
Implementing Concurrency Control With Priority

Inheritance in Real-Time CORBA

BY

Steven Wohlever, Victor Fay Wolfe, and Russell Johnston

June 1997



ABSTRACT

Distributed object computing environments (DOCEs) must support real-time pro-

cessing if they are to provide the timely execution required by many complex appli-

cations such as telecommunications, automated manufacturing, aerospace automated

control, medical patient monitoring, and multi-media. To this end, any concurrency

control mechanism used by a real-time DOCE (RTDOCE) must enforce timing con-

straints.

One popular DOCE is the CommonObject Request Broker Architecture (CORBA).

This DOCE is currently gaining popularity in industrial, government, and academic

projects. However, in order for it to be suitable for real-time computing, CORBA

must be extended to support real-time characteristics including real-time concurrency

control.

Concurrency control in a real-time environment can lead to priority inversion.

Priority inversion occurs when a real-time activity blocks another, higher-priority

real-time activity. This situation can lead to unbounded blocking time for the higher-

priority activity. Therefore, any concurrency control mechanism used in a real-time

system must ensure that priority inversion is bounded.

This report presents an implementation of a dynamic real-time distributed con-

currency control mechanism that has been developed as part of a larger project at

the University of Rhode Island that is designing a RTDOCE based on CORBA. This

mechanism uses basic priority inheritance to bound priority inversion. This report

describes the design and implementation of this mechanism in addition to presenting

ii



tests results which illustrate that, while the mechanism cannot ensure that all timing

constraints are met, it does contribute to a best e�ort approach for ensuring that

high priority activities meet their timing constraints.

iii



Contents

1 Introduction 1

1.1 Motivation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

1.2 Goal of Research : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

1.3 Approach : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

1.4 Outline : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

2 Related Work 6

2.1 CORBA : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

2.1.1 CORBA Concurrency Control Service : : : : : : : : : : : : : : 7

2.2 Real-Time CORBA : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

2.3 Lock-Based Concurrency Control : : : : : : : : : : : : : : : : : : : : 11

2.4 Basic Priority Inheritance Protocol : : : : : : : : : : : : : : : : : : : 12

2.5 Deadlock : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

2.6 Priority Ceiling Protocols : : : : : : : : : : : : : : : : : : : : : : : : 16

2.6.1 Distributed Priority Ceiling Protocol : : : : : : : : : : : : : : 17

2.6.2 Comments About Priority Ceiling Protocols : : : : : : : : : : 19

2.7 Programmable Concurrency Control Service : : : : : : : : : : : : : : 20

iv



3 Design of the RTCCS 22

3.1 Priority Inheritance in CORBA/RT : : : : : : : : : : : : : : : : : : : 22

3.2 Real-Time Concurrency Control Service : : : : : : : : : : : : : : : : : 23

3.2.1 Implicit and Explicit Locking : : : : : : : : : : : : : : : : : : 24

3.2.2 Transitive Priority Inheritance : : : : : : : : : : : : : : : : : : 24

3.2.3 Design Details : : : : : : : : : : : : : : : : : : : : : : : : : : : 26

3.3 Summary of RTCCS Design : : : : : : : : : : : : : : : : : : : : : : : 31

4 Implementation of the RTCCS 33

4.1 RTCCS Implementation : : : : : : : : : : : : : : : : : : : : : : : : : 33

4.1.1 LockSet Data Structures : : : : : : : : : : : : : : : : : : : : : 34

4.1.2 Synchronization Constructs : : : : : : : : : : : : : : : : : : : 36

4.1.3 Implementation of LockSet Methods : : : : : : : : : : : : : : 37

4.2 Operating System's Relation to RTCORBA : : : : : : : : : : : : : : 44

4.3 The RTCCS Mechanism by Example : : : : : : : : : : : : : : : : : : 45

5 Evaluation 49

5.1 Testbed Construction : : : : : : : : : : : : : : : : : : : : : : : : : : : 49

5.1.1 Tests for Correctness : : : : : : : : : : : : : : : : : : : : : : : 50

5.1.2 Execution Overhead : : : : : : : : : : : : : : : : : : : : : : : 50

5.2 Test Details : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 51

5.2.1 Tests for Correctness : : : : : : : : : : : : : : : : : : : : : : : 51

5.2.2 Execution Overhead : : : : : : : : : : : : : : : : : : : : : : : 54

5.3 Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 55

v



5.3.1 Correctness Tests : : : : : : : : : : : : : : : : : : : : : : : : : 55

5.3.2 Execution Overhead : : : : : : : : : : : : : : : : : : : : : : : 56

5.4 Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 57

5.4.1 Correctness Tests : : : : : : : : : : : : : : : : : : : : : : : : : 57

5.4.2 Execution Overhead : : : : : : : : : : : : : : : : : : : : : : : 58

6 Conclusion 66

6.1 Contributions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66

6.2 Comparison with Related Work : : : : : : : : : : : : : : : : : : : : : 67

6.3 Limitations and Future Work : : : : : : : : : : : : : : : : : : : : : : 67

vi



List of Tables

2.1 Lock Incompatibilities : : : : : : : : : : : : : : : : : : : : : : : : : : 10

5.1 Overheads For One Client Running in Isolation With Priority Inheri-

tance Enabled : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60

5.2 Overheads For One Client Running in Isolation With Priority Inheri-

tance Disabled : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60

5.3 Overheads For Low Priority lock Client With Priority Inheritance En-

abled : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61

5.4 Overheads For Low Priority lock Client With Priority Inheritance Dis-

abled : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61

5.5 Overheads For Low Priority unlock Client With Priority Inheritance

Enabled : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61

5.6 Overheads For Low Priority unlock Client With Priority Inheritance

Disabled : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62

5.7 Overheads For High Priority Client With Priority Inheritance Enabled 62

5.8 Overheads For High Priority Client With Priority Inheritance Disabled 63

vii



5.9 Percentages of Execution Times Spent in CORBA Calls With Priority

Inheritance Enabled : : : : : : : : : : : : : : : : : : : : : : : : : : : 63

5.10 Percentages of Execution Times Spent in CORBA Calls With Priority

Inheritance Disabled : : : : : : : : : : : : : : : : : : : : : : : : : : : 64

viii



List of Figures

3.1 Subset of CORBA Concurrency Control Service (CCS) IDL : : : : : 29

3.2 Real-Time Concurrency Control Service (RTCCS) IDL : : : : : : : : 30

5.1 Low Priority Client lock Execution Times With Priority Inheritance

Enabled : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 64

5.2 Low Priority Client lock Execution Times With Priority Inheritance

Disabled : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 65

ix



Chapter 1

Introduction

This report describes a concurrency control mechanism that was designed for use in

Real-Time CORBA (RTCORBA), a real-time distributed object computing environ-

ment. It is a lock-based mechanism that uses basic priority inheritance to bound

priority inversion that occurs during access to shared data. This report describes

the implementation of the mechanism. It also presents results that demonstrate that

the mechanism provides a correct implementation of basic priority inheritance, which

contributes to RTCORBA's best e�ort approach for enforcing time constraints.

1.1 Motivation

Distributed object computing environments (DOCEs) must support real-time com-

puting if they are to provide the timely execution required by many complex real-time

applications such as telecommunications, automated manufacturing, aerospace auto-

mated control, medical patient monitoring, and multi-media [RTSIG96]. In the con-

1



text of this report, real-time computing is de�ned to be computing that is predictable

in terms of the performance of the system. This is in contrast to real-time computing

de�ned as fast computing. A real-time application is de�ned to be an application

that must meet timing constraints in order to be correct [WBTK95]. In support

of this requirement, any concurrency control mechanism used by a real-time DOCE

(RTDOCE) must enforce timing constraints.

One popular DOCE is the CommonObject Request Broker Architecture (CORBA).

CORBA is a DOCE speci�cation that was created by the Object Management Group

(OMG), a group of over 600 DOCE vendors and users. This DOCE is currently gain-

ing popularity in industrial, government, and academic projects. However, in order

for it to be suitable for real-time computing, the current version of CORBA, CORBA

2.0, must be extended to support real-time characteristics.

CORBA 2.0 de�nes an interface to the Concurrency Control Service (CCS) in

[OMG96]. The CCS is designed to provide lock-based concurrency control for CORBA

objects. In order to support real-time computing, the CORBA CCS must be modi�ed

for use in a RTCORBA environment.

Concurrency control in a real-time environment can lead to priority inversion

[SRL90]. Priority inversion occurs when a real-time activity blocks another, higher-

priority real-time activity. This situation can lead to an unbounded blocking time

for the higher-priority activity. Therefore, any concurrency control mechanism used

in a real-time system must ensure that priority inversion is bounded. In addition,

the concurrency control mechanism must address the issue of deadlock, the situation

in which activities are inde�nitely blocked due to locking conicts. This will be

2



addressed further in Chapter 2.

Although work has been done in the area of real-time distributed concurrency

control, it either does not address the issue of priority inversion or it requires a priori

information about the priorities of the activities that will run. Therefore, there is

a need for a real-time distributed concurrency control mechanism that will bound

priority inversion and prevent deadlock while allowing for dynamic workloads. In the

context of this project, a system supports dynamic workloads if it does not require a

priori information about the activities that will run on it.

This report presents an implementation of a dynamic real-time distributed con-

currency control mechanism that was developed for use in CORBA systems as part of

a larger project at the University of Rhode Island that is designing a RTDOCE based

on CORBA. This mechanism uses basic priority inheritance [SRL90] to bound prior-

ity inversion. This protocol does not require a priori information about the activities

that will run in the CORBA environment. This makes it more suitable for systems

that require dynamic workloads. This report describes the design and implementa-

tion of this priority inheritance mechanism in RTCORBA in addition to presenting

test results. These results illustrate that, while the mechanism cannot ensure that all

timing constraints are met, it does contribute to RTCORBA's best e�ort approach

for ensuring that high priority activities meet their timing constraints.

3



1.2 Goal of Research

The main goal of this research is to develop a Real-Time Concurrency Control Service

(RTCCS) for use in a prototype RTCORBA environment. The RTCORBA project

is a soft real-time system in the sense that it is designed to make a best e�ort to meet

timing constraints. This is in contrast to a hard real-time system in which violated

timing constraints lead to catastrophic results. The RTCCS provides an extended

form of read/write locking which allows for consistent, concurrent access to shared

data resources. This service uses basic priority inheritance to bound priority inversion

for dynamic workloads.

Another goal of this project is to develop the RTCCS to comply with established

standards whenever applicable. In order to remain compliant with the CORBA 2.0

speci�cation, this implementation complies with the speci�ed interfaces for the CCS

[OMG96] with a few minor extensions. In addition, the implementation is compliant

with the real-time POSIX operating system interface standard [Gal95].

1.3 Approach

In order to achieve these goals, several existing algorithms for bounding priority in-

version were examined. These included a number of priority ceiling protocols [SRL90,

Raj91]. However, since these protocols require a priori information about the priori-

ties of activities that will run, they are inappropriate for systems that have dynamic

workloads. Therefore, basic priority inheritance, which does not need a priori infor-

mation, was chosen to bound priority inversion in our implementation of the CCS.

4



1.4 Outline

Chapter 2 provides an overview of CORBA and the RTCORBA project at the Uni-

versity of Rhode Island. It then presents a review of lock-based concurrency control,

priority inheritance, deadlock prevention, and priority ceiling protocols. The chapter

concludes with a presentation of an existing real-time concurrency control mechanism

for CORBA. Chapter 3 describes the design of the RTCCS while Chapter 4 describes

its implementation. Chapter 5 presents the results of correctness and performance

tests done using the RTCCS. Chapter 6 presents the contributions and limitations of

this prototype RTCCS and discusses future work.

5



Chapter 2

Related Work

This chapter presents a brief summary of CORBA and the RTCORBA project at the

University of Rhode Island. It then presents some background information on lock-

based concurrency control, priority inheritance, and priority ceiling protocols. This

includes a discussion of a priority ceiling protocol designed speci�cally for distributed

systems. Finally, an existing implementation of a RTCCS for CORBA is examined.

2.1 CORBA

CORBA is a speci�cation for a DOCE with a client/server architecture. Clients in-

teract with servers through the ObjectRequestBroker (ORB), the central piece of

middleware in CORBA. The ORB is responsible for passing requests from clients to

servers and sending results from servers back to clients. These requests are targeted

at speci�c objects that exist in the server process' address space. For example, a

server may contain a number of database objects, each with its own data and inter-

6



face. When a server receives a client request, it invokes the speci�ed method on the

appropriate object. In the case of multithreaded servers, a thread is created to handle

the request, allowing the server process to accept additional client requests.

Each object managed by the server has an interface speci�ed in an interface def-

inition language (IDL) which is part of CORBA 2.0. These IDL interfaces are used

to generate stubs and skeletons. A stub is library code that is linked into a client to

enable it to interact with the server. Likewise, the skeleton code, which is linked into

the server process, enables the server to interact with the client. A client begins its

interaction by binding to the appropriate server. At this point, the client gets an ob-

ject reference to the server object it wishes to interact with. The stub code provides it

with interfaces to all of the available methods on the server object's interface. When

these methods are called, the ORB is responsible for routing requests and results to

the proper servers and clients.

The CORBA 2.0 speci�cation also de�nes a set of Object Services. Theses services

include a naming service, transaction service, and concurrency control service, among

others. The Object Services are intended to provide a variety of low-level services to

clients and servers in the CORBA environment.

2.1.1 CORBA Concurrency Control Service

The OMG has recognized the merit of a standard interface for concurrency control

that can be used to manage access to shared resources in an ORB environment by

specifying interfaces to a Concurrency Control Service(CCS). This is one of the Object

7



Services speci�ed in CORBA 2.0. The motivation behind the inclusion of the CCS is

that it provides a standard interface to a concurrency control mechanism that can be

used by programmers to manage access to shared resources that do not have built-in

concurrency control. For example, the CCS can be incorporated into a linked list

object that was originally designed for single-user usage such that it can support safe,

concurrent access.

The CCS provides an extended form of object-level read/write locking. Locks

can be acquired on behalf of a transaction or on behalf of a client operating outside

of a transaction. In the �rst case, a second Object Service called the Transaction

Service drives the release of locks as the transaction commits or aborts. The RTCCS

developed for the RTCORBA project does not provide support for this type of locking.

It does provide support for the second form of locking in which the user of the CCS

(i.e., the client that obtained the locks) is responsible for releasing them. In this non-

transactional mode of concurrency control, a LockSet object embodies the locks that

can be obtained on a single resource as well as the methods for obtaining and releasing

speci�c types of locks. The LockSet is also responsible for ensuring that conicting

locks are not held by di�erent clients. Any shared resource in the distributed system

that requires concurrency control has its own instantiation of a LockSet object. Clients

that access the resource should do so only after acquiring the necessary locks from

the appropriate LockSet object.

The CCS supports �ve types of locks. The �rst two are the standard read (R)

and write (W) locks. The upgrade (U) lock is useful for avoiding a common form of

deadlock that arises when two or more activities with read locks try to get write locks.

8



Consider the following scenario involving two clients, C1 and C2, that are accessing

shared object O.

1. C1 gets a R lock on O.

2. C2 gets a R lock on O.

3. C2 tries to get a W lock on O but is blocked by C1's R lock.

4. C1 tries to get a W lock on O but is blocked by C2's R lock.

Since each client is blocked by the other, deadlock ensues. This can be remedied by

requiring the clients to obtain an upgrade lock instead of a read lock.

1. C1 gets a U lock on O.

2. C2 tries to get a U lock on O but is blocked by C1's U lock.

3. C1 gets a W lock on O and writes to the object.

4. C1 releases its W and U locks on O, allowing C2 to continue unhindered.

The last two locks are the intention read (IR) and intention write (IW) locks.

These two locks are useful when the resource that is being locked is hierarchical in

nature (e.g., a database). The following scenario illustrates how the intention write

lock is used to managed three clients, C1, C2, and C3, as they access a database. It

should be noted that the database and each of the records in the database requires

its own LockSet.

1. C1 gets an IW lock on the database.

9



Granted Mode Requested Mode

IR R U IW W

Intention Read (IR) *

Read (R) * *

Upgrade (U) * * *

Intention Write (IW) * * *

Write (W) * * * * *

Table 2.1: Lock Incompatibilities

2. C1 gets a W lock on record R1 in the database.

3. C2 gets an IW lock on the database.

4. C2 gets a W lock on record R2 in the database.

5. C3 tries to get a W lock on the entire database but cannot since the database

has been locked with an IW lock.

The changes being made by C1 and C2 are protected from interference by C3 by the

IW locks they obtained. The intention read lock works in a similar manner for read

operations. Table 2.1 de�nes the compatibilities between the �ve types of locks (a *

indicates a conict between a requested lock and a granted lock).

10



2.2 Real-Time CORBA

The work done on this report was funded by the Distributed Hybrid Database Ar-

chitecture project [JWS96] that is being developed as a joint e�ort between the U.S.

Navy NRaD labs and the RTCORBA group at the University of Rhode Island. The

RTCORBA group is currently working on a client/server implementation of a RT-

DOCE based on CORBA. The e�orts of the group are focused on the expression and

enforcement of end-to-end timing constraints on databases in CORBA environments.

In this context, enforcing end-to-end timing constraints means the DOCE enforces

the timing constraints of a real-time activity at all stages of it execution throughout

the DOCE.

Recently, a Real-Time Special Interest Group (RT SIG) in the OMG has begun

to identify those capabilities which it feels would be desirable in a real-time ver-

sion of CORBA (CORBA/RT) [RTSIG96]. The goal of the RTCORBA group is

to design and implement a prototype of CORBA/RT that meets the desired capa-

bilities for expressing and enforcing time constraints as speci�ed in the RT SIG's

white paper([RTSIG96]). One of these capabilities is the need for priority inheri-

tance to bound priority inversion. Therefore, any concurrency control mechanism in

CORBA/RT should make use of priority inheritance.

2.3 Lock-Based Concurrency Control

When a data resource is accessed by multiple users simultaneously, steps must be

taken to ensure that this concurrent access does not leave the data in an inconsis-

11



tent state. One method of ensuring consistency of a shared resource is to require

that clients of the resource obtain locks on the resource. Exclusive locking involves

obtaining a lock on the entire resource, preventing any other client from accessing

the resource for any reason. Read/write locking allows for more concurrent access

by allowing multiple clients to read from the resource as long as there are no writers

accessing the data. If a client desires to write to the resource, it is allowed to do so

only when there are no readers or writers accessing the data. This project implements

an extension of this method of locking.

2.4 Basic Priority Inheritance Protocol

The basic priority inheritance protocol was developed to solve the problem of un-

bounded priority inversion. In order to understand the need for priority inheritance,

consider the following example which involves three real-time activities, A1, A2, and

A3, in ascending order of priority. Note that a high priority activity that is ready to

run preempts any lower priority activities that are running. Let O represent a shared

object that will be locked by both A1 and A3. The following scenario then becomes

possible:

1. A1 gets a write lock on O.

2. A3 preempts A1.

3. A3 tries to get a read lock on O but is blocked by A1's write lock.

4. A1 resumes execution.

12



5. A2 can preempt A1 any number of times since it does not try to lock O.

Since A1 can potentially be preempted by A2 any number of times, A3 can be

blocked for an unbounded amount of time since A1 cannot release the lock on O until

it completes its critical section (i.e., the code executed under the protection of the

lock). This is unbounded priority inversion. The priority inversion in this example

can be bounded in the following way:

1. A1 gets a write lock on O.

2. A3 preempts A1.

3. A3 tries to get a read lock on O but is blocked by A1's write lock.

4. A1's priority is raised to that of A3.

5. A1 resumes execution.

6. Since A2's priority is lower than A1's new priority, A2 cannot preempt A1.

7. When A1 completes its execution, it releases the write lock and resets its priority

to its original value.

8. A3 is no longer blocked, and since it has the highest priority, it is allowed to

obtain the read lock.

This example makes use of basic priority inheritance. A1 is said to inherit A3's

priority at step 4. It has been shown in [SRL90] that the basic priority inheritance

protocol places an upper bound on priority inversion. The number of critical sections

13



that can block a particular activity A is given by the smaller of the following two

values:

1. The number of activities with priorities lower than that of A.

2. The number of locks that can block the activity A.

This is an important result since it places a bound on a previously unbounded delay.

However, this bound can be substantial if there is chained blocking [SRL90]. Chained

blocking refers to the situation in which a high priority activity is blocked by multiple

activities with lower priorities.

The previous example illustrates direct blocking [SRL90]. The basic priority inher-

itance protocol must also contend with transitive, or push-through [SRL90], blocking.

Consider the following example which involves an object O with two locks L1 and L2

that do not conict with each other but do conict with themselves.

1. A1 gets lock L1 on O.

2. A2 preempts A1.

3. A2 gets lock L2 on O and tries to get lock L1 on O but is blocked by A1.

4. A1's priority is raised to that of A2.

5. A1 resumes execution.

6. A3 preempts A1.

7. A3 tries to get lock L2 on O but is blocked by A2.

14



8. A2's priority is raised to that of A3.

9. A1 resumes execution at A2's priority, not A3's.

In this example, A3 is indirectly blocked by A1, but A1's priority is not raised

to that of A3. This is transitive blocking. To handle this situation, whenever an

activity's priority is raised due to priority inheritance, all activities that are currently

blocking it must also be raised. This is referred to as transitive priority inheritance.

In this example, when A2's priority is raised to that of A3, A1's priority must also be

raised to that of A3.

Transitive blocking can also occur in the following way.

1. A1 gets a lock L on object O.

2. A1 starts activity A2, and A1 suspends until A2 completes.

3. A3 preempts A2.

4. A3 tries to get lock L but is blocked by A1.

5. A1's priority is raised to that of A3.

6. A2 resumes execution at its original priority, not A3's.

In this example, A3 is indirectly blocked by A2, but A2's priority is not raised to that

of A3. Both A1 and A2 should undergo priority inheritance since A1 cannot release

the lock until A2 �nishes.

15



2.5 Deadlock

Basic priority inheritance does not intrinsically prevent deadlock. Therefore, some

additional mechanism is needed. Deadlock can occur if and only if all of the following

four conditions are present in the system:

1. Mutual exclusion.

2. Hold and wait (situation in which an activity holds a lock while waiting to

obtain another lock).

3. No preemption of locks (i.e., only the activity that holds a lock can release it).

4. Circular wait (e.g., activity A1 holds a lock activity A2 needs to continue exe-

cution, but A2 holds a lock which A1 needs to continue execution).

To prevent deadlock, one of these four conditions must be eliminated. Mutual

exclusion and no preemption are needed to maintain consistent resources and therefore

cannot be eliminated. Hold and wait can be eliminated by forcing an activity to obtain

all of the locks it needs before it begins execution. However, this reduces the amount

of concurrency in the system and can lead to starvation since an activity may wait

inde�nitely for a lock before it can start execution. Eliminating circular wait is the

last option. This can be done by forcing an ordering of locks. This requires that

all activities obtain locks in the same order. The issue then becomes how to order

the locks such that the amount of concurrent access is maximized. This issue is not

addressed by this project.

16



2.6 Priority Ceiling Protocols

Priority ceiling protocols [SRL90] di�er from the basic priority inheritance protocol

in that they bound priority inversion to at most one critical section locked by a lower

priority activity. This eliminates the problem of chained blocking. These protocols

also implicitly prevent deadlock and transitive blocking. Therefore, they perform

better than basic priority inheritance which cannot provide such a low bound, nor

can it implicitly prevent deadlock or transitive blocking. However, as will be seen,

there is a loss of exibility when using priority ceiling protocols. Below are the three

basic steps needed by the priority ceiling protocol:

1. The protocol �rst determines the priority ceiling for each lock. The priority

ceiling is the priority of the highest priority activity that will access the lock.

This must be done o�-line.

2. When an activity requests a lock, it is granted the lock only if its priority is

higher than the priority ceilings of all locks currently held by other activities.

3. If an activity A2 cannot obtain a lock because its priority is lower than or equal

to the priority ceiling of a lock held by activity A1 (a lower priority activity),

then A1's priority is raised to that of A2 until A1 releases the lock blocking A2.

Priority ceiling protocols are less dynamic than the basic priority inheritance pro-

tocol since they must determine the priority ceilings for each lock before the locks can

be used. Since these calculations rely on knowing the priorities of all activities that

may request the locks, dynamic workloads are not possible.

17



2.6.1 Distributed Priority Ceiling Protocol

Work presented in [Raj91] demonstrates how a priority ceiling protocol can be used

to bound priority inversion in a distributed environment. This method is called the

Distributed Priority Ceiling Protocol (DPCP).

As previously mentioned, priority inversion occurs when a real-time activity is

blocked by a lower-priority real-time activity. In a distributed environment, there

is the additional concept of remote blocking. In this context, remote will be used

to refer to an activity or resource that is on a processor other than the local one.

Remote blocking occurs when a real-time activity that is trying to access a remote

shared resource is blocked by a remote real-time activity, regardless of the remote

activity's priority. This includes blocking caused by activities with equal or higher

priorities. The justi�cation for being concerned with the blocking time caused by a

remote activity of equal or higher priority is that such blocking would not occur if

there were no shared resources (i.e., remote blocking does not occur when there are

no shared resources).

The DPCP assumes that binary semaphores are used for synchronization. A

semaphore that is accessed by remote activities is called a global semaphore, and

the critical section it protects is called a global critical section. There are also local

semaphores (semaphores that are only accessed by activities on the same processor)

and local critical sections. The DPCP assumes that global critical sections do not

make nested accesses to local semaphores or to other global semaphores on other

processors. Local critical sections likewise do not make nested accesses to global

18



semaphores. The DPCP also introduces the idea of synchronization processors, which

are processors that execute global critical sections. This protocol requires that all

global critical sections guarded by the same global semaphore are bound to the same

synchronization processor.

In the DPCP, the priority ceiling of a local semaphore is the priority of the highest-

priority activity that can access it. The priority ceiling of a global semaphore is

found by summing the priority of the highest-priority activity that can access it with

the base priority ceiling, a priority which is higher than the priority of the highest-

priority activity in the entire distributed system. This forces the priority ceilings of

all global semaphores to be higher than the priority of the highest-priority activity in

the distributed system while maintaining the same relative priority ordering between

all global semaphores. This means that global critical sections are executed at a

higher priority than all tasks outside critical sections. This is required in order for

the remote blocking time of an activity in a global critical section to be a function of

critical sections only.

2.6.2 Comments About Priority Ceiling Protocols

Although priority ceiling protocols do provide bounds on priority inversion, prevent

deadlock and transitive blocking, they are not equipped to handle dynamic workloads.

They require a priori information about the priorities of the activities that will run

in order to compute priority ceilings. The basic priority inheritance protocol can not

bound priority inversion as low as priority ceiling protocols, but it does not require the

19



a priori information about activity priorities. This is important for the RTCORBA

project which needs to support dynamic workloads.

2.7 Programmable Concurrency Control Service

One related e�ort to extend CORBA's CCS for use in real-time systems is the Pro-

grammable Concurrency Control Service (PCCS) presented in [BG96]. This work

attempts improve upon the real-time performance of the standard CCS by increas-

ing the amount of concurrent access that can take place. This is done by replacing

the object-level read/write locking that is speci�ed in CORBA with user-speci�ed

method-level locking. The compatibility semantics of these locks can be de�ned by

the programmer, allowing the programmer to provide a �ner locking granularity than

read/write locking. This functionality is implemented in the form of a LockTable ob-

ject. Methods on the LockTable's interface allow the programmer to explicitly specify

the compatibilities between locks. In this way, the generic semantics of the CCS

LockSet can be replaced with semantics that allow for more concurrent access.

For example, suppose a shared resource has two attributes, speed and heading. In

addition, suppose it has two methods on its interface, write speed and write heading,

for writing to these attributes. Let A1 be an activity that wishes to call the write speed

method and A2 be an activity that wishes to call the write heading method. Since

the two methods do not access the same attribute, there would not be any conict if

they ran concurrently. However, if the standard CORBA CCS is used, these method

invocations of A1 and A2 cannot execute concurrently since only one can hold a write

20



lock on the resource at a time.

The bene�ts of using the PCCS are e�ectively the same as using one CCS LockSet

for each attribute in the resource and one for the entire resource. The intention write

and intention read locks ensure that reducing the locking granularity to the attribute

level will not lead to inconsistencies in the resource as a whole. However, the PCCS

does have the advantage that only one LockSet is needed per resource. In terms of its

real-time performance, the PCCS is not adequate. In its current form, the PCCS does

not address the issues of unbounded priority inversion or deadlock. It is real-time in

the sense of being faster than the standard CCS, not more predictable.

21



Chapter 3

Design of the RTCCS

This chapter presents the design issues of the RTCCS. The �rst section briey ad-

dresses the desirability of priority inheritance in CORBA/RT as expressed by the

CORBA RT SIG. The second section outlines the design decisions made by the

RTCORBA group during the development of the RTCCS.

3.1 Priority Inheritance in CORBA/RT

Although the CCS provides a good starting framework for concurrency control in

DOCEs, it is not su�cient for real-time systems. For example, since read/write

locking is used to maintain the consistency of a resource, clients of the resource may

be suspended if their requests conict with other clients currently using the resource.

This situation can lead to unbounded priority inversion. In order to be useful for

real-time applications, the CCS must be extended such that it can bound priority

inversion.

22



Previous approaches to extending the real-time capabilities of the CCS have not

taken this problem into account. For example, the implementation presented in

[BG96] increases the amount of concurrent access to a resource by replacing the stan-

dard object-level locking with method-level locking. However, it does not address the

issue of priority inversion. [RTSIG96] speci�es that priority inheritance should be

used for any resource access which can lead to unbounded priority inversion.

3.2 Real-Time Concurrency Control Service

The solution to the priority inversion problem for the RTCORBA project was to ex-

tend the standard CCS by implementing basic priority inheritance within the LockSet

object. When a client requests a lock on a resource, its priority is compared to those

of all clients holding conicting locks on that resource. For all clients that hold con-

icting locks and have lower priorities than that of the requesting client, the RTCCS

raises their priorities (and the priorities of any clients that may be blocking them) to

the requesting client's priority. The requesting client is then suspended.

Whenever a lock is released, the releasing client resets its priority to that of the

highest priority client it still blocks (this is possible since clients can hold several

types of locks simultaneously). If it no longer blocks any higher priority clients, the

releasing client is reset to its original priority. Finally, the highest priority blocked

client that can now get its lock is allowed to obtain the lock and continue execution.

23



3.2.1 Implicit and Explicit Locking

When using the CCS, two forms of locking are possible: implicit locking and explicit

locking. Implicit locking is done within the methods on the resource's interface. For

example, any method that writes to the resource's data must obtain a write lock

from the appropriate LockSet object �rst. This requires that the calls to the LockSet

methods be made in the implementation of the resource's methods. This simpli�es the

usage of the resource since client objects do not need to know the locking semantics of

the resource. However, there is a loss of exibility when using purely implicit locking.

For example, if a client wishes for a block of method calls to be protected by the

same lock, implicit locking is insu�cient. Explicit locking provides more exibility

since it allows the client that is using the resource to request and release locks when

needed. This is done by explicitly obtaining the necessary locks from the appropriate

LockSet object. However, this requires that the client knows which LockSet to use.

More importantly, the client must have knowledge of the locking semantics for the

resource being accessed (i.e., the client must know which locks are required for each

method on the resource's interface). Aside from the burden this places on the client,

breaking the encapsulation of the resource is not desirable from an object-oriented

design perspective.

3.2.2 Transitive Priority Inheritance

Another issue that must be addressed is that of transitive blocking (see Chapter

2). The two forms of transitive blocking involve a high priority activity A3 that is

24



indirectly blocked by a lower priority activity A2 that is either:

1. holding a lock that is blocking activity A1, the activity that is directly blocking

activity A3

2. running under a lock held by A1.

In either case, a transitive blocking chain is formed in which an activity (e.g., A3)

is indirectly blocked by another activity further down the chain (e.g., A2). Note that

this is not the same as chained blocking in which an activity is blocked by multiple

activities. The di�culty with transitive priority inheritance is the fact that these

blocking chains can become arbitrarily long, especially when activities are allowed

to lock multiple resources. This can require a great deal of overhead in terms of

data structures and CPU time. Therefore, this implementation of the RTCCS was

designed with the following limitations:

1. No \child" activities can be created under a lock.

2. An activity can only hold locks on one resource at a time.

The �rst restriction disallows explicit locking in the sense that only code local to the

activity that holds the lock can run while the lock is held. The second restriction is a

special case of the �rst restriction since obtaining additional locks after the initial one

would constitute starting \child" activities under the initial lock. The only transitive

blocking that is allowed in this project is that which occurs within a LockSet. That

is, blocking chains are allowed to form as long as all of the clients in the chain are

25



clients of the same LockSet object and do not start any \child" activities while they

hold locks.

3.2.3 Design Details

Before discussing the design of the RTCCS, a brief description of the RTCORBA

project as a whole would be bene�cial to the reader. The URI RTCORBA project is

researching the following four topics as they relate to CORBA:

� Real-time method invocations

� Real-time events

� Global priority assignment

� Priority inheritance

Real-Time Method Invocations

In a DOCE, all server executions are initiated by method invocations made by clients.

In a real-time application, a client must be able to specify timing constraints on

method invocations. The CORBA/RT white paper speci�es that timing information

should be made available to the ORB, object services, and server implementations.

There are �ve forms of client-side timing constraints that must be expressible: dead-

lines, earliest start times, latest start times, periodic, and quality of service (QoS)

constraints.

In order to provide this capability, the URI RTCORBA group has de�ned a new

structure in IDL called RT Environment. This data structure is used to pass a vari-

26



ety of information from clients to servers during timed distributed method invocations

(TDMIs). This includes time constraints, importance information, and an identi-

�cation tag specifying the identity of the client (includes thread ID, process ID,

and IP address). The RTCORBA work presented in [DGSWWZ97] and [Zykh97]

provides additional functionality for TDMIs. This includes the RT Manager Server

and RT Manager Client classes which provide the framework upon which the TDMIs

are structured. These classes are integral to the design and implementation of the

RTCCS.

Real-Time Events

Events may occur in a DOCE (e.g., radar contact made with an airplane), and a

distinct set of clients in the DOCE may be interested in the event. In a real-time

environment, these clients may need to know the absolute time that an event occurred

so that time-constrained responses can be made (e.g., within 1 second of detecting

airplane, update controller's display). To this end, [RTSIG96] speci�es that the real-

time CORBA Event Service must provide the ability for CORBA clients and servers

to determine the absolute time when an event has occurred.

Global Priority Assignment

One way to provide distributed real-time scheduling is through the enforcement of

global priority. Global priority can be represented as an ordinal quantity that is

attached to every method invocation and is interpreted in a homogeneous fashion

by the schedulers and queues throughout the CORBA system. That is, if method

27



invocation A has a higher global priority value than method invocation B, method

invocation A should always be serviced �rst.

Enforcement of global priority requires the use of real-time schedulers and priority-

based queues throughout the distributed system. A real-time scheduler typically

strives to execute the highest priority task �rst and a priority queue typically places

the highest task at its head. If these conditions are violated anywhere in the path of

a real-time method invocation, unbounded priority inversion may occur and no guar-

antees can be made about the real-time behavior of any of the components involved.

[RTSIG96] calls for a Global Priority Service that is available to establish priorities

for all executions in the entire distributed CORBA system.

The RTCORBA project makes use of a Pserver (priority server) running on each

node in the RTCORBA system. All real-time processes and threads, including those

required by the RTCCS, register with the local Pserver, are assigned priorities based

on their timing constraints, and are \aged" as new real-time activities enter the system

[DGSWWZ97]. \Aging" the priorities of the activities is needed in order to maintain

the correct relative ordering of the activities.

The RTCCS depends on the services of the Pserver to obtain priority information

about activities and to request that the priorities of activities be changed. This

functionality is needed in order to implement priority inheritance. The manner in

which this is done will be explored in Chapter 4.

28



module CosConcurrencyControl {

enum lock_mode {

read, write, upgrade, intention_read, intention_write

};

exception LockNotHeld{};

interface LockSet {

void lock(in lock_mode mode);

boolean try_lock(in lock_mode mode);

void unlock(in lock_mode mode);

raises(LockNotHeld);

void change_mode(in lock_mode held_mode, in lock_mode new_mode);

raises(LockNotHeld);

};

};

Figure 3.1: Subset of CORBA Concurrency Control Service (CCS) IDL

Design of the RTCCS

The design phase for the RTCCS entailed specifying how the CCS was to be imple-

mented and extended to support priority inheritance. Figure 3.1 is the subset of the

CCS (shown here in its IDL format as found in [OMG96]) that was implemented and

extended.

One of the goals during the development of the RTCCS was to ensure that the

interface to the CCS was changed as little as possible. This was to ensure that the new

RTCCS could be easily incorporated into existing applications that use the standard

CCS. The only change to the standard interface is that a RT Environment is passed

into each TDMI. This parameter contains information about the time constraints of

29



#include "rt_info.idl"

module CosConcurrencyControl {

enum lock_mode {

read, write, upgrade, intention_read, intention_write

};

exception LockNotHeld{};

interface LockSet {

void lock(in lock_mode mode, in RT_Environment rt_env);

raises(RT_Exception);

boolean try_lock(in lock_mode mode, in RT_Environment rt_env);

raises(RT_Exception);

void unlock(in lock_mode mode, in RT_Environment rt_env);

raises(LockNotHeld, RT_Exception);

void change_mode(in lock_mode held_mode, in lock_mode new_mode,

in RT_Environment rt_env);

raises(LockNotHeld, RT_Exception);

};

};

Figure 3.2: Real-Time Concurrency Control Service (RTCCS) IDL

the locking client. As will be seen in Chapter 4, this information is needed by the

LockSet to determine when priority inheritance is needed. In addition, each method

can raise a RT Exception exception. This exception is used to indicate that a timing

constraint has been violated during the TDMI. The revised IDL for the RTCCS is

shown in Figure 3.2.

The design of the RTCCS makes use of several simplifying restrictions:

1. Only implicit locking is allowed.

2. A client can only obtain locks on one LockSet at a time.

30



3. A client cannot start \child" activities while the client holds a lock.

4. Locks must be ordered.

The �rst restriction requires that only the methods on a resource's interface be allowed

to request locks from the resource's LockSet. The next two restrictions prevent all

transitive blocking except that which arises between clients of the same LockSet.

Finally, the last restriction supports the prevention of deadlock.

3.3 Summary of RTCCS Design

Although the DPCP bounds priority inversion, prevents transitive blocking, and pre-

vents deadlock, this protocol requires foreknowledge about the activities that will be

running on the system. In dynamic environments in which this information is not

available until runtime, priority ceiling protocols are inappropriate. The PCCS at-

tempts to improve real-time performance by using method-level locking rather than

object-level locking. This may increase the amount of concurrent access, but it does

not address the problems of priority inversion and deadlock.

The RTCCS for this project makes use of basic priority inheritance to bound pri-

ority inversion that arises during TDMIs in the RTCORBA environment. Support for

priority inheritance relies on the global priority assignment and enforcement mech-

anism that have been developed for the RTCORBA project. Timing information

passed to the RTCCS by the TDMIs enables the RTCCS to determine when priority

inheritance needs to be done.

31



Basic priority inheritance does not prevent deadlock or transitive blocking. Dead-

lock is prevented by ordering locks. In order to manage transitive blocking, some form

of transitive priority inheritance is needed unless certain restrictions are made. This

is a desired capability in [RTSIG96]. However, this implementation of the RTCCS

does not provide full support for transitive priority inheritance due to the complex

nature of the problem. Instead, it implements priority inheritance among activities

accessing the same shared resource.

32



Chapter 4

Implementation of the RTCCS

This chapter presents the implementation of the RTCCS that has been incorporated

into the RTCORBA project. The �rst section describes the implementation of the

RTCCS and the underlying con�guration of the development environment. The sec-

ond section presents an example of how the RTCCS is used.

4.1 RTCCS Implementation

Implementing the RTCCS consisted of �rst coding the subset of the CORBA CCS

as speci�ed in Chapter 3. This involved de�ning the IDL interface for the RTCCS

(see Figure 3.2) and coding the implementation of its methods in C++. Support for

priority inheritance was then added. The remainder of this section addresses how this

support was integrated into the CCS.

33



4.1.1 LockSet Data Structures

Each LockSet object maintains information about the clients interacting with it.

When a request for a lock is received, the LockSet uses this information to determine

if the lock can be granted (i.e., there is no conict with granted locks) or, in the case

where there is a conict, whether or not priority inheritance is needed.

The implementation of the RTCCS LockSet object maintains a linked list of clients

(clientList) that are either requesting locks or are holding locks. For each client, the

list maintains the following information:

� The client's original RT Environment.

� The RT Environment of the active LockSet thread, if any, that is associated

with the client.

� lockList, a list of locks currently held by or requested by the client. Each item

in this list includes the lock type, if it is granted or still only requested, and a

count of the number of locks of that type granted to the client.

� blockedClients, a list of clients currently blocked by this client. Each item

in this list includes a pointer to the blocked client's node in the LockSet's

clientList; the RT Environment of the blocked client, and the type of lock this

client is blocking with.

� blockingClients, a list of clients that are currently blocking this client. Each

item in this list include a pointer to the blocking client's node in the LockSet's

34



clientList, the RT Environment of the blocked client, and the type of lock this

client is blocked by.

Note that client C1 blocks client C2 if and only if C1 holds a lock that conicts

with C2's request and C1's priority is less than that of C2. In a similar manner, C2 is

blocked by C1 if and only if C1 holds a lock that conicts with C2's request and C1's

priority is less than that of C2.

Each client in the list has a unique thread ID, process ID, and IP address. This

information is recorded in the RT Environment that is stored with each entry in

clientList. Therefore, the RT Environment can be used to search clientList for a

particular client. In addition, it is used by the RTCCS to obtain the priorities of

activities from the local Pserver to test for priority inversion during lock requests.

The RT Environment for the active LockSet thread is needed in order to changed

the priority of the thread if priority inheritance is required. For example, if a client

that is suspended in a lock thread blocks a higher priority client, the lock thread

must also undergo priority inheritance.

The information in the lockList is used to detect locking conicts whenever any

client requests a lock. The counts maintained for each lock type are used to determine

when a client is no longer interacting with the LockSet (allowing the LockSet to

remove the client from its clientList).

The information stored in blockedClients is needed in order to restore the priority

of a client that had undergone priority inheritance when it releases a lock. When a

client releases a lock, it must reset its priority to that of the highest priority client

35



it still blocks. If blockedClients is empty, the client's priority is reset to its original

value. The pointer that is maintained in each node is used to identify and remove the

corresponding blockingClients entry in a blocked client whenever the blocking client

releases a lock.

The list blockingClients is needed for the situation in which transitive blocking

occurs. Recall that transitive blocking is allowed to take place as long as it is contained

among the clients interacting with the same LockSet. If a client C1 holds a lock that

blocks a higher priority client C2, but C1 is blocked by other clients (those in its

blockingClients), the priorities of C1 and the clients in its blockingList have to be

raised to that of C2. This is a recursive process in the sense that the clients blocking

the clients in C1's blockingClients list are also raised. This continues until all blocking

clients, whether they directly or indirectly block C2, are raised to C2's priority.

The pointer maintained in each node of blockingClients is needed in case a blocked

activity violates a timing constraint while it is blocked. If this occurs, the activity

releases any locks it may hold. The pointers in blockingClients can be used to identify

and remove the corresponding blockedClients entries in the blocking clients.

4.1.2 Synchronization Constructs

Each LockSet object uses a mutex to control access to clientList. In addition, each

LockSet uses a condition variable to synchronize clients as they request locks. This

will be illustrated in the next subsection.

36



4.1.3 Implementation of LockSet Methods

The RTCORBA project makes use of multithreaded servers to allow the servers to

manage multiple client requests at once. A typical server process contains one shared

resource (e.g., a tracking database) and a LockSet object that provides concurrency

control for the resource. Another scenario has the LockSet and resource located in

separate server processes. The methods on a resource's interface are responsible for

obtaining whichever locks they require to maintain the resource in a consistent state.

If a client invokes a method on the resource's interface (e.g., get speed of plane), the

implementation of the resource's method is responsible for invoking the appropriate

method on the LockSet interface (e.g., get speed of plane gets a read lock). There-

fore, while the resource has clients of its own and acts as a \server", the resource acts

as a \client" of a LockSet object.

The lock Method

When a resource method requires a lock, the thread that is executing the resource

method request invokes the lock method on the LockSet that is managing access to

the resource's shared data. The lock method performs the following steps:

1. Register the lock thread with the local Pserver (sets priority) and start timer

(start of real-time invocation with deadline speci�ed in RT Environment pa-

rameter).

2. Start an atomic code block (explained below).

3. Lock the LockSet's mutex.

37



4. If the calling client is not in clientList, add it to clientList.

5. If the calling client holds the requested lock, increment its count for that lock,

else:

(a) Add an entry to the client's lockList indicating that the speci�ed lock has

been requested.

(b) While there is a conict (make call to lockConflict), wait on the LockSet's

condition variable. Each time the thread is awakened, it must call lock-

Conict to determine if it can proceed or if it must wait on the condition

variable again.

(c) Increment the client's lock count for the requested lock and set its status

to granted.

6. Unlock the LockSet's mutex.

7. End the atomic block.

8. Turn o� the timer and deregister the lock thread from the local Pserver.

If the deadline is missed during the lock method invocation, the lock thread is

deregistered from the Pserver and a RT Exception is thrown to the calling client.

The implementation of the try lock method di�ers from that of the lock in that a call

to try lock only tries to obtain the lock once (i.e., it does not wait on the condition

variable and no priority inheritance is done). If the lock can be granted, try lock

returns with a value of TRUE. Otherwise, it returns FALSE.

38



The atomic block is used to block signals during critical sections. When a deadline

is missed in the RTCORBA environment, a signal is raised by the timer in the thread

that missed the deadline. If the signal arrives while the thread is in a critical section

(e.g., holding a lock on a mutex), steps must be taken to ensure that the thread leaves

whatever shared data it is accessing in a consistent state. In the case of the LockSet

object, this situation can arise during invocations of any of its four methods. Methods

in the RT Manager Server class allow the thread to block the processing of signals

during these critical sections [Zykh97]. The signals must also be blocked because of

a problem in Orbix 2.0.1MT, the commercial CORBA product on which this project

was developed. If an exception (e.g., RT Exception) is thrown in a thread or process

that is making a CORBA call, a run-time exception is raised and the program exits.

The workaround for this requires that CORBA calls in a real-time activity be made

from inside atomic blocks.

The lock implementation uses a Boolean function called lockConict, which is

passed the identity (i.e., a RT Environment) of a client requesting a lock and the

type of lock it is requesting. The function returns TRUE if the requested lock can be

granted and FALSE if it cannot. The implementation of lockConict is based on the

locking semantics speci�ed in Table 2.1. This is a modular design, allowing a di�erent

implementation of lockConict to be inserted in place of the one implemented for this

project. The lockConfict function performs the following steps:

1. For the speci�ed lock, check if any other clients hold conicting locks and do

priority inheritance if necessary. This is done by calling otherClientHoldsLock

39



for each lock that can conict with the requested lock.

2. Return TRUE if conict exists. Otherwise, return FALSE.

The function lockConict makes uses of a method on the interface of clientList

called otherClientHoldsLock. The otherClientHoldsLock method performs the follow-

ing steps:

1. For each client (excluding the requesting client) that holds a conicting lock,

if the client's current or original priority is lower than that of the requesting

client, then:

(a) Raise the priorities of the blocking client and all clients blocking it to the

requesting client's priority if the blocking client's current priority is lower

than that of the requesting client. This includes raising the priority of any

LockSet threads in which the blocking clients may be suspended.

(b) Add the blocking client to the requesting client's blockingClients list.

(c) Add the requesting client to the blocking client's blockedClients list.

2. If another client holds the speci�ed lock, return TRUE. Otherwise, return

FALSE.

The requesting client's priority is compared to the blocking client's original priority

in the event that the blocking client has a higher inherited priority but is suspended

(i.e., since it is suspended, clients with lower priorities can run). By comparing the

requesting client's priority with the blocking client's original priority, the necessary

entries can be added to the appropriate blockingClients and blockedClients lists.

40



This ensures that the blocking client's priority is not reset to its original value if,

when it releases the lock that forced its priority inheritance, it still holds a lock that

blocks the requesting client.

If a resource method invocation that is holding locks on a LockSet object misses

its deadline, the RTCCS must ensure that all of the locks are released. This is done

by calling the cleanup method in the lockSetManager class. Each resource method

that can possibly acquire locks on a LockSet object directly must instantiate an

instance of a lockSetManager object. This class acts as the resource's interface to

the LockSet (i.e., the resource does not directly invoke the LockSet's methods).

One of the goals of this research project was to remain as CORBA compliant as

possible. In its current form, the speci�cation for the CORBA CCS LockSet interface

does not include a method that allows a client to release all of its locks. Therefore,

the lockSetManager class was created to act as an intermediary between a client

and the LockSet object. The lockSetManager class interface is an extended form of

that speci�ed for the LockSet object. In addition to the usual methods (i.e., lock,

unlock, try lock, change mode), the lockSetManager has a cleanup method. As locks

are obtained and released by a client, its lockSetManager object (one for each LockSet

object it interacts with) maintains counts of the types of locks currently held by the

client. The cleanup method simply uses this information to release all locks the client

holds.

41



The unlock Method

When a resource method that obtained a lock no longer needs the lock, the thread that

is executing the method invokes the unlock method on the LockSet that is managing

access to the resource's shared data. The unlock method performs the following steps:

1. Register the unlock thread with the local Pserver (sets priority) and start timer

(start of real-time invocation). This is done only if this call to unlock is not

made from lockSetManager::cleanup (see note below).

2. Start an atomic code block (prevents processing of signals). This is done only

if this call to unlock is not made from lockSetManager::cleanup.

3. Lock the LockSet's mutex.

4. If the calling client is not in clientList, then:

(a) Unlock the LockSet's mutex.

(b) End the atomic block and deregister the unlock thread. This is done only

if this call to unlock is not made from lockSetManager::cleanup.

(c) Throw a LockNotHeld exception to the calling client.

5. If the calling client does not hold the speci�ed lock, then:

(a) Unlock the LockSet's mutex.

(b) End the atomic block and deregister the unlock thread. This is done only

if this call to unlock is not made from lockSetManager::cleanup.

(c) Throw a LockNotHeld exception to the calling client.

42



6. Decrement the appropriate lock count.

7. If this lock count is now zero, then:

(a) Remove the lock from the calling client's lockList.

(b) Update the calling client's blockedClients list by removing all clients that

the calling client no longer blocks.

(c) Restore the priority of the calling client to the priority of the highest

priority client still blocked by this client, or reset to original priority if no

clients are blocked. Currently, this step is done even if this client's priority

was never changed.

(d) If the calling client no longer holds any locks, remove it from clientList.

(e) Send a broadcast signal to the LockSet's condition variable (allows waiting

clients to obtain mutex in priority order and attempt to get their locks).

8. Unlock the LockSet's mutex.

9. End the atomic block. This is done only if this call to unlock is not made from

lockSetManager::cleanup.

10. Turn o� the timer and deregister the unlock thread from the local Pserver. This

is done only if this call to unlock is not made from lockSetManager::cleanup.

If the deadline is missed during the unlock method invocation, the unlock thread

is deregistered from the Pserver and a RT Exception is thrown to calling to the client.

This is done only if this call to unlock is not made from lockSetManager::cleanup.

43



Calls to unlock that are made from cleanup are not assigned priorities based on

time constraints. This is because the call to cleanup is made as a result of violating a

constraint. Therefore, calls to cleanup are executed at the maximum system priority.

This ensures that locks held by the client that violated a constraint are released as

quickly as possible. Since the calls to unlock made by cleanup do not interact with

the Pserver, there is no need to register them with the Pserver. In addition, since

these calls do not use timers, there is no need for atomic blocks.

Finally, the implementation of the change mode method simply tries to unlock

the speci�ed lock using the unlock method. It then uses the lock method to obtain

the new lock. Any exceptions raised during these two operations are passed onto the

calling client.

4.2 Operating System's Relation to RTCORBA

This project was developed and tested on two Sun SPARCstations on an isolated LAN

running Solaris 2.5 and IONA Technologies Orbix 2.0.1MT, a commercial CORBA

2.0 compliant DOCE. Solaris 2.5 is a POSIX [Gal95] compliant operating system,

meeting the requirements of POSIX.1, POSIX.4, and POSIX.4a [Sun95]. Although

it has support for real-time scheduling of threads, it does not provide priority-based

scheduling for mutexes or any form of priority inheritance for mutex queues. This in-

troduces a source of unbounded priority inversion in the case of the LockSet methods

since they lock a mutex. One workaround to this problem is to raise the priority of

any thread that tries to lock the mutex to the system maximum. This eliminates the

44



priority inversion caused by the mutex, but it bypasses the sense of consistent global

priority that RTCORBA tries to enforce (e.g., a low priority client that requests a lock

should not be scheduled at a high priority unless priority inversion is �rst detected).

Currently, this version of the RTCCS does not make use of this workaround.

The condition variable used by the LockSet provides better support for priority-

based scheduling. When the the condition variable receives a broadcast signal, all

threads blocked on the condition are awakened. They are then scheduled according

to the current scheduling policy as they attempt to lock the mutex. In this project,

this means that the highest priority thread will get the mutex �rst. The remaining

threads will likewise obtain the mutex in descending order of priority. The order in

which threads within the same priority level obtain the mutex is undetermined.

4.3 The RTCCS Mechanism by Example

This section presents an example of how the LockSet is incorporated into a resource.

Below is the IDL speci�cation for a tracking database object.

#include "rt_info.idl"

interface track_db {

void set(in long track_id, in track_record t,

in RT_Environment rt_env);

track_record get(in long track_id, in RT_Environment rt_env);

};

45



This object stores tracking information (e.g., speed and heading) for objects (e.g.,

airplanes). It has two methods, set and get, that allow clients to access the data it

stores. The method set is passed a track ID, a new tracking record to insert, and a

RT Environment parameter which contains the timing constraints for the method

invocation. The get method is passed the track ID of the record to retrieve and a

RT Environment parameter, and it returns the appropriate tracking record.

The C++ implementation for the setmethod is given below. It illustrates how the

calls to lock, unlock, and cleanup are incorporated into the method's implementation.

void track_db_i::set(CORBA::Long track_id, track_record t,

const RT_Environment& rt_env,

CORBA::Environment &) {

(1) RT_Manager_Server rt_mgr(rt_env);

RT_Environment local_rt_env = rt_mgr.Get_RT_Env();

try {

(2) rt_mgr.START_RT();

(3) rt_mgr.Start_Atomic_CORBA_Call();

(4) lock_set.lock(CosConcurrencyControl::write, local_rt_env);

(5) rt_mgr.End_Atomic_CORBA_Call();

(6) // CODE FOR SETTING RECORD

rt_mgr.Start_Atomic_CORBA_Call();

(7) lock_set.unlock(CosConcurrencyControl::write, local_rt_env);

rt_mgr.End_Atomic_CORBA_Call();

46



(8) rt_mgr.END_RT();

} catch (const RT_Exception &rtEx) {}

(9) rt_mgr.STOP();

(10) lock_set.cleanup(local_rt_env);

} catch(const CosConcurrencyControl::LockNotHeld) {

rt_mgr.STOP();

lock_set.cleanup(local_rt_env);

} catch (CORBA::SystemException &sysEx) {}

exit(1);

} catch(...) {

exit(1);

}

}

At step 1, the RT Manager Server for this thread is initialized based on the time

constraints of the calling client [Zykh97]. At step 2, the real-time method invocation

starts (i.e., the thread is registered with the local Pserver and the timer for the

invocation is started). The atomic block that prevents signals from being delivered

during the lock call is started at step 3 and ends at step 5. Note that lock set (at

47



step 4) is an instance of lockSetManager. It provides this thread with an interface

to the appropriate LockSet (this information is initialized in the constructor for the

track db i object). Step 6 represents the code that sets the speci�ed record in the

database. The call to unlock at step 7 is protected by an atomic block. Finally,

at step 8, the timer for the thread is stopped and the method invocation ends. If

a RT Exception or LockNotHeld exception is raised during the execution of the

method, the thread is deregistered from the local Pserver (step 9) and the cleanup

method is called to release all locks held by this thread (step 10).

48



Chapter 5

Evaluation

This chapter presents a description of the testing procedure for this report. The

testbed that was used is described in Section 1. A review of the the tests which

were executed is given in Section 2. The results of the testing are listed in Section 3.

Finally, an analysis of the results is presented in Section 4.

5.1 Testbed Construction

All testing for this report was conducted using two Sun Sparc workstations on an

isolated LAN. One workstation (a SPARCstation 5) acted as the server node and

ran three CORBA servers. The �rst server managed access to a shared resource

that implemented a two-dimensional grid of integers. The interface for this server

consisted of a method for writing to and reading from the grid. The second server

managed the LockSet object that the grid server used for concurrency control. The

third server was the node's local Pserver. The second workstation (a SPARCstation

49



IPX) was a client node which managed the client activities that interacted with the

grid server. The client node also ran its own local Pserver.

5.1.1 Tests for Correctness

The �rst set of tests were designed to demonstrate the correctness of the implemen-

tation of priority inheritance in the RTCCS. These tests involved two or three clients

running concurrently. Simple priority inheritance, transitive priority inheritance, and

the performance of the cleanup method were tested. The test data for these tests was

collected using an array of structures de�ned in the LockSet. Access to this array

was protected by the LockSet's mutex. Each structure in the array recorded the ID

of the grid server thread that was invoking the LockSet method, the current priority

of that thread, the name of the method being invoked (e.g., lock), and an identi�er

of the point in the method at which the record was made (e.g., after priority was

updated during a call to unlock). In this way, a timeline of the changes to the client

priorities and the order in which locks were obtained and released was constructed.

The contents of the array were displayed to the workstation screen once each test

completed.

5.1.2 Execution Overhead

A number of tests were run in order to quantify the execution time of the RTCCS

methods. In particular, the overhead introduced by calls to lock and unlock were

measured. This involved running tests with the priority inheritance enabled and

50



disabled. Testing was done with only one client (i.e., no lock contention) and with

two clients (i.e., lock contention). The test data for these tests was collected in

a manner similar to that used for the correctness tests. An array in the LockSet

recorded the ID's of the invoking grid server thread, the name of the invoked method,

and the start and end times of the speci�c segments of the method. This set of tests

required that the priority inheritance mechanism be disabled for certain tests. This

was done by commenting out the relevant code segments. This included the following:

� The code in otherClientHoldsLock that compares/changes priorities.

� The code in otherClientHoldsLock that updates the blockingClients and blocked-

Clients lists.

� The code in unlock that updates a client's blockedClients list when a lock is

released.

� The code in unlock that updates a client's priority after it releases a lock.

5.2 Test Details

5.2.1 Tests for Correctness

Several tests were done to verify that the priority inheritance mechanism functions

as expected. These tests included the following:

1. Test for priority inheritance between two clients.

2. Test for priority inheritance between three clients.

51



3. Test for transitive priority inheritance between three clients.

4. Test that priority inheritance takes place when locking clients are suspended

(e.g., waiting on a condition variable).

5. Test that locks are released when a time constraint is violated.

This testing took place in the RTCORBA environment with priority inheritance en-

abled.

Test 1 involved running two clients such that the low priority client blocked a high

priority client. This was done by forcing the low priority client to obtain and hold a

write lock on the grid server. The high priority client then requested a write lock.

Test 2 involved running three clients (with three di�erent priorities) which re-

quested write locks on the grid server. This was done such that the following sequence

of steps took place:

1. The low priority client requested and obtained the lock.

2. The medium priority client requested lock but was blocked by the low priority

client.

3. The high priority client requested lock but was blocked by the low priority

client.

The Test 3 required three locks with the following characteristics:

� Lock L1 that does not conict with any other locks.

� Lock L2 that conicts with itself.

52



� Lock L3 that conicts with itself.

This was implemented by temporarily changing the locking semantics in the RTCCS.

Once these semantics were implemented, the test was run with the following sequence

of steps:

1. The low priority client requested and obtained both L1 and L2.

2. The medium priority client requested L3 and L2. It obtained L3 but was blocked

by the low priority client when it requested L2.

3. The high priority client requested L3 but was blocked by the medium priority

client.

Test 4 involved the same set of locks speci�ed for Test 3. This test involved the

following sequence of steps:

1. The low priority client requested and obtained L2 and L3 and suspended itself

on a condition variable (de�ned within the grid server).

2. The high priority client requested L3 but was blocked by the low priority client.

3. The medium priority client requested L2 but was blocked by the low priority

client.

Test 5 was the same as Test 2 except the low priority client was forced to miss its

deadline while it held the lock.

53



5.2.2 Execution Overhead

The �rst set of overhead tests involved running one client that invoked the method

on the grid server's interface that writes to the grid. This method's implementation

obtains a write lock on the corresponding LockSet object. The following average

execution times were measured:

� Time for a lock operation with priority inheritance.

� Time for a lock operation with no priority inheritance.

� Time for an unlock operation with priority inheritance.

� Time for an unlock operation with no priority inheritance.

Some additional time measurements for speci�c code segments in these methods were

measured (see results section for details). Note that these times were calculated

within the LockSet's methods (e.g., di�erence between start time of lock method and

its end time).

The second set of tests involved running two clients concurrently. The lower

priority client was allowed to obtain a write lock. While it held the lock, the higher

priority client requested the write lock and was blocked. The low priority client then

released the lock, allowing the high priority client to obtain it. The following average

execution times were measured for both clients:

� Time for a lock operation with priority inheritance.

� Time for a lock operation with no priority inheritance.

54



� Time for an unlock operation with priority inheritance.

� Time for an unlock operation with no priority inheritance.

In the case of the high priority client, the time measurements taken in the lock

method did not include the time spent waiting on the LockSet's condition variable.

Some additional time measurements for speci�c code segments in these methods were

measured (see results section for details).

5.3 Results

5.3.1 Correctness Tests

All �ve tests in this category were successful. Test 1 demonstrated that the low

priority client inherited the high client's priority while it held the write lock. The

low priority client was reset to its original priority when it released the lock.

Test 2 demonstrated that the low priority client's priority was �rst raised to

medium (when it blocked the medium priority client) and then to high (when it

blocked the high priority client). When the low priority client released the lock, its

priority was reset to its original value. The high priority client was then able to obtain

the lock. Once it released it, the medium priority client obtained the lock.

Test 3 demonstrated that the low priority client's priority was raised to medium

when it blocked the medium priority client with L2. The medium priority client

was then raised to high when it blocked the high priority client with L3. Transitive

priority inheritance then took place, and the low priority client, which was blocking

55



the medium priority client, was raised to high. When the low priority client released

L2, it was reset to its original priority value. When the medium priority client released

L3, it was reset to its original priority value.

Test 4 demonstrated that the medium priority client identi�ed the low priority

client as a blocking client even though the low priority client had a higher inherited

priority. In this way, when the low priority client released L3, its priority was reset to

that of the medium priority client, not its original priority. This was necessary since

the low priority client still held L2 which was blocking the medium priority client.

Test 5 demonstrated that the low priority client correctly released its lock when the

deadline was missed. This allowed the high priority client to obtain the lock. When

the high priority client released the lock, the medium priority client was allowed to

obtain the lock.

5.3.2 Execution Overhead

The tables at the end of this chapter contain the execution overheads measured during

testing. Each table represents the results of 100 runs of each test, and contains

information about the following operations whenever applicable:

� A lock operation.

� An unlock operation.

� An operation to query the Pserver for the current priority of an activity (called

query here).

56



� An operation to update the priority of an activity during registration with the

Pserver (called register here).

� An operation to deregister an activity from the Pserver (called deregister here).

� An operation to update the priority of an activity due to priority inheritance

(called update here).

� An operation to update the priority of an activity and its LockSet thread when

the activity releases a lock (called restore here).

For each operation, the following data is listed:

� Average execution time in milliseconds.

� Error in milliseconds (calculated in a 95% con�dence interval).

� Standard deviation (�) in milliseconds.

� Minimum execution time in 100 trials.

� Maximum execution time in 100 trials.

5.4 Analysis

5.4.1 Correctness Tests

The results from the correctness tests indicate that the RTCCS provides support for

priority inheritance within the speci�cations set for this report. Both the simple case

of priority inheritance (Tests 1 and 2) and transitive priority inheritance within a

57



LockSet (Test 3) are handled correctly by the RTCCS. In addition, it was demon-

strated in Test 4 that the mechanism works correctly even when clients are allowed

to suspend themselves while they hold locks. Finally, Test 5 shows that the cleanup

method performs as expected.

5.4.2 Execution Overhead

Each call to lock and unlock requires one call to the query function, one call to the

register function, and one call to the deregister function. All three of these calls

require invoking a CORBA method on the local Pserver. The call to query is needed

to obtain the latest time constraint information for the server thread that invoked

the LockSet method. This information is then used to register the LockSet thread

with the Pserver and set its priority. The deregister function is used to deregister

the thread from the Pserver. These calls are required regardless of whether or not

priority inheritance is enabled. When priority inheritance is enabled, the unlock call

requires two additional calls to update to reset the priorities of the server and LockSet

threads of the client that is releasing a lock. This cumulative time is represented by

a call to the restore function. When the high priority client calls lock, it requires

an additional two calls to query (to detect that the client blocking it has a lower

priority) and one call to update in order to raise the priority of the low priority grid

server thread.

Tables 5.1 through 5.8 at the end of this chapter contain the results of the overhead

tests. It should be noted that the lock times for the low priority client in Tables 5.3

58



and 5.4 are longer than those in Tables 5.1 and 5.2. This is most likely due to the fact

that two clients are running on the system concurrently, and the low priority thread is

most likely preempted for a time while the high priority client is serviced. The large

standard deviations for a number of the operations in this set of tests is most likely due

to this preemption. An indication of this is that the execution times tended to group

around either the minimum or maximum times, suggesting preemption occurred in

some instances but not in others. Figures 5.1 and 5.2 illustrate this. Finally, Tables 5.9

and 5.10 contain the percentages of the execution times spent in CORBA calls to the

Pserver for the various tests.

The results presented in the tables are intended to show that the largest overhead

involved in calls to the LockSet, with or without priority inheritance, lie in the

CORBA calls to the Pserver. The large percentages of execution time spent in these

calls (70-97%) indicate that optimizing these method calls could signi�cantly improve

the performance of the mechanism. However, this is beyond the scope of this project

and would have to be addressed by the vendor (IONA in this case) of the CORBA

implementation (Orbix 2.0.1MT) the project is using.

59



Operation Average(ms) Error(ms) �(ms) Minimum(ms) Maximum(ms)

lock 28.01 0.23 1.07 27.65 37.56

unlock 49.30 0.14 0.66 48.80 53.34

query 6.46 0.06 0.38 6.29 10.78

register 12.60 0.04 0.24 12.22 14.57

deregister 6.25 0.01 0.09 6.14 7.14

update 11.12 0.02 0.11 11.04 11.80

restore 22.28 0.05 0.21 22.15 23.48

Table 5.1: Overheads For One Client Running in Isolation With Priority Inheritance

Enabled

Operation Average(ms) Error(ms) �(ms) Minimum(ms) Maximum(ms)

lock 28.03 0.24 1.12 27.61 38.27

unlock 27.03 0.09 0.41 26.68 29.25

query 6.45 0.06 0.40 6.27 11.34

register 12.60 0.03 0.22 12.03 14.53

deregister 6.28 0.02 0.13 6.14 7.29

Table 5.2: Overheads For One Client Running in Isolation With Priority Inheritance

Disabled

60



Operation Average(ms) Error(ms) �(ms) Minimum(ms) Maximum(ms)

lock 29.04 0.35 1.62 27.56 37.30

query 6.48 0.13 0.61 6.26 10.96

register 13.33 0.16 0.76 12.49 18.21

deregister 6.61 0.29 1.35 6.15 11.67

Table 5.3: Overheads For Low Priority lock Client With Priority Inheritance Enabled

Operation Average(ms) Error(ms) �(ms) Minimum(ms) Maximum(ms)

lock 32.52 1.57 7.31 27.55 47.35

query 7.51 0.45 2.12 6.26 11.71

register 15.09 0.72 3.35 12.46 21.85

deregister 7.24 0.41 1.93 6.13 11.56

Table 5.4: Overheads For Low Priority lock Client With Priority Inheritance Disabled

Operation Average(ms) Error(ms) �(ms) Minimum(ms) Maximum(ms)

unlock 55.88 0.17 0.78 55.20 61.19

query 6.51 0.05 0.24 6.37 8.22

register 13.98 0.04 0.17 13.82 14.64

deregister 6.23 0.03 0.13 6.11 6.84

update 13.08 0.08 0.61 12.15 14.44

restore 27.02 0.07 0.34 26.62 28.39

Table 5.5: Overheads For Low Priority unlock Client With Priority Inheritance En-

abled

61



Operation Average(ms) Error(ms) �(ms) Minimum(ms) Maximum(ms)

unlock 38.41 0.11 0.50 38.06 42.35

query 6.50 0.04 0.21 6.39 8.18

register 13.96 0.03 0.13 13.83 14.53

deregister 6.35 0.01 0.07 6.30 6.83

Table 5.6: Overheads For Low Priority unlock Client With Priority Inheritance Dis-

abled

Operation Average(ms) Error(ms) �(ms) Minimum(ms) Maximum(ms)

lock 54.93 0.09 0.44 54.57 58.00

unlock 49.47 0.28 1.32 48.61 61.15

query 6.25 0.03 0.25 5.93 7.48

register 13.06 0.11 0.71 12.03 14.38

deregister 6.19 0.01 0.67 6.14 6.79

update 11.21 0.02 0.15 11.09 11.97

restore 22.47 0.05 0.22 22.28 23.18

Table 5.7: Overheads For High Priority Client With Priority Inheritance Enabled

62



Operation Average(ms) Error(ms) �(ms) Minimum(ms) Maximum(ms)

lock 29.80 0.10 0.48 29.47 33.36

unlock 27.55 0.08 0.37 27.19 29.42

query 6.40 0.03 0.17 6.28 7.62

register 13.52 0.05 0.31 13.07 15.03

deregister 6.27 0.02 0.14 6.15 7.01

Table 5.8: Overheads For High Priority Client With Priority Inheritance Disabled

Operation Percentage

Isolated lock call 90.4

Isolated unlock call 96.5

Low priority client lock call 91.0

Low priority client unlock call 96.2

High priority client lock call 89.6

High priority client unlock call 97.0

Table 5.9: Percentages of Execution Times Spent in CORBA Calls With Priority

Inheritance Enabled

63



Operation Percentage

Isolated lock call 90.4

Isolated unlock call 93.7

Low priority client lock call 91.8

Low priority client unlock call 69.8

High priority client lock call 87.9

High priority client unlock call 95.1

Table 5.10: Percentages of Execution Times Spent in CORBA Calls With Priority

Inheritance Disabled

2.5 3 3.5 4 4.5 5

x 10
4

0

5

10

15

20

25

30

Execution Time in Milliseconds

N
um

be
r 

of
 O

cc
ur

re
nc

es

Figure 5.1: Low Priority Client lock Execution Times With Priority Inheritance En-

abled

64



2.5 3 3.5 4 4.5 5

x 10
4

0

2

4

6

8

10

12

14

16

Execution Time in Milliseconds

N
um

be
r 

of
 O

cc
ur

re
nc

es

Figure 5.2: Low Priority Client lock Execution Times With Priority Inheritance Dis-

abled

65



Chapter 6

Conclusion

6.1 Contributions

CORBA is gaining popularity in industrial, academic, and government projects. As

its inuence extends into specialized �elds such as real-time computing, it will have

to evolve to meet their particular needs. The RTCORBA project at the University of

Rhode Island is a �rst step towards showing that it is feasible to extend the current

speci�cation of CORBA such that it can support real-time computing. The RTCCS

is a crucial part of this project in that it provides a means to bound priority inversion

that arises during access to shared resources. This was the main goal of this report.

The tests for correctness indicate that the RTCCS does provide support for priority

inheritance. The execution overheads demonstrate a gain in performance could be

achieved if CORBA calls to the local Pserver were optimized. This is beyond the

scope of the URI RTCORBA project. It is an issue that would have to be addressed

by the vendor (IONA) of the CORBA implementation (Orbix 2.0.1MT) that the

66



project is using.

6.2 Comparison with Related Work

This implementation of the RTCCS draws on a large body of existing research. How-

ever, it is unique in that it brings together the concepts of priority inheritance and

a implementation of a standard service for a DOCE, namely, a concurrency control

service. The PCCS presented in [BG96] is an extended form of the CORBA CCS.

However, it does not provide enough support for real-time environments. In a similar

way, the DPCP has taken a proven idea, the priority ceiling protocol, and extended

it to the realm of distributed computing. One drawback, however, is its reliance on

a priori information about the activities which will run on the system. The RTCCS

presented in this report bounds priority inversion in a distributed dynamic real-time

environment, and is based on the popular CORBA interface.

6.3 Limitations and Future Work

Throughout this report, it has been noted that this implementation of the RTCCS has

limitations. Most noticeable is its limited support for transitive priority inheritance.

Ideally, the RTCCS should be able to allow for any form of transitive blocking and

be able to handle it. This would eliminate the restriction on explicit locking and

starting \child" activities under a lock. This extension may require that certain design

restriction be place on the end-users of the RTCCS in order to ensure that the blocking

67



chains remain manageable. At the very least, the RTCCS would have to be extended

such that a given LockSet object would be cognizant of the states of other LockSets

and activities throughout the RTCORBA environment. In this way, a LockSet could

apply priority inheritance to activities outside its address space. It would also be

feasible to extend the RTCCS to support forms of locking other than simple read/write

locking. For example, results from research in the area of object-based semantic real-

time concurrency control [DW93], where method-level locks, whose compatibilities

are semantically de�ned, are employed, could be integrated into the RTCCS in place

of read/write locking.

Further testing of RTCORBA's performance is ongoing. The goal of this testing

is to provide a measure of the prototype's overall ability to reduce the number of

violated timing constraints. The RTCCS plays a part in this by bounding priority

inversion. This testing involves running randomly generated clients with a variety

of deadlines (characterized as short, medium, or long) and start times (allows for

variable system workloads). In addition, the types of methods each client invokes

(i.e., some methods require read locks while others require write locks) are varied

such that a variety of data contention rates are achieved. The metric by which each

test run is judged is the percentage of clients which miss deadlines. These results are

then compared the results of similar tests run in a non-real-time CORBA environment

(i.e., CORBA without any mechanism for enforcing time constraints).

The implementation of the RTCCS presented in this report provides a foundation

for further work in the area of dynamic real-time concurrency control in DOCEs. It

does have limitations in its current form. However, the solutions provided here in

68



addition to the unresolved issues raised during this project contribute to this area of

research.

69



List of References

[BG96] P.G. Bosco and E. Grasso. A programmable concurrency control

service for CORBA. Third International Workshop on Services in

Distributed and Networked Environments SDNE '96, Macau, June

1996.

[DGSWWZ97] L.C. DiPippo, R. Ginis, M. Squadrito, S. Wohlever, V.F. Wolfe,

I. Zykh. Expressing and Enforcing Timing Constraints in a Real-

Time CORBA System, University of Rhode Island Technical Report

TR97-252, Kingston, RI, February 1997.

[DW93] Lisa B. Cingiser DiPippo and Victor Fay Wolfe. Object-based seman-

tic real-time concurrency control. In Proceedings of IEEE Real-Time

Systems Symposium, December 1993.

[Gal95] Bill O. Gallmeister. POSIX.4: Programming for the Real World.

O'Reilly & Associates, Inc., Sebastopol, CA, 1995.

[HGSP96] T. Harrison, A. Gokhale, D. Schmidt, and G. Parulkar. Operating

system support for a high-performance, real-time CORBA. In In-

ternational Workshop on Object-Orientation in Operating Systems:

IWOOOS 1996 Workshop, Seattle, WA, October 1996.

[JWS96] Russell Johnston, Victor Fay Wolfe, and Mark Steele. Common ob-

ject request broker architecture (CORBA), JTA/TAFIM compliant,

distributed object technology. Naval Command, Control and Ocean

Surveillance Center Research, Development, Test and Evaluation Di-

vision, San Diego, CA, Sept 1996.

70



[OMG96] Object Management Group. CORBAservices: Common Object Ser-

vices Speci�cation. Object Management Group, Inc., Framingham,

MA, 1996.

[Raj91] Ragunathan Rajkumar. Synchronization in Real-Time Systems: A

Priority Inheritance Approach. Kluwer Academic Publishers, Boston,

MA, 1991.

[RTSIG96] The Realtime Platform Special Interest Group of the OMG.

CORBA/RT White Paper. Object Management Group, Inc., Fram-

ingham, MA, 1996.

[SRL90] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority

inheritance protocols: An approach to real-time synchronization. In

IEEE Transactions on Computers, 39(9):1175{1185, September 1990.

[Sun95] Sun Microsystems, Inc. Solaris 2.5 Introduction, Sun Microsystems,

Inc., Mountain View, CA, 1995.

[WBTK95] Victor Fay Wolfe, John Black, Bhavani Thuraisingham, and Peter

Krupp. Towards distributed real-time method invocations. In IEEE

Proceedings of the International High Performance Computing Con-

ference, New Delhi, India, December 1995.

[Zykh97] Igor Zykh. Timed Distributed Method Invocations in CORBA, Uni-

versity of Rhode Island Technical Report TR97-254, Kingston, RI,

April 1997.

71



Bibliography

Bosco, P.G. and E. Grasso. A programmable concurrency control service for CORBA.

Third International Workshop on Services in Distributed and Networked Environ-

ments SDNE '96, Macau, June 1996.

DiPippo, L.C., R. Ginis, M. Squadrito, S. Wohlever, V.F. Wolfe, I. Zykh. Express-

ing and Enforcing Timing Constraints in a Real-Time CORBA System, University of

Rhode Island Technical Report TR97-252, Kingston, RI, February 1997.

DiPippo, Lisa B. Cingiser, and Victor Fay Wolfe. Object-based semantic real-time

concurrency control. In Proceedings of IEEE Real-Time Systems Symposium, Decem-

ber 1993.

Gallmeister, Bill O. POSIX.4: Programming for the Real World. O'Reilly & As-

sociates, Inc., Sebastopol, CA, 1995.

Harrison, T., A. Gokhale, D. Schmidt, and G. Parulkar. Operating system support

for a high-performance, real-time CORBA. In International Workshop on Object-

Orientation in Operating Systems: IWOOOS 1996 Workshop, Seattle, WA, October

1996.

IONA Technologies Ltd.,Orbix 2 Programming Guide. IONA Technologies Ltd.,

Dublin, Ireland, 1995.

IONA Technologies Ltd. Orbix 2 Reference Guide. IONA Technologies Ltd., Dublin,

Ireland, 1995.

Johnston, Russell, Victor Fay Wolfe, and Mark Steele. Common object request bro-

ker architecture (CORBA), JTA/TAFIM compliant, distributed object technology.

Naval Command, Control and Ocean Surveillance Center Research, Development,

Test and Evaluation Division, San Diego, CA, Sept 1996.

Object Management Group. The Common Object Request Broker: Architecture and

72



Speci�cation. Object Management Group, Inc., Framingham, MA, 1996.

Object Management Group. CORBAservices: Common Object Services Speci�ca-

tion. Object Management Group, Inc., Framingham, MA, 1996.

Pohl, Ira. Object-Oriented Programming Using C++. The Benjamin/Cummings

Publishing Company, Inc., New York, 1993.

Rajkumar, Ragunathan. Synchronization in Real-Time Systems: A Priority Inheri-

tance Approach. Kluwer Academic Publishers, Boston, MA, 1991.

The Realtime Platform Special Interest Group of the OMG. CORBA/RT White Pa-

per. Object Management Group, Inc., Framingham, MA, 1996.

Sha, Lui, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance proto-

cols: An approach to real-time synchronization. In IEEE Transactions on Computers,

39(9):1175{1185, September 1990.

Sun Microsystems, Inc. Solaris 2.5 Introduction, Sun Microsystems, Inc., Moun-

tain View, CA, 1995.

Wolfe, Victor Fay, John Black, Bhavani Thuraisingham, and Peter Krupp. Towards

distributed real-time method invocations. In IEEE Proceedings of the International

High Performance Computing Conference, New Delhi, India, December 1995.

Zykh, Igor. Timed Distributed Method Invocations in CORBA, University of Rhode

Island Technical Report TR97-254, Kingston, RI, April 1997.

73



Bibliography

[BG96] P.G. Bosco and E. Grasso. A programmable concurrency control

service for CORBA. Third International Workshop on Services in

Distributed and Networked Environments SDNE '96, Macau, June

1996.

[DW93] Lisa B. Cingiser DiPippo and Victor FayWolfe. Object-based seman-

tic real-time concurrency control. In Proceedings of IEEE Real-Time

Systems Symposium, December 1993.

[Gal95] Bill O. Gallmeister. POSIX.4: Programming for the Real World.

O'Reilly & Associates, Inc, Sebastopol, CA, 1995.

[HGSP96] T. Harrison, A. Gokhale, D. Schmidt, and G. Parulkar. Operating

system support for a high-performance, real-time CORBA. In In-

ternational Workshop on Object-Orientation in Operating Systems:

IWOOOS 1996 Workshop, Seattle, WA, October 1996.

[JWS96] Russell Johnston, Victor Fay Wolfe, and Mark Steele. Common ob-

ject request broker architecture (CORBA), JTA/TAFIM compliant,

distributed object technology. Naval Command, Control and Ocean

Surveillance Center Research, Development, Test and Evaluation Di-

vision, San Di ego, CA, Sept 1996.

[OMG96] Object Management Group. CORBAservices: Common Object Ser-

vices Speci�cation. Object Management Group, Inc., Framingham,

MA, 1996.

[Raj91] Ragunathan Rajkumar. Synchronization in Real-Time Systems: A

Priority Inheritance Approach. Kluwer Academic Publishers, Boston,

MA, 1991.

[RTSIG96] The Realtime Platform Special Interest Group of the OMG.

CORBA/RT white paper. Object Management Group, Inc., Fram-

ingham, MA, 1996.

74



[SRL90] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority in-

heritance protocols: An approach to real-time synchronization. IEEE

Transactions on Computers, 39(9):1175{1185, Sept 1990.

[STDW96] Michael Squadrito, Bhavani Thurasingham, Lisa Cingiser DiPippo,

and Victor Fay Wolfe. Towards priority ceilings in semantic object-

based concurrency control. In 1996 International Workshop on Real-

Time Database Systems and Applications, March 1996.

[WBTK95] Victor Fay Wolfe, John Black, Bhavani Thuraisingham, and Peter

Krupp. Towards distributed real-time method invocations. In IEEE

Proceedings of the International High Performance Computing Con-

ference, New Delhi, India, Dec. 1995.

75


