
 1

RapidSched: Static Scheduling And Analysis For Real-Time CORBA

Victor Fay Wolfe, Russell Johnston Peter Kortmann and
Ben Watson

Steven Wohlever

Lisa C. DiPippo Rama
Bethmagalkar, and

Gregory Cooper

SPAWAR Systems Center
San Diego, CA USA

Tri-Pacific Software
Alameda, CA USA

MITRE Corporation
Bedford, MA

The University of Rhode Island russ@spawar.navy.mil peter@tripac.com wohlever@mitre.org
Kingston, RI USA 02881
lastname@cs.uri.edu

Abstract

This paper presents a real-time CORBA Scheduling Service called RapidSched. RapidSched uses a global,
distributed deadline monotonic priority assignment, enforcement of priorities by commercial real-time
operating systems, and distributed priority ceiling resource management. RapidSched is integrated with an
enhanced version of the PERTS real-time analysis tool.

1 Introduction

We have developed RapidSched, an implementation the proposed Real-time CORBS Scheduling Service.

RapidSched uses a global deadline monotonic priority assignment technique along with a distributed

priority ceiling resource access protocol for fixed priority static distributed systems. RapidSched is

integrated with the PERTS scheduling tool from Tri-Pacific Software [1] that was originally developed at

the University of Illinois [2]. In this integrated system, we augmented PERTS to produce a schedulability

analysis (using rate-monotonic analysis techniques), an assignment of unique priorities across the

distributed system, and the priorities that should be used on the local operating systems. The PERTS

schedulability analysis accounts for the additional potential blocking introduced by priority mapping, the

mapping of global system-wide priorities to the priorities on the local real-time operating systems. We

have implemented the Real-Time CORBA Scheduling Service to automatically retrieve the optimal

priorities specified by PERTS and use them to assign the priorities for client and server threads in the

distributed system.

 2

2 Real-Time CORBA Related Work

Many distributed real-time applications, such as command and control, military combat systems, and

automated factory control could benefit from the services provided by CORBA middleware software that

facilitates client/server communication in a time-cognizant manner. A detailed review of real-time

middleware can be found in [11]. Below we describe a few particular implementations and designs.

 A Special Interest Group (SIG) has been formed within the Object Management Group with the goal of

extending the CORBA standard with support for real-time applications. The real-time SIG recently put out

a request for proposals seeking static real-time scheduling in a real-time CORBA framework [3]. Among

other things, the RFP asked for end-to-end predictability of client requests, ordered execution of tasks, and

real-time control of resource allocation.

There have been several real-time CORBA projects initiated recently. MITRE has done work [4,5] to

identify requirements for the use of real-time CORBA in command and control systems. They have

prototyped the approach by porting the ILU ORB from Xerox to the Lynx real-time operating system. This

system provides a static distributed scheduling service supporting rate-monotonic and deadline-monotonic

techniques.

The ACE ORB (TAO)[6], developed at The University of Washington in St. Louis, is a high-performance

endsystem architecture for real-time CORBA. It provides support for specification and enforcement of

quality of service (QoS), as well as a real-time scheduling service. TAO’s scheduling service relies on an

off-line, rate-monotonic scheduler to guarantee that deadlines of real-time tasks are met.

Current work at the University of Illinois Urbana-Champaign is extending the TAO system to allow for on-

line schedulability testing. Along with the statically guaranteed real-time tasks, the new system will

perform admissions tests on dynamic tasks to ensure scheduling feasibility [7].

Previous work at the University of Rhode Island and the SPAWAR Systems Center has developed a

dynamic real-time CORBA system [8] that provides expression and best-effort end-to-end enforcement of

soft real-time client method requests. Clients create Timed Distributed Method Invocations (TDMIs) that

include timing information such as deadline, priority and quality of service. The dynamic real-time

CORBA system provides end-to-end enforcement of the specified timing constraints through extensions to

CORBA’s object services. A Global Priority Service provides a uniform global priority for each client

request based on the constraints specified in the TDMI. It then translates the global priority to a priority

that the server’s local operating system can handle. The current system uses a variation of Earliest

Deadline First (EDF) scheduling, but can easily be changed to support other priority assignment schemes.

 3

The dynamic real-time CORBA system also has a real-time Event Service for prioritizing delivery of

events, and a real-time Concurrency Control Service that provides priority inheritance for requests that are

queued on a server. This work in dynamic RT CORBA has laid the groundwork for the work that we

present in this paper on static scheduling and priority mapping in a real-time CORBA environment.

 3 RapidSched

RapidSched is an implementation of the Real-Time CORBA Scheduling Service, as specified in the current

Real-Time CORBA draft specification [14]. It uses a scheduling algorithm based on deadline monotonic

priority assignment, distributed priority ceiling resource management, and an optimal priority mapping

algorithm to map distributed global priorities to local real-time operating system priorities. The

implementation uses the PERTS tool to generate the scheduling parameters and automatically set them in

Real-Time CORBA application code. This Section describes the Scheduling Service interface in the draft

Real-time CORBA specification. It then describes our scheduling algorithm and RapidSched’s

implementation.

3.1 Real-Time CORBA Scheduling Service Interface

The proposed OMG Real-Time CORBA standard [14] uses the notion of a global, uniform priority

assignment to threads of clients and servants in the CORBA system. Global priority is a total ordering of

those threads in the system that are assigned a priority by the application programmer. Note that some

threads may not be explicitly assigned a priority in application code (e.g. servant threads that inherit the

priority of the client), but that eventually every thread will be assigned a global priority. The programmer

assigns each client thread one or more fixed, unique global priorities from 1 to N, with 1 being lowest

priority and N being highest priority. A client may have more than one priority due to parts of its execution

that have tighter timing constraints or higher importance

Fixed priority scheduling entails, whenever possible, resolving scheduling conflicts by allowing the highest

global priority thread to use a resource on which the conflict occurs. When, for some reason such as

consistency of a shared resource, the RT CORBA system does not resolve conflicts in priority order and

causes a higher priority thread to wait for a lower priority thread, “priority inversion” is said to occur.

Analyzable real-time systems require that priority inversion be bounded. Our implementation’s use of the

DPCP resource management protocol supports the bounding of priority inversion by bounding it resulting

from queuing of clients waiting to access server methods.

RT CORBA also specifies a Scheduling Service that uses the RT CORBA primitives to facilitate enforcing

various fixed-priority real-time scheduling policies across the RT CORBA system. The Scheduling Service

 4

abstracts away from the application some of the complication of using low-level RT CORBA constructs,

such as the POA policies. For applications to ensure that their execution is scheduled according to a

uniform policy, such as global Rate Monotonic Scheduling, RT ORB primitives must be used properly and

their parameters must be set properly in all parts of the RT CORBA system. A Scheduling Service

implementation will choose CORBA Priorities, POA policies, and priority mappings in such a way as to

realize a uniform real-time scheduling policy. Different implementations of the Scheduling Service can

provide different real-time scheduling policies.

The Scheduling Service uses “names” (strings) to provide abstraction of scheduling parameters (such as

CORBA Priorities). The application code uses these names to specify CORBA Activities and CORBA

objects. The Scheduling Service internally associates these names with actual scheduling parameters and

policies. This abstraction improves portability with regard to real-time features, eases use of the real-time

features, and reduces the chance for errors.

The Scheduling Service provides a schedule_activity method that accepts a name and then

internally looks up a pre-configured CORBA priority for that name. The Scheduling Service also provides

a create_POA method to create a CORBA POA, an object in the CORBA server that controls access to

the CORBA objects. The create_POA call sets the POA’s RT CORBA policies to support the uniform

scheduling policy that the Scheduling Service is enforcing. For instance, if the Scheduling Service were

enforcing a scheduling policy with priority ceiling semantics, it might create thread pools with priority

lanes at the priority ceiling of the objects it manages to ensure that threads start at a high enough priority

before dispatch. The Scheduling Service provides a third method,

0 install_priority_mapping(. . .);

Client
C1 sched = create scheduling service object;
C2 obj = bind to server object
C3 sched->schedule_activity ("activity1");
C4 obj->method1(params); // invoke the object
C5 sched->schedule_activity ("activity2");
C6 obj->method2(params);

Server Main
S1 sched = create scheduling service object;
S3 poa1 = sched->create_POA(. . .);
S4 obj = poa1->creat_object (params); // create object
S5 sched->schedule_object(obj, "Object1");

...

Figure 1: Example of RT CORBA Static Scheduling Service

 5

called schedule_object, that accepts a name for the object and internally looks up scheduling

parameters for that object. For instance, it could set its priority ceiling so that it can do a priority ceiling

check at dispatch time.

The example in Figure 1, from the RT CORBA draft standard [14] illustrates how the Scheduling Service

could be used and also illuminates some of the issues in creating RT CORBA clients and servers. Assume

that a CORBA object has two methods: method1 and method2. A client wishes to call method1

under one deadline and method2 under a different deadline.

In Step 0, the Scheduling Service installs a priority mapping that is consistent with the policy enforced by

the Scheduling Service implementation. For instance, a priority mapping for an analyzable Deadline

Monotonic policy might be different than the priority mapping for an analyzable Rate Monotonic policy.

The schedule_activity calls on lines C3 and C5 specify names for CORBA Activities. The

Scheduling Service internally associates these names with their respective CORBA priorities. These

priorities are specified when the Scheduling Service is instantiated at system startup. For instance, our

RapidSched specifies deadline monotonic priorities through a configuration file.

The server in the example has two Scheduling Service calls. The call to create_POA allows the

application programmer to set the non-real-time policies, and internally sets the real-time policies to

enforce the scheduling algorithm of the Scheduling Service. The resulting POA is used in line S4 to create

the object. The second Scheduling Service call in the server is the schedule_object call in line S5.

This call allows the Scheduling Service to associate a name with the object. Any RT scheduling

parameters for this object, such as the priority ceiling, are assumed to be internally associated with the

object’s name by the Scheduling Service implementation.

3.2 RapidSched Algorithm

RapidSched uses a global Deadline Monotonic priority assignment, Distributed Priority Ceiling resource

management, and an optimal priority mapping algorithm. We now described each of these aspects of its

scheduling algorithm.

Deadline Monotonic Scheduling. The deadline monotonic (DM) priority assignment scheme assumes

periodic tasks and statically assigns highest priority to tasks with the shortest deadline [3]. This technique

works well with Real-Time CORBA for several reasons. First, DM is a fixed priority assignment scheme,

which is required by the current Real-Time CORBA draft. Second, the periodic tasks can have deadlines

that are possibly different from their periods, and so DM is a better choice than rate monotonic (RM),

 6

which only takes period into account. Third, the schedulability analysis of DM is well-known [3], although

not optimal in a distributed system [9]. In fact, it has been shown that the problem of scheduling any non-

trivial system of tasks requiring ordered execution on more than two processors is NP-hard [10].

Distributed Priority Ceiling. In our scheduling approach, we use the distributed priority ceiling protocol

(DPCP) for resource access, such as the access of servers by clients. In a single node system,

schedulability of hard real-time tasks that require resources can be computed using well-known analyses

[11,12,15] that take into account the timing and resource requirements of all tasks in the system. In a

distributed system, this analysis is complicated by the fact that tasks may require resources that reside on

other nodes than their own.

The Distributed Priority Ceiling Protocol (DPCP) [15] extends the priority ceiling protocol (PCP) [15] by

taking into account accesses to remote resources. In the DPCP, a resource that is accessed by tasks

allocated to different processors than its own is called a global resource. All other resources (those only

accessed by local tasks) are local resources. A critical section on a global resource is referred to as a

global critical section (GCS). A local critical section (LCS) refers to a critical section on a local resource.

The base priority (BP) of a system of tasks is a fixed priority, strictly higher than the priority of the highest

priority task in the system. We assume that higher numbers correspond to higher priorities. As in the

single-node PCP, the priority ceiling of a local resource is the priority of the highest priority task that will

ever access it. The priority ceiling of a global resource is the sum of the BP and the priority of the highest

priority task that will ever access it. When a task executes a GCS, the task suspends itself on its local

processor, and the GCS executes at a priority equal to the sum of the BP and the priority of the calling task

on the host processor of the resource. Each processor in the system runs the PCP given the priorities and

priority ceilings as described above.

The schedulability analysis of the DPCP is an extension of the schedulability analysis of the PCP. The only

difference is that there are more forms of blocking due to access of remote resources. For instance, the

DPCP analysis must take into account blocking that occurs when a task requests a global resource on

another node, but must wait for a lower priority task that currently holds the resource.

Priority Mapping. The theory behind the analysis of DM+DPCP assumes unique priorities assigned to

tasks and GCS’s. However, consider an example with 100 clients on a node, each with 2 intermediate

deadlines, which map to 300 tasks, all invoking methods (GCSs) on other nodes. If the node was running

VXWorks as its local real-time operating system, there would be only 256 local priorities with which to

execute the 300 tasks. This is an instance of the priority mapping problem. We have developed an optimal

algorithm to perform priority mapping for fixed priority Real-Time CORBA systems. The algorithm

essentially traverses all tasks and GCSs in global priority order attempting to “squeeze” global priorities

 7

into local priorities. After each attempted squeeze, a schedulability analysis is done to determine if the

system remains schedulable. This process continues until each node has fit all global priorities assigned to

it. Details of this algorithm are presented in [13].

3.3 RapidSched Implementation

RapidSched consists of a PERTS front-end to generate scheduling parameters and a set of Real-Time

CORBA libraries to enforce the semantics of the Scheduling Service.

PERTS Front-End. We have developed an extended version of the PERTS [1] real-time analysis tool to

determine the schedulability of a RT CORBA system [13]. PERTS provides a graphical interface to allow

users to enter real-time task information, such as deadline, execution time, resource requirements. PERTS

then computes a schedulability analysis on the given system using well-known techniques, such as rate-

monotonic analysis [11,12,15]. PERTS was originally developed at the University of Illinois, Urbana-

Champaign, and commercialized by Tri-Pacific Software/. We have developed a mapping from RT

CORBA clients and servers to PERTS primitives – tasks and resources. A periodic client with m

intermediate deadlines is mapped to m dependent tasks, each with the same period, and with deadlines

corresponding to the intermediate deadlines of the client. Each server in the RT CORBA system is mapped

to a PERTS resource. This allows users to enter RT CORBA constructs, and have PERTS automatically

translate them into primitives that it can analyze. The extended PERTS analyzes the RT CORBA system

using deadline monotonic scheduling and distributed priority ceiling protocol for concurrency control.

Given the real-time requirements of each client and server in the system, if the system is found to be

schedulable, the extended PERTS system produces priorities for each client task, and priority ceilings for

each server resource in the system. If the system is found to be non-schedulable, PERTS produces graphs

and other information for each client task to indicate what caused the system to be non-schedulable.

Scheduling Service Libraries. The Real-Time CORBA Scheduling Service interface described in Section

3.1 requires CORBA priorities and a priority mapping function. The implementation of DPCP requires

knowing the priority ceiling for CORBA servers. RapidSched takes these parameters automatically from

the output of PERTs.

Recall that the extended PERTS produces a mapping of global priorities to local system priorities. PERTS

also produces a second mapping of unique task names to global priorities and a third mapping of priority

ceilings associated with unique names for each server in the system. These mappings are generated by

PERTS as a set of configuration files that are read in by RapidSched when it is instantiated at system

startup.

 8

Library code linked with
every client and server

Shared Memory Configuration
file (global priorities, local
priorities, prio. ceilings)

PERTS generates output file with global
priorities, local priorities, priority
ceilings, etc. This is Scheduling Service
configuration file.

RTOS

Figure 2: RapidSched Static RT CORBA Scheduling Service

RapidSched currently implements deadline monotonic scheduling with DPCP for control of shared

resources. All priorities and priority ceilings are computed a priori through PERTS, as described above.

RapidSched uses ORB interceptors to implement the PCP on each node. An interceptor is an ORB feature

that provides an interface to allow application code to be executed in the internals of the ORB. RapidSched

installs an interceptor that catches all calls to the object’s methods. Before the method is executed and a

result is passed back to the calling client, the interceptor executes the priority ceiling check; i.e. the priority

of the client task is strictly higher than the highest priority ceiling of servers on the node that are locked by

other tasks.

The objects of RapidSched are implemented as shared library code and are co-located with their respective

clients and servers. Thus, there is no network delay for scheduling service calls, and inter-process

communication on the same node is minimized. The scheduling objects communicate via shared memory

(see Figure 6), mutexes, and condition variables to implement the concurrency control mechanism.

Information about priority mapping is also stored in shared memory for fast run-time access.

Conclusion

This paper has described RapidSched’s technique for real-time fixed priority scheduling in middleware for

static applications. It assumes the existence of preemptive priority-based scheduling in the real-time

 9

operating systems on the nodes in the system. In our technique, client threads have their priorities set using

deadline monotonic assignment of global priorities across the distributed system. Server threads have their

priority. RapidSched adheres to the current proposed standard Real-Time CORBA Scheduling Service

interface. RapidSched is integrated with an enhanced version of the commercial PERTS real-time analysis

tool which provides schedulability analysis and the optimal global and local priority settings. These settings

are automatically used by RapidSched to relieve the application programmer from determining and entering

them by hand. We have prototypes of RapidSched for the ORBExpress Real-Time ORB from OIS Inc on

VXWorks RTOS from WindRiver Systems, and for ChorusORB on ClassiX RTOS from Sun, and for

Orbix ORB from Iona on Solaris from Sun.

References

[1] TriPacific Software. at www.tripac.com.

[2] Jane W. S. Liu, et. al. PERTS: A Prototyping Environment for Real-Time Systems. Technical Report
UIUCDCS-R-93-1802, The University of Illinois, Urbana, May 1993. Commercial version information
available at www.tripac.com.

[3] OMG. Real-Time Special Interest Group’s Request For Proposals. Electronic document at
http://www.omg.org/docs/realtime/97-05-03.txt.

[4] P. Krupp, A. Schafer, B. Thuraisingham, and V.F. Wolfe. On Real-Time Extensions to the Common
Object Request Broker Architecture. In Proceedings of the Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA) ’94 Workshop on Experiences with CORBA, Sept. 1994.

[5] E. Bensley, et. al. Object-Oriented Approach for Designing Evolvable Real-Time Command and
Control Systems. In WORDS ’96, February, 1996.

[6] D. Schmidt, R. Bector, D. Levine, S. Mungee, G. Parulkar. TAO: A Middleware Framework for Real-
Time ORB Endsystems. In Proceedings of the 1997 IEEE Workshop on Middleware for Distributed Real-
Time Systems and Services, San Francisco, CA, December 1997.

[7] W. Feng, U. Syyid and J. W.-S. Liu. Providing for an Open, Real-Time CORBA. In Proceedings of
the 1997 IEEE Workshop on Middleware for Distributed Real-Time Systems and Services, San Francisco,
CA, December 1997.

[8] L. DiPippo, V.F. Wolfe, R. Johnston, R. Ginis, M. Squadrito, S. Wohlever, I. Zykh. Expressing and
Enforcing Timing Constraints in a Dynamic Real-Time CORBA System. Real-Time Systems. to be
published.

[9] Jun Sun. Fixed-Priority End-to-End Scheduling in Distributed Real-Time Systems. PhD Thesis.
University of Illinois, Urbana-Champaign, 1997.

[10] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Complexity of Machine Scheduling Problem.
Annals of Discrete Mathematics, 1:343-362, 1977.

[11] C. Liu and J. Layland. Scheduling Algorithms for Multiprogramming in a Hard Real-Time
Environment. Journal of the ACM, vol. 30, pp. 46-61, January 1973.

[12] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior. In Proceedings fo the IEEE Real Time Systems Symposium,
1989.

 10

[13] L. DiPippo, V.F. Wolfe, L. Esibov, G. Cooper, R. Johnston, B. Thuraisingham, J. Mauer. Scheduling
and Priority Mapping for Static Real-Time Middleware. University of Rhode Island Technical Report ,
November 1998. Submitted to Real-Time Systems special issue on real-time middleware.

[14] OMG. Realtime CORBA. Electronic document at http://www.omg.org/docs/orbos/98-10-05.pdf.

[15] Ragunathan Rajkumar. Synchronization in Real-Time Systems: A Priority Inheritance Approach.
Kluwer Academic Publishers, Boston, MA. 1991.

