is not made from

lockSetManager::cleanup.

10. Turn off the timer and deregister the unlock thread from the local Pserver. This

is done only if this call to unlock is not made from lockSetManager::cleanup.

If the deadline is missed during the unlock method invocation, the unlock thread
is deregistered from the Pserver and a RT_FException is thrown to calling to the client.

This is done only if this call to unlock is not made from lockSetManager::cleanup.
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Calls to unlock that are made from cleanup are not assigned priorities based on
time constraints. This is because the call to cleanup is made as a result of violating a
constraint. Therefore, calls to cleanup are executed at the maximum system priority.
This ensures that locks held by the client that violated a constraint are released as
quickly as possible. Since the calls to unlock made by cleanup do not interact with
the Pserver, there is no need to register them with the Pserver. In addition, since
these calls do not use timers, there is no need for atomic blocks.

Finally, the implementation of the change_mode method simply tries to unlock
the specified lock using the unlock method. It then uses the lock method to obtain
the new lock. Any exceptions raised during these two operations are passed onto the

calling client.

4.2 Operating System’s Relation to RTCORBA

This project was developed and tested on two Sun SPARCstations on an isolated LAN
running Solaris 2.5 and IONA Technologies Orbix 2.0.1MT, a commercial CORBA
2.0 compliant DOCE. Solaris 2.5 is a POSIX [Gal95] compliant operating system,
meeting the requirements of POSIX.1, POSIX.4, and POSIX.4a [Sun95]. Although
it has support for real-time scheduling of threads, it does not provide priority-based
scheduling for mutexes or any form of priority inheritance for mutex queues. This in-
troduces a source of unbounded priority inversion in the case of the LockSet methods
since they lock a mutex. One workaround to this problem is to raise the priority of

any thread that tries to lock the mutex to the system maximum. This eliminates the
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priority inversion caused by the mutex, but it bypasses the sense of consistent global
priority that RTCORBA tries to enforce (e.g., a low priority client that requests a lock
should not be scheduled at a high priority unless priority inversion is first detected).
Currently, this version of the RTCCS does not make use of this workaround.

The condition variable used by the LockSet provides better support for priority-
based scheduling. When the the condition variable receives a broadcast signal, all
threads blocked on the condition are awakened. They are then scheduled according
to the current scheduling policy as they attempt to lock the mutex. In this project,
this means that the highest priority thread will get the mutex first. The remaining
threads will likewise obtain the mutex in descending order of priority. The order in

which threads within the same priority level obtain the mutex is undetermined.

4.3 The RTCCS Mechanism by Example

This section presents an example of how the LockSet is incorporated into a resource.

Below is the IDL specification for a tracking database object.

#include "rt_info.1d1l"
interface track_db {
void set(in long track_id, in track_record t,
in RT_Environment rt_env);

track_record get(in long track_id, in RT_Environment rt_env);
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This object stores tracking information (e.g., speed and heading) for objects (e.g.,
airplanes). It has two methods, set and get, that allow clients to access the data it
stores. The method set is passed a track 1D, a new tracking record to insert, and a
RT _Environment parameter which contains the timing constraints for the method
invocation. The get method is passed the track ID of the record to retrieve and a
RT _Environment parameter, and it returns the appropriate tracking record.

The C++ implementation for the set method is given below. It illustrates how the

calls to lock, unlock, and cleanup are incorporated into the method’s implementation.

void track_db_i::set(CORBA::Long track_id, track_record t,
const RT_Environment& rt_env,
CORBA: :Environment &) {

(1) RT_Manager_Server rt_mgr(rt_env);

RT_Environment local_rt_env = rt_mgr.Get_RT_Env();

try {
(2) rt_mgr.START_RTQ) ;
(3) rt_mgr.Start_Atomic_CORBA_Call();
(4) lock_set.lock(CosConcurrencyControl: :write, local_rt_env);
(5) rt_mgr.End_Atomic_CORBA_Call();
(6) // CODE FOR SETTING RECORD

rt_mgr.Start_Atomic_CORBA_Call();
&) lock_set.unlock(CosConcurrencyControl: :write, local_rt_env);

rt_mgr.End_Atomic_CORBA_Call();
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(8) rt_mgr.END_RT() ;

} catch (const RT_Exception &rtEx) {}
(9) rt_mgr.STOP();

(10) lock_set.cleanup(local_rt_env);

} catch(const CosConcurrencyControl: :LockNotHeld) {
rt_mgr.STOP();

lock_set.cleanup(local_rt_env);

} catch (CORBA::SystemException &sysEx) {}

exit(1);

} catch(...) {

exit(1);

At step 1, the RT_Manager_Server for this thread is initialized based on the time
constraints of the calling client [Zykh97]. At step 2, the real-time method invocation
starts (i.e., the thread is registered with the local Pserver and the timer for the
invocation is started). The atomic block that prevents signals from being delivered

during the lock call is started at step 3 and ends at step 5. Note that lock_set (at
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step 4) is an instance of lockSet Manager. It provides this thread with an interface
to the appropriate LockSet (this information is initialized in the constructor for the
track_db_i object). Step 6 represents the code that sets the specified record in the
database. The call to unlock at step 7 is protected by an atomic block. Finally,
at step 8, the timer for the thread is stopped and the method invocation ends. If
a RT_Fxception or LockNotHeld exception is raised during the execution of the
method, the thread is deregistered from the local Pserver (step 9) and the cleanup

method is called to release all locks held by this thread (step 10).
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Chapter 5

Evaluation

This chapter presents a description of the testing procedure for this report. The
testbed that was used is described in Section 1. A review of the the tests which
were executed is given in Section 2. The results of the testing are listed in Section 3.

Finally, an analysis of the results is presented in Section 4.

5.1 Testbed Construction

All testing for this report was conducted using two Sun Sparc workstations on an
isolated LAN. One workstation (a SPARCstation 5) acted as the server node and
ran three CORBA servers. The first server managed access to a shared resource
that implemented a two-dimensional grid of integers. The interface for this server
consisted of a method for writing to and reading from the grid. The second server
managed the LockSet object that the grid server used for concurrency control. The

third server was the node’s local Pserver. The second workstation (a SPARCstation
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[PX) was a client node which managed the client activities that interacted with the

grid server. The client node also ran its own local Pserver.

5.1.1 Tests for Correctness

The first set of tests were designed to demonstrate the correctness of the implemen-
tation of priority inheritance in the RTCCS. These tests involved two or three clients
running concurrently. Simple priority inheritance, transitive priority inheritance, and
the performance of the cleanup method were tested. The test data for these tests was
collected using an array of structures defined in the LockSet. Access to this array
was protected by the LockSet’s mutex. Fach structure in the array recorded the ID
of the grid server thread that was invoking the LockSet method, the current priority
of that thread, the name of the method being invoked (e.g., lock), and an identifier
of the point in the method at which the record was made (e.g., after priority was
updated during a call to unlock). In this way, a timeline of the changes to the client
priorities and the order in which locks were obtained and released was constructed.
The contents of the array were displayed to the workstation screen once each test

completed.

5.1.2 Execution Overhead

A number of tests were run in order to quantify the execution time of the RTCCS
methods. In particular, the overhead introduced by calls to lock and unlock were

measured. This involved running tests with the priority inheritance enabled and
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disabled. Testing was done with only one client (i.e., no lock contention) and with
two clients (i.e., lock contention). The test data for these tests was collected in
a manner similar to that used for the correctness tests. An array in the LockSet
recorded the ID’s of the invoking grid server thread, the name of the invoked method,
and the start and end times of the specific segments of the method. This set of tests
required that the priority inheritance mechanism be disabled for certain tests. This

was done by commenting out the relevant code segments. This included the following:

e The code in otherClientHoldsLock that compares/changes priorities.

o The code in otherClientHoldsLock that updates the blockingClients and blocked-

Clients lists.

e The code in unlock that updates a client’s blockedClients list when a lock is

released.

e The code in unlock that updates a client’s priority after it releases a lock.

5.2 Test Details

5.2.1 Tests for Correctness

Several tests were done to verify that the priority inheritance mechanism functions

as expected. These tests included the following:

1. Test for priority inheritance between two clients.

2. Test for priority inheritance between three clients.
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3. Test for transitive priority inheritance between three clients.

4. Test that priority inheritance takes place when locking clients are suspended

(e.g., waiting on a condition variable).

5. Test that locks are released when a time constraint is violated.

This testing took place in the RTCORBA environment with priority inheritance en-
abled.

Test 1 involved running two clients such that the low priority client blocked a high
priority client. This was done by forcing the low priority client to obtain and hold a
write lock on the grid server. The high priority client then requested a write lock.

Test 2 involved running three clients (with three different priorities) which re-
quested write locks on the grid server. This was done such that the following sequence

of steps took place:

1. The low priority client requested and obtained the lock.

2. The medium priority client requested lock but was blocked by the low priority

client.

3. The high priority client requested lock but was blocked by the low priority

client.

The Test 3 required three locks with the following characteristics:

e Lock L; that does not conflict with any other locks.

o Lock [, that conflicts with itself.
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o Lock L5 that conflicts with itself.

This was implemented by temporarily changing the locking semantics in the RTCCS.
Once these semantics were implemented, the test was run with the following sequence

of steps:

1. The low priority client requested and obtained both L; and L.

2. The medium priority client requested Lz and L,. It obtained L3 but was blocked

by the low priority client when it requested L.

3. The high priority client requested L3 but was blocked by the medium priority

client.

Test 4 involved the same set of locks specified for Test 3. This test involved the

following sequence of steps:

1. The low priority client requested and obtained L, and L3 and suspended itself

on a condition variable (defined within the grid server).

2. The high priority client requested L3 but was blocked by the low priority client.

3. The medium priority client requested Ly but was blocked by the low priority

client.

Test 5 was the same as Test 2 except the low priority client was forced to miss its

deadline while it held the lock.
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5.2.2 Execution Overhead

The first set of overhead tests involved running one client that invoked the method
on the grid server’s interface that writes to the grid. This method’s implementation
obtains a write lock on the corresponding LockSet object. The following average

execution times were measured:

Time for a lock operation with priority inheritance.

Time for a lock operation with no priority inheritance.

Time for an unlock operation with priority inheritance.

Time for an unlock operation with no priority inheritance.

Some additional time measurements for specific code segments in these methods were
measured (see results section for details). Note that these times were calculated
within the LockSet’s methods (e.g., difference between start time of lock method and
its end time).

The second set of tests involved running two clients concurrently. The lower
priority client was allowed to obtain a write lock. While it held the lock, the higher
priority client requested the write lock and was blocked. The low priority client then
released the lock, allowing the high priority client to obtain it. The following average

execution times were measured for both clients:

e Time for a lock operation with priority inheritance.

e Time for a [ock operation with no priority inheritance.
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e Time for an unlock operation with priority inheritance.

e Time for an unlock operation with no priority inheritance.

In the case of the high priority client, the time measurements taken in the lock
method did not include the time spent waiting on the LockSet’s condition variable.
Some additional time measurements for specific code segments in these methods were

measured (see results section for details).

5.3 Results

5.3.1 Correctness Tests

All five tests in this category were successful. Test 1 demonstrated that the low
priority client inherited the high client’s priority while it held the write lock. The
low priority client was reset to its original priority when it released the lock.

Test 2 demonstrated that the low priority client’s priority was first raised to
medium (when it blocked the medium priority client) and then to high (when it
blocked the high priority client). When the low priority client released the lock, its
priority was reset to its original value. The high priority client was then able to obtain
the lock. Once it released it, the medium priority client obtained the lock.

Test 3 demonstrated that the low priority client’s priority was raised to medium
when it blocked the medium priority client with L,. The medium priority client
was then raised to high when it blocked the high priority client with Ls. Transitive

priority inheritance then took place, and the low priority client, which was blocking
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the medium priority client, was raised to high. When the low priority client released
Lo, it was reset to its original priority value. When the medium priority client released
L3, it was reset to its original priority value.

Test 4 demonstrated that the medium priority client identified the low priority
client as a blocking client even though the low priority client had a higher inherited
priority. In this way, when the low priority client released Lz, its priority was reset to
that of the medium priority client, not its original priority. This was necessary since
the low priority client still held L, which was blocking the medium priority client.

Test 5 demonstrated that the low priority client correctly released its lock when the
deadline was missed. This allowed the high priority client to obtain the lock. When
the high priority client released the lock, the medium priority client was allowed to

obtain the lock.

5.3.2 Execution Overhead

The tables at the end of this chapter contain the execution overheads measured during
testing. Each table represents the results of 100 runs of each test, and contains

information about the following operations whenever applicable:

o A lock operation.

e An unlock operation.

e An operation to query the Pserver for the current priority of an activity (called

query here).
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An operation to update the priority of an activity during registration with the

Pserver (called register here).

An operation to deregister an activity from the Pserver (called deregister here).

An operation to update the priority of an activity due to priority inheritance

(called update here).

An operation to update the priority of an activity and its LockSet thread when

the activity releases a lock (called restore here).

For each operation, the following data is listed:

Average execution time in milliseconds.

Error in milliseconds (calculated in a 95% confidence interval).

Standard deviation (o) in milliseconds.

Minimum execution time in 100 trials.

Maximum execution time in 100 trials.

5.4 Analysis

5.4.1 Correctness Tests

The results from the correctness tests indicate that the RTCCS provides support for
priority inheritance within the specifications set for this report. Both the simple case
of priority inheritance (Tests 1 and 2) and transitive priority inheritance within a
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LockSet (Test 3) are handled correctly by the RTCCS. In addition, it was demon-
strated in Test 4 that the mechanism works correctly even when clients are allowed
to suspend themselves while they hold locks. Finally, Test 5 shows that the cleanup

method performs as expected.

5.4.2 Execution Overhead

Each call to lock and unlock requires one call to the query function, one call to the
register function, and one call to the deregister function. All three of these calls
require invoking a CORBA method on the local Pserver. The call to query is needed
to obtain the latest time constraint information for the server thread that invoked
the LockSet method. This information is then used to register the LockSet thread
with the Pserver and set its priority. The deregister function is used to deregister
the thread from the Pserver. These calls are required regardless of whether or not
priority inheritance is enabled. When priority inheritance is enabled, the unlock call
requires two additional calls to update to reset the priorities of the server and LockSet
threads of the client that is releasing a lock. This cumulative time is represented by
a call to the restore function. When the high priority client calls lock, it requires
an additional two calls to query (to detect that the client blocking it has a lower
priority) and one call to update in order to raise the priority of the low priority grid
server thread.

Tables 5.1 through 5.8 at the end of this chapter contain the results of the overhead

tests. It should be noted that the [ock times for the low priority client in Tables 5.3
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and 5.4 are longer than those in Tables 5.1 and 5.2. This is most likely due to the fact
that two clients are running on the system concurrently, and the low priority thread is
most likely preempted for a time while the high priority client is serviced. The large
standard deviations for a number of the operations in this set of tests is most likely due
to this preemption. An indication of this is that the execution times tended to group
around either the minimum or maximum times, suggesting preemption occurred in
some instances but not in others. Figures 5.1 and 5.2 illustrate this. Finally, Tables 5.9
and 5.10 contain the percentages of the execution times spent in CORBA calls to the
Pserver for the various tests.

The results presented in the tables are intended to show that the largest overhead
involved in calls to the LockSet, with or without priority inheritance, lie in the
CORBA calls to the Pserver. The large percentages of execution time spent in these
calls (70-97%) indicate that optimizing these method calls could significantly improve
the performance of the mechanism. However, this is beyond the scope of this project
and would have to be addressed by the vendor (IONA in this case) of the CORBA

implementation (Orbix 2.0.1MT) the project is using.
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Operation | Average(ms) | Error(ms) | o(ms) | Minimum(ms) | Maximum (ms)
lock 28.01 0.23 1.07 | 27.65 37.56

unlock 49.30 0.14 0.66 | 48.80 53.34

query 6.46 0.06 0.38 6.29 10.78

register 12.60 0.04 0.24 12.22 14.57
deregister | 6.25 0.01 0.09 6.14 7.14

update 11.12 0.02 0.11 11.04 11.80

restore 22.28 0.05 0.21 22.15 23.48

Table 5.1: Overheads For One Client Running in Isolation With Priority Inheritance

Enabled

Operation | Average(ms) | Error(ms) | o(ms) | Minimum(ms) | Maximum (ms)
lock 28.03 0.24 1.12 27.61 38.27

unlock 27.03 0.09 0.41 26.68 29.25

query 6.45 0.06 0.40 6.27 11.34

register 12.60 0.03 0.22 12.03 14.53
deregister | 6.28 0.02 0.13 6.14 7.29

Table 5.2: Overheads For One Client Running in Isolation With Priority Inheritance

Disabled
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Operation | Average(ms) | Error(ms) | o(ms) | Minimum(ms) | Maximum (ms)
lock 29.04 0.35 1.62 | 27.56 37.30
query 6.48 0.13 0.61 6.26 10.96
register 13.33 0.16 0.76 12.49 18.21
deregister | 6.61 0.29 1.35 6.15 11.67

Table 5.3: Overheads For Low Priority lock Client With Priority Inheritance Enabled

Operation | Average(ms) | Error(ms) | o(ms) | Minimum(ms) | Maximum (ms)
lock 32.52 1.57 7.31 27.55 47.35
query 7.51 0.45 2.12 6.26 11.71
register 15.09 0.72 3.35 12.46 21.85
deregister | 7.24 0.41 1.93 6.13 11.56

Table 5.4: Overheads For Low Priority lock Client With Priority Inheritance Disabled

Operation | Average(ms) | Error(ms) | o(ms) | Minimum(ms) | Maximum (ms)
unlock 55.88 0.17 0.78 | 55.20 61.19

query 6.51 0.05 0.24 6.37 8.22

register 13.98 0.04 0.17 13.82 14.64
deregister | 6.23 0.03 0.13 6.11 6.84

update 13.08 0.08 0.61 12.15 14.44

restore 27.02 0.07 0.34 26.62 28.39

Table 5.5: Overheads For Low Priority unlock Client With Priority Inheritance En-

abled
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Operation | Average(ms) | Error(ms) | o(ms) | Minimum(ms) | Maximum (ms)
unlock 38.41 0.11 0.50 38.06 42.35

query 6.50 0.04 0.21 6.39 8.18

register 13.96 0.03 0.13 13.83 14.53
deregister | 6.35 0.01 0.07 6.30 6.83

Table 5.6: Overheads For Low Priority unlock Client With Priority Inheritance Dis-

abled

Operation | Average(ms) | Error(ms) | o(ms) | Minimum(ms) | Maximum (ms)
lock 54.93 0.09 0.44 | 54.57 58.00

unlock 49.47 0.28 1.32 48.61 61.15

query 6.25 0.03 0.25 5.93 7.48

register 13.06 0.11 0.71 12.03 14.38
deregister | 6.19 0.01 0.67 6.14 6.79

update 11.21 0.02 0.15 11.09 11.97

restore 22.47 0.05 0.22 22.28 23.18

Table 5.7: Overheads For High Priority Client With Priority Inheritance Enabled
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Operation | Average(ms) | Error(ms) | o(ms) | Minimum(ms) | Maximum (ms)
lock 29.80 0.10 0.48 | 29.47 33.36

unlock 27.55 0.08 0.37 27.19 29.42

query 6.40 0.03 0.17 6.28 7.62

register 13.52 0.05 0.31 13.07 15.03
deregister | 6.27 0.02 0.14 6.15 7.01

Table 5.8: Overheads For High Priority Client With Priority Inheritance Disabled

Table 5.9: Percentages of Execution Times Spent in CORBA Calls With Priority

Operation Percentage
Isolated lock call 90.4
Isolated unlock call 96.5
Low priority client lock call 91.0
Low priority client unlock call | 96.2
High priority client lock call 89.6
High priority client unlock call | 97.0

Inheritance Enabled
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Operation Percentage

Isolated lock call 90.4

Isolated unlock call 93.7

Low priority client lock call 91.8

Low priority client unlock call | 69.8

High priority client lock call 87.9

High priority client unlock call | 95.1

Table 5.10: Percentages of Execution Times Spent in CORBA Calls With Priority

Inheritance Disabled
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Chapter 6

Conclusion

6.1 Contributions

CORBA is gaining popularity in industrial, academic, and government projects. As
its influence extends into specialized fields such as real-time computing, it will have
to evolve to meet their particular needs. The RTCORBA project at the University of
Rhode Island is a first step towards showing that it is feasible to extend the current
specification of CORBA such that it can support real-time computing. The RTCCS
is a crucial part of this project in that it provides a means to bound priority inversion
that arises during access to shared resources. This was the main goal of this report.
The tests for correctness indicate that the RTCCS does provide support for priority
inheritance. The execution overheads demonstrate a gain in performance could be
achieved if CORBA calls to the local Pserver were optimized. This is beyond the
scope of the URI RTCORBA project. It is an issue that would have to be addressed

by the vendor (IONA) of the CORBA implementation (Orbix 2.0.1MT) that the
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project is using.

6.2 Comparison with Related Work

This implementation of the RTCCS draws on a large body of existing research. How-
ever, 1t 1s unique in that it brings together the concepts of priority inheritance and
a implementation of a standard service for a DOCE, namely, a concurrency control
service. The PCCS presented in [BG96] is an extended form of the CORBA CCS.
However, it does not provide enough support for real-time environments. In a similar
way, the DPCP has taken a proven idea, the priority ceiling protocol, and extended
it to the realm of distributed computing. One drawback, however, is its reliance on
a priort information about the activities which will run on the system. The RTCCS
presented in this report bounds priority inversion in a distributed dynamic real-time

environment, and is based on the popular CORBA interface.

6.3 Limitations and Future Work

Throughout this report, it has been noted that this implementation of the RTCCS has
limitations. Most noticeable is its limited support for transitive priority inheritance.
Ideally, the RTCCS should be able to allow for any form of transitive blocking and
be able to handle it. This would eliminate the restriction on explicit locking and
starting “child” activities under a lock. This extension may require that certain design

restriction be place on the end-users of the RTCCS in order to ensure that the blocking
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chains remain manageable. At the very least, the RTCCS would have to be extended
such that a given LockSet object would be cognizant of the states of other LockSets
and activities throughout the RTCORBA environment. In this way, a LockSet could
apply priority inheritance to activities outside its address space. It would also be
feasible to extend the RTCCS to support forms of locking other than simple read /write
locking. For example, results from research in the area of object-based semantic real-
time concurrency control [DW93], where method-level locks, whose compatibilities
are semantically defined, are employed, could be integrated into the RTCCS in place
of read/write locking.

Further testing of RTCORBA’s performance is ongoing. The goal of this testing
is to provide a measure of the prototype’s overall ability to reduce the number of
violated timing constraints. The RTCCS plays a part in this by bounding priority
inversion. This testing involves running randomly generated clients with a variety
of deadlines (characterized as short, medium, or long) and start times (allows for
variable system workloads). In addition, the types of methods each client invokes
(i.e., some methods require read locks while others require write locks) are varied
such that a variety of data contention rates are achieved. The metric by which each
test run is judged is the percentage of clients which miss deadlines. These results are
then compared the results of similar tests run in a non-real-time CORBA environment
(i.e., CORBA without any mechanism for enforcing time constraints).

The implementation of the RTCCS presented in this report provides a foundation
for further work in the area of dynamic real-time concurrency control in DOCEs. It

does have limitations in its current form. However, the solutions provided here in

68



addition to the unresolved issues raised during this project contribute to this area of

research.
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