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Abstract 

This paper presents a real-time CORBA Scheduling Service called RapidSched. RapidSched uses a global, 
distributed deadline monotonic priority assignment, enforcement of priorities by commercial real-time 
operating systems, and distributed priority ceiling resource management.  RapidSched is integrated with an 
enhanced version of the PERTS real-time analysis tool. 

1 Introduction 

We have developed RapidSched, an implementation  the proposed Real-time CORBS Scheduling Service. 

RapidSched uses a global deadline monotonic priority assignment technique along with a distributed 

priority ceiling resource access protocol for fixed priority static distributed systems. RapidSched   is 

integrated with the PERTS scheduling tool from Tri-Pacific Software [1] that was originally developed at 

the University of Illinois [2]. In this integrated system, we augmented PERTS to produce a schedulability 

analysis (using rate-monotonic analysis techniques), an assignment of unique priorities across the 

distributed system, and the priorities that should be used on the local operating systems. The PERTS 

schedulability analysis accounts for the additional potential blocking introduced by  priority mapping, the 

mapping of global  system-wide priorities to the priorities on the local real-time operating systems. We 

have implemented the Real-Time CORBA Scheduling Service to automatically retrieve the optimal 

priorities specified by PERTS and use them to assign the priorities for client and server threads in the 

distributed system. 
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2 Real-Time CORBA Related Work 

Many distributed real-time applications, such as command and control, military combat systems, and 

automated factory control could benefit from the services provided by CORBA middleware software that 

facilitates client/server communication in a time-cognizant manner.  A detailed review of real-time 

middleware can be found in [11].  Below we describe a few particular implementations and designs. 

 A Special Interest Group (SIG) has been formed within the Object Management Group with the goal of 

extending the CORBA standard with support for real-time applications.   The real-time SIG recently put out 

a request for proposals seeking static real-time scheduling in a real-time CORBA framework [3].  Among 

other things, the RFP asked for end-to-end predictability of client requests, ordered execution of tasks, and 

real-time control of resource allocation.  

There have been several real-time CORBA projects initiated recently.  MITRE has done work [4,5] to 

identify requirements for the use of real-time CORBA in command and control systems.  They have 

prototyped the approach by porting the ILU ORB from Xerox to the Lynx real-time operating system.  This 

system provides a static distributed scheduling service supporting rate-monotonic and deadline-monotonic 

techniques. 

The ACE ORB (TAO)[6], developed at The University of Washington in St. Louis, is a high-performance 

endsystem architecture for real-time CORBA.  It provides support for specification  and enforcement of 

quality of service (QoS), as well as a real-time scheduling service.  TAO’s scheduling service relies on an 

off-line, rate-monotonic scheduler to guarantee that deadlines of real-time tasks are met. 

Current work at the University of Illinois Urbana-Champaign is extending the TAO system to allow for on-

line schedulability testing.  Along with the statically guaranteed real-time tasks, the new system will 

perform admissions tests on dynamic tasks to ensure scheduling feasibility [7]. 

Previous work at the University of Rhode Island and the  SPAWAR Systems Center has developed a 

dynamic real-time CORBA system [8] that provides expression and best-effort end-to-end enforcement of 

soft real-time client method requests.  Clients create Timed Distributed Method Invocations (TDMIs) that 

include timing information such as deadline, priority and quality of service.  The dynamic real-time 

CORBA system provides end-to-end enforcement of the specified timing constraints through extensions to 

CORBA’s object services.  A Global Priority Service provides a uniform global priority for each client 

request based on the constraints specified in the TDMI.  It then translates the global priority to a priority 

that the server’s local operating system can handle.  The current system uses a variation of Earliest 

Deadline First (EDF) scheduling, but can easily be changed to support other priority assignment schemes.  
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The dynamic real-time CORBA system also has a real-time Event Service for prioritizing delivery of 

events, and a real-time Concurrency Control Service that provides priority inheritance for requests that are 

queued on a server.  This work in dynamic RT CORBA has laid the groundwork for the work that we 

present in this paper on static scheduling and priority mapping in a real-time CORBA environment. 

 3 RapidSched 

RapidSched is an implementation of the Real-Time CORBA Scheduling Service, as specified in the current 

Real-Time CORBA draft specification [14]. It uses a scheduling algorithm based on deadline monotonic 

priority assignment, distributed priority ceiling resource management, and an optimal priority mapping 

algorithm to map distributed global priorities to local real-time operating system priorities. The 

implementation uses the PERTS tool to generate the scheduling parameters and automatically set them in 

Real-Time CORBA application code. This Section describes the Scheduling Service interface in the draft 

Real-time CORBA specification. It then describes our scheduling algorithm and RapidSched’s 

implementation. 

3.1 Real-Time CORBA Scheduling Service Interface  

The proposed OMG Real-Time CORBA standard [14]  uses the notion of a global, uniform priority 

assignment to threads of clients and servants in the CORBA system.  Global priority is a total ordering of 

those threads in the system that are assigned a priority by the application programmer. Note that some 

threads may not be explicitly assigned a priority in application code (e.g. servant threads that inherit the 

priority of the client), but that eventually every thread will be assigned a global priority. The programmer 

assigns each client thread one or more fixed, unique global priorities from 1 to N, with 1 being lowest 

priority and N being highest priority. A client may have more than one priority due to parts of its execution 

that have tighter timing constraints or higher importance 

Fixed priority scheduling entails, whenever possible, resolving scheduling conflicts by allowing the highest 

global priority thread to use a resource on which the conflict occurs. When, for some reason such as 

consistency of a shared resource, the RT CORBA system does not resolve conflicts in priority order and 

causes a higher priority thread to wait for a lower priority thread, “priority inversion” is said to occur. 

Analyzable real-time systems require that priority inversion be bounded. Our implementation’s use of the 

DPCP resource management protocol supports the bounding of priority inversion by bounding it resulting 

from queuing of clients waiting to access server methods. 

RT CORBA also specifies a Scheduling Service that uses the RT CORBA primitives to facilitate enforcing 

various fixed-priority real-time scheduling policies across the RT CORBA system.  The Scheduling Service 
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abstracts away from the application some of the complication of using low-level RT CORBA constructs, 

such as the POA policies. For applications to ensure that their execution is scheduled according to a 

uniform policy, such as global Rate Monotonic Scheduling, RT ORB primitives must be used properly and 

their parameters must be set properly in all parts of the RT CORBA system. A Scheduling Service 

implementation will choose CORBA Priorities, POA policies, and priority mappings in such a way as to 

realize a uniform real-time scheduling policy. Different implementations of the Scheduling Service can 

provide different real-time scheduling policies. 

The Scheduling Service uses “names” (strings) to provide abstraction of scheduling parameters (such as 

CORBA Priorities).  The application code uses these names to specify CORBA Activities and CORBA 

objects. The Scheduling Service internally associates these names with actual scheduling parameters and 

policies. This abstraction improves portability with regard to real-time features, eases use of the real-time 

features, and reduces the chance for errors. 

The Scheduling Service provides a schedule_activity method that accepts a name and then 

internally looks up a pre-configured CORBA priority for that name. The Scheduling Service also provides 

a create_POA method to create a CORBA POA, an object in the CORBA server that controls access to 

the CORBA objects.  The create_POA call  sets the POA’s RT CORBA policies to support the uniform 

scheduling policy that the Scheduling Service is enforcing. For instance, if the Scheduling Service were 

enforcing a scheduling policy with priority ceiling semantics, it might create thread pools with priority 

lanes at the priority ceiling of the objects it manages to ensure that threads start at a high enough priority 

before dispatch. The Scheduling Service provides a third method,   

0 install_priority_mapping(. . .);

Client
C1 sched = create scheduling service object;
C2 obj = bind to server object
C3 sched->schedule_activity ("activity1");
C4 obj->method1( params );   // invoke the object
C5 sched->schedule_activity ("activity2");
C6 obj->method2(params );

Server Main
S1 sched = create scheduling service object;
S3 poa1 = sched->create_POA(. . .);
S4 obj = poa1->creat_object ( params );   // create object
S5 sched->schedule_object(obj, "Object1" );

...

 

Figure 1: Example of RT CORBA Static Scheduling Service 
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called schedule_object, that accepts a name for the object and internally looks up scheduling 

parameters for that object.  For instance, it could set its priority ceiling so that it can do a priority ceiling 

check at dispatch time. 

 
The example in Figure 1, from the RT CORBA draft standard [14] illustrates how the Scheduling Service 

could be used and also illuminates some of the issues in creating RT CORBA clients and servers.  Assume 

that a CORBA object has two methods:  method1 and method2.  A client wishes to call method1 

under one deadline and method2 under a different deadline.  

In Step 0, the Scheduling Service installs a priority mapping that is consistent with the policy enforced by 

the Scheduling Service implementation. For instance, a priority mapping for an analyzable Deadline 

Monotonic policy might be different than the priority mapping for an analyzable Rate Monotonic policy.  

The schedule_activity calls on lines C3 and C5 specify names for CORBA Activities.  The 

Scheduling Service internally associates these names with their respective CORBA priorities. These 

priorities are specified when the Scheduling Service is instantiated at system startup.  For instance, our 

RapidSched specifies deadline monotonic priorities through a configuration file. 

The server in the example has two Scheduling Service calls. The call to create_POA allows the 

application programmer to set the non-real-time policies, and internally sets the real-time policies to 

enforce the scheduling algorithm of the Scheduling Service.  The resulting POA is used in line S4 to create 

the object.  The second Scheduling Service call in the server is the schedule_object call in line S5.  

This call allows the Scheduling Service to associate a name with the object.  Any RT scheduling 

parameters for this object, such as the priority ceiling, are assumed to be internally associated with the 

object’s name by the Scheduling Service implementation.  

 

3.2 RapidSched Algorithm 
 
RapidSched uses a global Deadline Monotonic priority assignment, Distributed Priority Ceiling resource 

management, and an optimal priority mapping algorithm. We now described each of these aspects of its 

scheduling algorithm. 

Deadline Monotonic Scheduling. The deadline monotonic (DM) priority assignment scheme assumes 

periodic tasks and statically assigns highest priority to tasks with the shortest deadline [3].  This technique 

works well with Real-Time CORBA for several reasons.  First, DM is a fixed priority assignment scheme, 

which is required by the current Real-Time CORBA draft.  Second, the periodic tasks can have deadlines 

that are possibly different from their periods, and so DM is a better choice than rate monotonic (RM), 
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which only takes period into account.  Third, the schedulability analysis of DM is well-known [3], although 

not optimal in a distributed system [9].  In fact, it has been shown that the problem of scheduling any non-

trivial system of tasks requiring ordered execution on more than two processors is NP-hard [10]. 

Distributed Priority Ceiling. In our scheduling approach, we use the distributed priority ceiling protocol 

(DPCP) for resource access, such as the access of servers by clients.   In a single node system, 

schedulability of hard real-time tasks that require resources can be computed using well-known analyses 

[11,12,15] that take into account the timing and resource requirements of all tasks in the system.  In a 

distributed system, this analysis is complicated by the fact that tasks may require resources that reside on 

other nodes than their own.  

The Distributed Priority Ceiling Protocol (DPCP) [15] extends the priority ceiling protocol (PCP) [15] by 

taking into account accesses to remote resources.  In the DPCP, a resource that is accessed by tasks 

allocated to different processors than its own is called a global resource.  All other resources (those only 

accessed by local tasks) are local resources.  A critical section on a global resource is referred to as a 

global critical section (GCS).  A local critical section (LCS) refers to a critical section on a local resource.  

The base priority (BP) of a system of tasks is a fixed priority, strictly higher than the priority of the highest 

priority task in the system.  We assume that higher numbers correspond to higher priorities.  As in the 

single-node PCP, the priority ceiling of a local resource is the priority of the highest priority task that will 

ever access it.  The priority ceiling of a global resource is the sum of the BP and the priority of the highest 

priority task that will ever access it.  When a task executes a GCS, the task suspends itself on its local 

processor, and the GCS executes at a priority equal to the sum of the BP and the priority of the calling task 

on the host processor of the resource.  Each processor in the system runs the PCP given the priorities and 

priority ceilings as described above. 

The schedulability analysis of the DPCP is an extension of the schedulability analysis of the PCP.  The only 

difference is that there are more forms of blocking due to access of remote resources.  For instance, the 

DPCP analysis must take into account blocking that occurs when a task requests a global resource on 

another node, but must wait for a lower priority task that currently holds the resource.  

Priority Mapping. The theory behind the analysis of DM+DPCP assumes unique priorities assigned to 

tasks and GCS’s.  However, consider an example with 100 clients on a node, each with 2 intermediate 

deadlines, which map to 300 tasks, all invoking methods (GCSs) on other nodes.  If the node was running 

VXWorks  as its local real-time operating system, there would be only 256 local priorities with which to 

execute the 300 tasks.  This is an instance of the priority mapping problem. We have developed an  optimal 

algorithm to perform priority mapping for fixed priority Real-Time CORBA systems. The algorithm  

essentially traverses all tasks and GCSs in global priority order attempting to “squeeze” global priorities 
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into local priorities. After each attempted squeeze, a schedulability analysis is done to determine if the 

system remains schedulable. This process continues until each node has fit all global priorities assigned to 

it. Details of this algorithm are presented in [13]. 

 

3.3 RapidSched Implementation 
 

RapidSched consists of a PERTS front-end to generate scheduling parameters and a set of Real-Time 

CORBA libraries to enforce the semantics of the Scheduling Service. 

 
PERTS Front-End.  We have developed an extended version of the PERTS  [1]  real-time analysis tool  to 

determine the schedulability of a RT CORBA system [13]. PERTS provides a graphical interface to allow 

users to enter real-time task information, such as deadline, execution time, resource requirements.  PERTS 

then computes a schedulability analysis on the given system using well-known techniques, such as rate-

monotonic analysis [11,12,15].  PERTS was originally developed at the University of Illinois, Urbana-

Champaign, and commercialized by Tri-Pacific Software/. We have developed a mapping from RT 

CORBA clients and servers to PERTS primitives – tasks and resources.  A periodic client with m 

intermediate deadlines is mapped to m dependent tasks, each with the same period, and with deadlines 

corresponding to the intermediate deadlines of the client.  Each server in the RT CORBA system is mapped 

to a PERTS resource.  This allows users to enter RT CORBA constructs, and have PERTS automatically 

translate them into primitives that it can analyze.  The extended PERTS analyzes the RT CORBA system 

using deadline monotonic scheduling and distributed priority ceiling protocol for concurrency control.  

Given the real-time requirements of each client and server in the system, if the system is found to be 

schedulable, the extended PERTS system produces priorities for each client task, and priority ceilings for 

each server resource in the system.  If the system is found to be non-schedulable, PERTS produces graphs 

and other information for each client task to indicate what caused the system to be non-schedulable. 

Scheduling Service Libraries.  The Real-Time CORBA Scheduling Service interface described in Section 

3.1 requires CORBA priorities and a priority mapping function. The implementation of DPCP requires 

knowing the priority ceiling for CORBA servers. RapidSched takes these parameters automatically from 

the output of PERTs. 

Recall that the extended PERTS produces a mapping of global priorities to local system priorities.  PERTS 

also produces a second mapping of unique task names to global priorities and a third mapping of priority 

ceilings associated with unique names for each server in the system.  These mappings are generated by 

PERTS as a set of configuration files that are read in  by RapidSched  when it is instantiated at system 

startup. 
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Library code linked with
every client and server

Shared Memory Configuration
file (global priorities, local
priorities,  prio. ceilings)

PERTS generates output file with global
priorities, local priorities, priority
ceilings, etc. This is Scheduling Service
configuration file.

RTOS
 

Figure 2: RapidSched Static RT CORBA Scheduling Service 

 

RapidSched currently implements deadline monotonic scheduling with DPCP for control of shared 

resources. All priorities and priority ceilings are computed a priori through PERTS, as described above.  

RapidSched uses ORB interceptors to implement the PCP on each node.  An interceptor is an ORB feature 

that provides an interface to allow application code to be executed in the internals of the ORB.  RapidSched  

installs an interceptor that catches all calls to the object’s methods.  Before the method is executed and a 

result is passed back to the calling client, the interceptor executes the priority ceiling check; i.e. the priority 

of the client task is strictly higher than the highest priority ceiling of servers on the node that are locked by 

other tasks. 

The objects of RapidSched are implemented as shared library code and are co-located with their respective 

clients and servers.  Thus, there is no network delay for scheduling service calls, and inter-process 

communication on the same node is minimized.  The scheduling objects communicate via shared memory 

(see Figure 6), mutexes, and condition variables to implement the concurrency control mechanism.  

Information about priority mapping is also stored in shared memory for fast run-time access. 

Conclusion 

This paper has described RapidSched’s technique for real-time fixed priority scheduling in middleware for 

static applications. It assumes the existence of preemptive priority-based scheduling in the real-time 
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operating systems on the nodes in the system.  In our technique, client threads have their priorities set using 

deadline monotonic assignment of global priorities across the distributed system. Server threads have their 

priority. RapidSched adheres to the current proposed  standard Real-Time CORBA Scheduling Service 

interface. RapidSched is integrated with an enhanced version of the commercial PERTS real-time analysis 

tool which provides schedulability analysis and the optimal global and local priority settings. These settings 

are automatically used by RapidSched to relieve the application programmer from determining and entering 

them by hand. We have prototypes of RapidSched for the ORBExpress Real-Time ORB from OIS Inc on 

VXWorks RTOS from WindRiver Systems, and for ChorusORB on ClassiX RTOS from Sun, and for 

Orbix ORB from Iona on Solaris from Sun. 
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