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Chapter 1 

 

Introduction 

 

This thesis presents the necessary extensions to the CORBA standard and CORBA 

Services to support requirements of a real-time distributed system. It also describes a 

prototype implementation on which the tests were conducted, and analyzes the results. 

 

1.1      Motivation 

 

Distributed object computing is becoming a widely accepted programming paradigm for 

applications that require seamless interoperability among heterogeneous clients and 

servers. The Object Management Group (OMG) has developed the Common Object 

Request Broker Architecture (CORBA) as a standard software specification for such 

distributed environments.  This standard specifies an Interface Definition Language 

(IDL) for the description of interfaces to the functional behavior of distributed 

components.  The standard also specifies Object Services [2], which facilitate standard 

client-server interaction with a set of capabilities (i.e. Naming, Event, etc.), and an Object 

Request Broker (ORB), which is the middleware that allows for the seamless interaction 

between distributed client objects and server objects. 
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Many distributed real-time applications, such as automated factory control, 

avionics navigation and military target tracking, could benefit from a standard 

architecture like CORBA. The designers of many of these applications are considering 

CORBA for their architecture but are finding it is currently inadequate to support real-

time requirements. For example, the IDL describes the interface to the functional 

behavior of distributed components, but does not explicitly describe timing constraints 

for their behavior. Furthermore, system services provided by distributed environments 

offer little support for end-to-end real-time scheduling across the environment. In fact, 

some environments do not provide such basic services as synchronized clocks and 

bounded message latencies.  

Recently, a Special Interest Group (SIG) has been formed within the OMG with 

the goal of examining the current CORBA standard and determining requirements for 

supporting real-time applications.  Specifically, the real-time SIG is focusing on 

supporting the ability to express and enforce timing constraints by extending the current 

CORBA standard (CORBA/RT).  The SIG has produced a white paper [1] that details the 

desired capabilities for a distributed object computing environment to support real-time. 

The real-time desired capabilities specified in the CORBA/RT SIG white paper are 

classified into three areas: desired capabilities for the operating environment; desired 

capabilities for the ORB architecture; desired capabilities for the object services and 

facilities. 

This thesis presents object services desired capabilities that provide and support  

expressing of timing constraints. These desired capabilities are: expressing of timing 
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constraints and handling their violations on CORBA method invocations, Global Time 

Service and clock synchronization, and Real-Time Event Service. 

 

1.2      Goal of Research 

 

The goal of this research is to develop CORBA/RT desired capabilities involving object 

services and features for handling real-time client-server interaction. In Real-Time 

CORBA a client must have some way of expressing timing constraints on its request; and 

CORBA must provide object services that support enforcement of the expressed timing 

constraints. This involves designing and implementing a model of Timed Distributed 

Method Invocations (TDMIs), and designing and remodeling some of the CORBA 

Services to meet real-time requirements.  

 

1.3      Approach Used 

 

In order to achieve the goal, the current CORBA standard was examined and evaluated. 

Our research group has submitted the results to the OMG and proposed a model of TDMI 

along with the extensions to the CORBA Services to support that model. We are pleased 

to announce that most of our changes were accepted and incorporated into the SIG’s 

white paper [1].  

 The goal of this research is to extend the current CORBA standard with the object 

Services to meet real-time requirements and desired capabilities without, actually, 

changing the standard itself. 
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1.4      Outline 

 

Chapter 2 contains a review of real-time systems and their requirements, the CORBA 

standard and one of its implementations. Also, this chapter gives an overview of different 

approaches to build Real-Time CORBA. Chapter 3 describes the model of TDMIs, and 

the design of a CORBA Global Time Service with our approach for clock 

synchronization. This chapter also presents an overview of the CORBA Event Service 

and describes the Real-Time Event Service requirements. Chapter 4 describes the 

prototype implementation that was used to evaluate the model of TDMIs, Global Time 

and Real-Time Event Services. Chapter 5 presents and analyzes the results of the 

performance tests using simulated workloads. Chapter 6 explains the contributions and 

limitations of this thesis, and discusses future work. 

 

 

 

 

 

 

 

 

Chapter 2 
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Related Work 

 

This section provides background information on real-time systems and their 

requirements, the current CORBA standard and its implementation, and it summarizes 

known efforts to build Real-Time CORBA. It presents also the CORBA/RT SIG’s 

desired capabilities involving Global Time and Real-Time Event Services as well as 

features for handling real-time client-server interactions. 

 

2.1 CORBA standard and its Implementation 

 

The basic notion behind CORBA is to provide a uniform way for any object to receive 

and respond to a request from any requester (client), either another object or even a 

traditional nonobject-oriented program. Once such a request is made, the ORB makes 

sure that the request is delivered to an appropriate receiving object, no matter where it is 

and how it is implemented. To provide all these capabilities the CORBA specification 

defines an architecture of interfaces that may be implemented in different ways by 

different vendors. The architecture was specifically designed to separate the concerns of 

interfaces and implementations (Figure 1). The main components of the architecture may 

be divided into three specific groups: client side, implementation (server) side, and the 

ORB core. The client and server sides represent interfaces to the ORB via the IDL.  
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Figure 1:  Object Request Broker Technology 

 

As mentioned previously, the purpose of  the IDL is to allow the language-

independent expression of interfaces, including the complete signatures (name, 

parameters and their types, etc.) of methods or functions, and accessible attributes. An 

interesting aspect of the IDL is exceptions. Exception declarations define a struct-like 

data structure with attributes that can be used to pass information about an exception 

condition to a service requester. An exception is declared with its name, which is 

accessible as a value when the exception is raised, allowing the client to determine which 

exception has been received  

The client-side architecture consists of three components:  

• the Dynamic Invocation interface (Stub) - a mechanism for specifying request at 

runtime; 
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• the IDL stub interface - small piece of machine-language code, which is generated 

according to IDL interface definitions; 

• the ORB service interface - a number of functions that may be accessed directly by 

the client code (e.g. retrieving a reference to an object). 

One aspect of the client-side interface is shared by object implementations: the ORB 

services. The other two components on the implementation side are: 

• the IDL skeleton interface - is an up-call interface through which the ORB calls the 

method skeletons of the implementation, on a request by a client;  

• the Object Adapter - is the means by which server implementations access most of the 

services provided by the ORB (e.g. generation and interpretation of object reference). 

The CORBA specification is not explicit about what services an adapter must support, 

but it is clear that the adapter is intended to isolate object implementations from the ORB 

core as much as possible. 

 Objects in CORBA are created and destroyed dynamically in response to the 

issuance of requests. Objects can also participate in any of the normal types of 

relationships, with perhaps the most important being subtype/supertype relationships or 

inheritance. Inheritance between object interfaces is specified syntactically by using the 

OMG’s IDL . The object model in CORBA is strongly typed. As in C++, types are used 

to restrict and characterize operations. Unlike languages such as Smalltalk, these types 

are not first-order objects, and cannot be manipulated as objects. 

 The major part of the CORBA standard is Object Services - some software 

designed to provide a particular set of operations applicable to broad classes of objects. 

For example, a given object service might store and retrieve objects, or it might manage 
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relationships among objects, or it might protect objects from unauthorized access by 

other objects, etc. The Object Services are the key to expanding the functionality and 

interoperability of objects beyond the simple request management capabilities of the 

ORB.  

However, for the OMG’s CORBA to be truly usable as an industry standard for a 

wide range of commercial applications, much more work needs to be done, and the OMG 

formed different SIGs for that purpose. There are a number of implementations of 

CORBA available now on the market, one of which is ORBIX from IONA Technologies 

[15]. 

ORBIX represents the distillation of ten years research in the area of distributed 

systems. Because the software was built from scratch, it conforms faithfully to the 

OMG’s CORBA specification. It does not contain vestiges of an old product trying to 

comply with the CORBA standard, and its architecture presents CORBA in a most 

natural way to C++ developers. The product has been tried, tested and deployed by 

corporations across the globe. It is used by leading  software providers for the banking, 

telecommunications, engineering and government sectors. With ORBIX, programmers 

can develop distributed applications using object-oriented client-server technology, and 

use object technology to compose new applications from existing components and 

subsystems. 

 

2.2 Real-Time Systems 
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In a real-time system, timing constraints must be met for the application to be correct. 

This requirement typically comes from the system interacting with the physical 

environment. The environment produces stimuli, which must be accepted by the real-time 

system within timing constraints. The environment further requires control output, which 

must be produced within timing constraints. 

One of the main misconceptions about real-time computing is that it is equivalent 

to fast computing. Sometimes researchers challenge this myth by arguing that computing 

speed is often measured in average case performance, whereas to guarantee timing 

behavior, in many real-time systems worst case performance should be used. That is, in a 

delicate application, such as a nuclear reactor or avionics control, where timing 

constraints must be met, worst case performance must be used when designing and 

analyzing the system. Thus, although speed is often a necessary component of a real-time 

system, it is often not sufficient. Instead, predictably meeting timing constraints is 

sufficient in real-time system design. 

 
Real-time System Requirements. Real-time systems require that timing constraints be 

expressed, enforced, and their violations handled. The unit of time-constrained execution 

is called a task. For example, in a real-time database, time-constrained transactions are 

considered tasks. Timing constraint expression can take the form of start times, deadlines, 

and periods for tasks. Timing constraint enforcement requires predictable bounds on task 

behavior. The handling of timing constraint violations depends on the tasks requirements: 

whether they are hard, firm or soft real-time. A task with a hard real-time constraint has 

disastrous consequences if its constraint is violated. Many constraints in life-critical 

systems, such as nuclear reactor control and military vehicle control, are hard real-time 
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constraints. A task with a  firm real-time constraint has no value to the system if its 

constraint is violated. Many financial applications have firm constraints with no value if a 

deadline is missed. A task with a soft real-time constraint has decreasing, but usually 

non-negative, value to the system if its constraint is violated. For most applications, most 

tasks have soft real-time constraints. Graphic display updates are one of many examples 

of tasks with soft real-time constraints.  

 
Expressing Timing Constraints. Most real-time systems specify a subset of the 

following constraints: 

• An earliest start time constraint specifies an absolute time before which the task may 

not start. That is, the task must wait for the specified time before it may start.  

• A latest start time constraint specifies an absolute time before which the task must 

start. That is, if the task has not started by the specified time, an error has occurred. 

Latest start times are useful to detect potential violations of planned schedules or 

eventual deadline violations before they actually occur. 

• A deadline specifies an absolute time before which the task must complete. 

Frequently, timing constraints will appear as periodic execution constraints. A periodic 

constraint specifies earliest start times and deadlines at regular time intervals for repeated 

instances of a task.  

This thesis describes the design and implementation of expressing and supporting 

of soft real-time constraints in a CORBA-compliant distributed computing environment. 

 

2.3 Approaches 
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There have been related efforts to use CORBA in real-time environments.  One approach 

has been to produce a CORBA specification or product implementation that supports 

faster performance. For instance, several U.S. military systems from Lockheed/Martin 

and Boeing use high-performance CORBA implementations for real-time applications. 

Another approach taken by some vendors is to port their CORBA implementations to the 

real-time operating systems (OS). This section gives overviews of these two main 

baselines and points out some of their weaknesses. 

 
2.3.1 “Fast” CORBA 

  
Research work at Washington University [7], [8] extends the ORB architecture to provide 

forms of Quality of Service (QoS) guarantees by reducing performance overhead during 

CORBA method invocations. This approach uses the Real-Time Object Adapter, which is 

responsible for real-time scheduling and dispatching of the ORB operations, and provides 

multiplexing-demultiplexing optimizations at different levels over an Asynchronous 

Transfer Mode (ATM) network using a lightweight transport mechanism. This research 

group strongly required that the underlying operating system and network provide 

resource-scheduling mechanisms to support real-time guarantees. For instance, the 

operating system must support scheduling mechanisms that allow the highest priority task 

to run to completion. Furthermore, real-time tasks should be given precedence at the 

network level to prevent them from being blocked by low priority applications. 

The same research group proposed the architecture to enhance the real-time 

capability of the CORBA Event Service [8], [9]. These extensions introduce several 

components augmenting the Event Service to support events scheduling and minimize 

dispatch latency, based on a priori knowledge of participated consumer(s)/supplier(s) and 
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periodic rate-based events. The interfaces of the designed Real-Time (RT) Event Service 

include QoS parameters that allow consumers and suppliers to specify their execution 

requirements and characteristics. These parameters are used by the event dispatching 

mechanism to integrate with the system-wide real-time scheduling policies to determine 

dispatching ordering and preemption strategies.  

In a real-time system, some consumers can execute whenever an event arrives 

from any supplier. Other consumers can execute only when an event arrives from a 

specific supplier, or when multiple events have arrives from a particular set of suppliers. 

The RT Event Service provides filtering and correlation mechanisms that allow 

consumers to specify logical OR and AND event dependencies. When those 

dependencies are met, the RT Event Service dispatches all events that satisfy the 

consumers’ dependencies. In some real-time systems, consumers may require 

periodically the same amount of execution time. The designed RT Event Service allows 

consumers to specify event dependency timeouts and will propagate temporal events in 

coordination with system scheduling policies. 

Unfortunately, the proposed extensions do not provide any ability to specify 

priority/importance of the real-time events and do not enforce distribution of those events 

in priority order. Also, the architecture does not support the mechanism for expressing 

and enforcing event-driven deadlines on CORBA method invocations. 

 

2.3.2 CORBA on a Real-Time Operating System 

 

Another approach, taken by ORB vendors like Iona and Chorus Systems [16], is to port 

their non-real-time CORBA implementation to real-time operating systems (i.e. 
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Chorus/ClassiX, Solaris [17], Lynx [18], VxWorks [19]).  However, the products that we 

have investigated make only limited use of the operating system’s real-time features (i.e. 

real-time priorities, scheduling policies, etc.) and do not support any expression and 

enforcement of timing constraints, scheduling parameters, and QoS requirements. For 

instance, the COOL ORB from Chorus Systems doesn’t provide any real-time features of 

its own. The prime vertues of the COOL ORB is to impose minimal overhead (time and 

memory size) compared to using the native operating system. Besides from minimal 

overhead in terms of time and memory, COOL ORB provides thread safe libraries, using 

fine grained internal locking. When running on CHORUS/ClassiX, the full Application 

Programming Interface (API) of CHORUA/ClassiX is available to COOL ORB 

applications to precisely control real-time aspects. 

Both the “fast CORBA” and “CORBA on a real-time operating system” 

approaches, although often necessary parts of the solution, are not sufficient for 

supporting timing constraints. Support for the expression of and system-wide 

enforcement of timing constraints is also necessary. 
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Chapter 3 

 

Real-Time CORBA 

 

As mentioned before, the desired real-time capabilities stated in the CORBA/RT white 

paper have been classified into three areas. The desired operating environment features 

include priority-based scheduling, multi-threading, and synchronized clocks. My 

prototype implementation was developed on a real-time POSIX compliant operating 

system that satisfies most of the CORBA/RT operating environment desired capabilities. 

The CORBA/RT desired capabilities that involve the architecture of the ORB include 

specification for modularity of the ORB as well as for a generic scheduling framework. 

This chapter will focus on CORBA/RT capabilities that are essential to support the 
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expression of timing constraints and scheduling parameters. This includes the model of 

Timed Distributed Method Invocations, Global Time, and Real-Time Event Services. 

 

3.1 The Need for Real-Time Extensions 

 

Before detailing the CORBA/RT desired capabilities that have been addressed, I will 

illustrate the need for them by describing a typical client-server interaction in CORBA 

and by highlighting the changes that are necessary for the interaction to support real-time.   

Non-Real-Time Example. In CORBA, the ORB is responsible for managing the 

communication between clients and servers.  The CORBA specifications also provide for 

object services that are necessary to facilitate the processing of the requests. To illustrate 

a client-server interaction, I introduce an example to which I will refer throughout this 

thesis. Assume that a table containing tracking data exists on one node and is represented 

as a CORBA server.  A client on another node wishes to retrieve data from the table 

using the server’s Get operation. The following sequence of steps illustrates what will 

occur in such a client-server interaction: 

1. The client initiates a bind to a CORBA server. 

2. The ORB finds the server that will handle the request and binds the client to the 

server.  Binding involves returning an object reference for the server. 

3. The client invokes a Get method on the server, and the ORB delivers the request to 

the server. 

4. The request is scheduled on the server’s node using whatever scheduling policy is 

specified for that node. 
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5. The Concurrency Control Service ensures that the client’s access to the server is 

consistent with access by other clients. It provides read/write locking of the entire 

server object. 

6. When the server completes the Get operation requested by the client, the server sends 

a response back to the client through the ORB. 

 

Real-Time Example. The same client-server interaction in a real-time scenario involves 

a client that wishes to access data from the tracking table server within timing constraints. 

This interaction has two main differences from the interaction above: the client must have 

some way of expressing timing constraints on its request; and CORBA must provide 

object services that support enforcement of the expressed timing constraints (Figure 2).  

For instance, suppose the client requires that the Get operation on the server containing 

the tracking table be performed within a specified amount of time.  Then the interaction 

would be as follows: 

1. The client initiates a bind to a CORBA server. 

2. The ORB finds the server that will handle the request and binds the client to the 

server. 

3. The client specifies its constraints, such as timing constraints and relative importance, 

for a Get method invocation. It then invokes the Get method. Timing constraints may 

refer to events that have occurred or will occur in the future. The client then sends the 

request to the ORB for service by the tracking table server. 

4. A Global Priority Service examines the request and provides a global priority to the 

request so that it can be scheduled relative to all other real-time clients and servers. 
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5. The ORB receives the request and finds the server to handle the request. 

6. A Real-Time Concurrency Control Service provides locking with bounded priority 

inversion so that the client’s access to the server is consistent. 

7. When the server completes the Get operation, it sends the response back to the client 

through the ORB. If the response is not received within timing constraints, an 

exception is raised for the client. 

This sequence of steps highlights some of the extensions that are necessary for a real-time 

client/server interaction. In a distributed computing environment all server executions are 

initiated by method invocations made by clients. In real-time applications, a client must 

be able to specify timing constraints on method invocations.  

 

 

 
Figure 2:  Real-Time CORBA 
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In the next section, I will describe the design of the model of TDMIs that provides such 

capabilities. 

 

3.2 Timed Distributed Method Invocation 

 

The CORBA/RT white paper states that in a real-time system timing constraints imposed 

on an execution of a task must be met for the task to be correct. In order to provide 

support for full expression of timing constraints on method invocations, it is necessary to 

design a model of Timed Distributed Method Invocations. The CORBA/RT white paper 

established five forms of client-side timing constraints: deadlines, earliest start times, 

latest start times, periodic, and execution time constraints for method invocations. The 

introduction of timing constraints adds another dimension to real-time computing: it may 

need to yield a lower QoS. For instance, in systems where timely but less accurate results 

are better than late exact results, some imprecision may be tolerated. 

In order to implement timing constraints on the execution of a TDMI, it is 

necessary to take into account the delivery time of the request and the reply. Also, each 

method call has to carry its constraint information indicating its deadline, importance, 

QoS parameters, etc. This information will be used by the clients, ORB(s), CORBA 

Object Services, underlying OS, and servers’ implementations to set priorities, alarms, 

and whatever else is needed to enforce the specified requirements and to interact based on 

time. To make this timing information meaningful across nodes, all clocks in the system 

must be synchronized to within a bounded skew of each other. This should be provided 

by a Global Time Service. In some real-time systems a client may want to start a method 
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invocation only after a particular event has occurred. Thus, a CORBA client should be 

able to specify a “within 10 seconds of completion of Task A” deadline. The client needs 

the time that the named event “completion of Task A” has occurred. This service should 

be provided by a Real-Time Event Service. I will elaborate on each of these services in 

the next sections. 

 

3.2.1 The design of the Model 

 

In order to provide for full expression of timing constraints on method invocations, a 

model of Timed Distributed Method Invocations has been designed and implemented. In 

this model, all timing information is packaged in a structure called a Real-Time 

Environment (RT_Environment), as shown in the TDMI of Figure 3.  

Track_Table_Client TDMI

RT_Environment and
    other  parameters

TDMI

ORB

Node 1

Client 1

Client  n

Server 1

Server  m

RT Daemon

RT Event 
 Channel

TDMI

Node 2

Client 1

Client  n

Server 1

Server  m

RT Daemon

RT Event 
 Channel

Track_Table_Server

TrackTable

 

 

Figure 3:  Implementation of a Timed Distributed Method Invocation 
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Following the model, a CORBA client will start at a base priority that is 

established from static timing and importance information available when the client is 

dispatched.  The client runs at this base priority whenever it is not executing a TDMI.  To 

configure a TDMI, the client specifies its timing constraint parameters, its QoS 

parameter, and its scheduling parameters, such as deadline, and importance, in the Real-

Time Environment.  This environment is attached to every method call and is used by the 

Global Priority Service, the ORB, and the Real-Time Concurrency Control Service to 

enforce the specified timing constraints. 

 

3.3 Global Time Service 

 

Currently, the OMG is working on the Object Time Service specifications, which should 

be released in the near future. The main requirements stated in the Request for Proposal 

(RFP) [13] are very close to ones that have been described above, but implementation 

issues are not addressed at all. This section will give the detailed description of the 

designed service and will present our approach for clock synchronization mechanism. 

 
3.3.1 Description of the Service 

 
As mentioned previously, the Global Time Service is required to support Timed 

Distributed Method Invocations. This service must ensure that all clocks in the 

distributed system are synchronized to within a known skew of each other to provide a 

consistent notion of time. While this service is not a desired capability specified in the 

CORBA/RT white paper, I believe that it is necessary. Clients and servers must be able to 
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call this service to get the “current global time”. Also, in some embedded systems the 

Global Time Service must allow the ability to specify delays, time-outs, and deadlines in 

terms of the absolute and the relative time. For instance, a client should be able specify a 

deadline such as within 10 seconds of the current global time or by April 24, 1997, at 

5:00 AM. 

 
3.3.2 Clock Synchronization 

 
While clock synchronization is not a desired capability specified in the CORBA/RT 

white paper, I believe that it is also necessary in a real-time system. Although in many 

systems the clock synchronization function has not been decoupled from the applications 

(e.g. the distributed versions of the applications synchronize by messages), research and 

experience have led us to believe that solving the synchronization problem independently 

from the applications design can provide significant simplification of the system.  

A generalized view of the algorithm employed by each clock looks something like:  

do forever { 
exchange clock values 
determine adjustment for this interval 
determine local time to apply correction 
when this time arrives, apply correction 

} 

 

The general algorithm is parameterized by a convergence function that determines both 

the magnitude and time of adjustment. 

 
3.3.2.1 Network Time Protocol (NTP) 

 
One approach to clock synchronization is the Network Time Protocol (NTP) [5]. The 

NTP specified in the Request For Comments (RFC)-1305 [6] can be used to synchronize 
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computer clocks in the global Internet. It provides comprehensive mechanisms to access 

national time and frequency dissemination services, organize the time-synchronization 

subnet, and adjust the local clock in each participating subnet peer. In most places of 

today’s Internet, NTP provides accuracy of 1-50 ms, depending on the characteristics of 

the synchronization source and network paths [7]. 

The RFC-1305 [6] specifies the NTP protocol machine in terms of events, states, 

transition functions and actions and, in addition, optional algorithms to improve the 

timekeeping quality and mitigate among several, possibly faulty, synchronization 

sources. To achieve accuracy in the low milliseconds over paths spanning major portions 

of the Internet, these intricate algorithms, or their functional equivalents, are necessary.  

NTP is designed for use by clients and servers with a wide range of capabilities 

and over a wide range of network delays and jitter characteristics. Most users of the 

Internet NTP synchronization subnet use a software package including the full suite of 

NTP options and algorithms, which are relatively complex, real-time applications. 

Typical NTP configurations utilize multiple redundant servers and diverse network paths, 

in order to achieve high accuracy and reliability. Some configurations can include 

cryptographic authentication to prevent accidental or malicious protocol attacks. The 

NTP software has been tested and ported successfully to a wide variety of hardware 

platforms ranging from supercomputers to personal computers. 

  

3.4 Event Service 
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A standard CORBA request is a synchronous execution of an operation by an object. If 

the operation defines parameters or return values, data is communicated between the 

client and the server. In some systems, a decoupled communication model between 

objects may be required. For instance, in response to some events, a diverse set of 

participating objects may want to respond in different ways. The most effective way of 

supporting this is to implement a mechanism by which the interested parties can be 

informed that the event has occurred. 

 
3.4.1 CORBA Event Service 

 
The current CORBA Event Service specifications define two roles for objects (the 

supplier and the consumer) and propose the Event Channel architecture for decoupling 

the communication between those objects. There are two approaches for initiating event 

communication: the push model and the pull model. The push model allows a supplier of 

events to initiate the transfer of the event data to consumers. The pull model allows a 

consumer of events to request the event data from a supplier. An Event Channel is an 

intervening object that allows multiple suppliers to communicate with multiple 

consumers asynchronously. Event data are communicated between suppliers and 

consumers via Event Channels by issuing standard CORBA requests.  

 
3.4.2 Real-Time Event Service Requirements 

 
Applications with significant real-time performance requirements can benefit from using 

real-time asynchronous and group communications. Unfortunately, the CORBA Event 

Service specifications do not address issues important for real-time applications, such as 

priorities/importance of events, scheduling, dispatch latency, and bounded event response 
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time [12]. Furthermore, the Event Service must provide the ability for CORBA clients 

and servers to determine the absolute time when the event occurred. Some events may 

have different priorities on the system (i.e. System level and User defined events), while 

events within the same priority may have different levels of importance. The Event 

Service must support the event notification mechanism with regard to the priority and 

importance of the events occurring on the system. The Event Service architecture should 

be extended to introduce Event Channels with dynamically configurable policies for 

supporting QoS requirements. For instance, to meet QoS, scheduling policies often 

require that priorities must be assigned to Event Channel operations (i.e. push, pull). 

Event Channels must support high-performance real-time concurrency that will provide 

“worst-case” guarantees on dispatching latency and event response time. Thus, it is 

necessary to design a Real-Time Event Channel architecture that supports processing of 

real-time events in priority order by explicitly representing and enforcing 

priority/importance information associated with real-time events. 

 
3.4.2.1 IP multicasting transport protocol (MTP) 

 
Multicast is a term for describing multiple hosts communicating with each other within 

functional groups over LAN/WAN. These multicast groups can be used for 

teleconferencing, or by other multiple peer applications. 

One way of designing the underlying communications of the Real-Time Event 

Service is to use IP Multicasting Transport Protocol (MTP) mechanism. The large body 

of the networking and distributed systems literature and technology that has been 

introduced during the last decade has influenced the MTP design. MTP provides reliable 
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delivery of client data between one or more communicating processes, as well as a 

predefined principal process. In addition to transporting data reliably and efficiently, 

MTP over IP provides the synchronization necessary for web members to agree on the 

order of receipt of all messages and can agree on the delivery of the message even in the 

face of partitions. 

Our design and implementation of the Real-Time Event Service takes advantage 

of the UDP based IP Multicast [8] on TCP/IP to share information between applications. 

Each real-time event will have a unique event ID number, which will be mapped to the 

corresponding IP multicast group address. An IP multicast group (Class D Internet 

address) consists of a 32-bit number. The high order 4 bits are 1110, which identify the 

Internet address as a IP multicast group address. The remaining 28 bits contain the 

multicast group ID. Thus, IP multicast groups are in the range 224.0.0.0 to 

239.255.255.255. CORBA clients/servers would join and leave different groups and can 

communicate by talking or listening via Real-Time Event Channels. 
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Chapter 4 

 

Implementation 

 

The Real-Time CORBA prototype was designed and implemented as a part of the 

Distributed Hybrid Database Architecture project developed by the U.S. Navy NRaD, 

and our research group at University of Rhode Island.  

This thesis was concerned with the implementation of TDMIs that support 

expression of timing constraints, scheduling parameters and QoS requirements on 

database access in CORBA environments. Also, this thesis was concerned with the 

design and implementation of Global Time and Real-Time Event Services that are 

essential for a real-time distributed system. 

The prototype implementation is being developed on two Sun Sparc work stations 

running Sun’s Solaris 2.5 operating system. This operating system conforms to IEEE Std 

1003.1-1990 (System API as amended by IEEE Std 1003.1b-1993 Realtime Extension), 

IEEE Std 1003.1c-1995 (Threads Extension) and IEEE Std 1003.1i (Technical 

Corrigenda to Realime Extension) that allow to write portable multi-threaded 

applications. 

 

4.1 Timed Distributed Method Invocations Implementation 
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Following the rules of object-oriented design [14], the implementation of the semantics 

of a TDMI is encapsulated in a base C++ class called Base_RT_Manager.  This class 

defines the set of virtual and pure virtual functions that will be overwritten by Real-Time 

Mangers on the client side and the server side. Thus, the actual implementation of those 

functions, along with some specifics of a client and a server internals, are defined in the 

corresponding C++ subclasses that inherit from the same base class: RT_Manager_Server 

and RT_Manager_Client. I will now elaborate on each of these implementations. 

 
4.1.1 Server Side Implementation 

 
As mentioned above, a server side implementation is defined in the RT_Manager_Server 

C++ class, which provides the following methods: 

static void RT_Manager_Init(); 
void START_RT(); 
void END_RT(); 
void STOP(); 

 

The first method will bind a CORBA server process to the Real-Time Daemon (real-time 

scheduler) on its local node. The next three methods will be executed by the threads (can 

be thought of as a light weight process (LWP) ) created by the server to handle clients 

requests, as shown in Figure 4. The method START_RT() will register with a Real-Time 

Daemon on  its local node to calculate and assign a global priority called Transient 

Priority to the TDMI. Also, a timer with the proper signal handling will be armed 

according to the client’s deadline (minus network delay). The END_RT() method disarms 

the alarm, and communicates with the Real-Time Daemon to change the TDMI’s 
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Transient Priority to its base priority. If the server misses its deadline, a CORBA 

exception  of  type  RT_Exception  will  be  thrown from  a  signal handler  to  the  calling  

 

 

 

Figure 4: TDMIs implementation: server side 

 

thread. That  thread  can  catch  the exception and will execute the STOP() method to de-

register with the Real-Time Daemon and release the resources, for example, read/write 

locks, etc. 

The current implementation of RT_Manager_Server C++ class was based on: 

• POSIX high resolution clocks to set up a timer for each thread (LWP) of execution;  

• POSIX Real-Time signals to deliver a notification to the LWP upon the timer 

expiration. These signals are processed and delivered by the operating system first, in 

priority order, and they can carry extra information, like an integer value or a pointer; 
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• The C++ exception mechanism used to notify the thread that it missed its deadline. 

C++ exception handling is a new feature that has been recently added to the C++ 

environment. The idea of using this exception handling is to provide a standard 

(ANSI C++) method of dealing with exceptional conditions on a higher level. The 

C++ Sparc compiler and ORBIX provides compile and run-time support for that 

mechanism. 

 
4.1.2 Client Side Implementation 

 
A client side implementation is defined in the RT_Manager_Client C++ class. This class 

inherits and implements the methods of its base class providing the same functionality as 

the RT_Manger_Server class. In addition, it defines the following extra methods: 

   Set_Time_Constraint_Now(Constraint_Type ,Time_Type , long sec, long nsec); 
   Set_Time_Constraint_Event(Constraint_Type,RT_Event& , long sec, long nsec); 
   Set_Importance(unsigned short ); 
   Set_QoS(unsigned short ); 
   Start_RT_Invocation(); 
   End_RT_Invocation(); 

 
The first four methods in the RT_Manager_Client are used to set parameters in the 

RT_Environment (e.g., relative/absolute deadline or event driven timing constraints, 

importance level, and QoS). The method Start_RT_Invocation()will be executed by 

the client’s main() function to initiate processing of the CORBA request in the form of a 

TDMI. This method will register the client with a Real-Time Daemon on its local node, 

and will calculate and assign a global priority called Transient Priority to the TDMI. 

Also, a timer with a signal handling function will be armed according to the specified 

deadline. End_RT_Invocation() communicates with the Real-Time Daemon to change 

the TDMI's Transient Priority to its base priority. If the client misses its deadline, a 

CORBA exception of type RT_Exception will be thrown from a signal handler to the 



 30

client process. The client can catch the exception and will execute the STOP() method to 

de-register with the Real-Time Daemon and cleanup the internal structures and resources. 

The methods of the RT_Manager_Client are responsible for assembling the 

RT_Environment that will be attached to the TDMI for use by the ORB, the object 

services, and the server implementation. The RT_Environment data structure has the 

following form: 

struct RT_Environment { 
TDMI_info tdmi; 
ClientID cid; 
unsigned short qos; 
unsigned short importance; 
long tpriority;       

}; 
 

The TDMI_info field stores the timing constraint parameters.  Additional information 

used for scheduling is also included in the structure: qos for Quality of Service, 

importance, and tpriority for the Transient Priority. The ClientID field stores the client’s 

process ID, the client’s thread ID and the IP address of the client’s node. The 

RT_Environment, along with a new type of CORBA exception (RT_Exception) used for 

processing the TDMI in real-time, are contained in a header IDL file called rt_info.idl. 

In Figure 3 (Page 20) the client object on Node 1 has specified a TDMI to be sent 

to the real-time tracking table server object on Node 2.  All of the timing information is 

packaged in the RT_Environment structure that is being sent through the ORB. 

4.2 Global Time Service Implementation 

 

I chose to implement a Global Time Service in a “quick-and-dirty” way with the 

assumption that all clocks in the system are synchronized within a known bounded skew.  

Following this design, a client or a server can determine the current time by referring to 
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its own local clock without making expensive CORBA calls. For clock synchronization I 

used the xntpd3.5 software package developed at the University of Delaware. This 

software distribution contains a fully compliant implementation of the NTP Version 3 

protocol, including an autonomous protocol daemon that disciplines the local host clock, 

as well as a set of supporting utility programs used to debug and manage one or more 

NTP servers in a network. 

The idea behind xntpd is to effectively synchronize the time of a computer client 

or server to another server or reference time source, such as a radio or satellite receiver or 

modem.  It provides accuracy typically within a millisecond on LANs and up to a few 

tens of milliseconds on WANs relative to a primary server. 

For our prototype, I chose to configure the xntpd software to work in a broadcast 

(point to multipoint) mode. In this mode a broadcast server periodically sends a message 

to a designated IP broadcast address or IP multicast group address, and ordinarily expects 

no requests from clients. A broadcast client listens on this address and ordinarily sends no 

requests to servers. For this purpose, an IP broadcast address has its scope limited to a 

single IP subnet, since routers do not propagate IP broadcast datagrams. Some broadcast 

servers may elect to respond to client requests as well as send unsolicited broadcast 

messages, while some broadcast clients may elect to send requests only in order to 

determine the network propagation delay between the server and client. 

The standard NTP timestamp format is described in RFC-1305 [6]. In 

conformance with standard Internet practice, NTP data are specified as an integer or 

fixed-point quantities, with bits numbered from 0 starting at the left, or high-order, 

position. Unless specified otherwise, all quantities are unsigned and may occupy the full 
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field width with an implied 0 preceding bit 0. Since NTP timestamps are cherished data 

and, in fact, represent the main product of the protocol, a special timestamp format has 

been established. NTP timestamps are represented as a 64-bit unsigned fixed-point 

number, in seconds relative to 0h on 1 January 1900. The integer part is in the first 32 bits 

and the fraction part in the last 32 bits. In the fraction part, the non-significant low-order 

bits should be set to 0. This format allows convenient multiple-precision arithmetic and 

conversion to UDP/TIME representation (seconds), but does complicate the conversion 

to Internet Control Message Protocol (ICMP) Timestamp message representation 

(milliseconds). The precision of this representation is about 200 picoseconds, which 

should be adequate for even the most exotic requirements. More specific considerations 

on the NTP are beyond the scope of this thesis.  

As mentioned above, currently OMG is working on specifications for an Object 

Time Service for CORBA.  In the future, if such a service is desirable in a particular real-

time application, our Global Time Service an easily be replaced with the implementation 

of the native CORBA’s Object Time Service. 

 

4.3 Real-Time Event Service Implementation 

 

A real-time event is a CORBA event, generated by a supplier (or by the system), that 

includes a timestamp, representing the absolute time at which the event occurred, along 

with information, such as its source, priority, and importance that are used to regulate 

distribution of the real-time events in the system. This information is critical for 

processing real-time events efficiently. For instance, an event associated with a CORBA 
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server failure is likely to be more important than notification of e-mail delivery. Thus, the 

priority of that event should be higher and its event data should be propagated first. In my 

design, all real-time events are delivered through a Real-Time Event Channels (RT 

EventChannels) that substitutes CORBA Event Channels by explicitly representing and 

enforcing timing information associated with events. Figure 5 depicts the functionality of 

the designed RT Event Channel. To achieve better performance in the Real-Time Event 

Service, my implementation takes advantage of a multithreaded environment provided by 

the operating system and its support of the IP multicasting API.  

The event data associated with a real-time event carries the necessary information 

(event name, its id and its source: host name, server name) to uniquely identify the real-

time event, and  its timestamp information. It also contains the priority and importance 

associated with real-time events. Consumers, suppliers and Real-Time Event Channels 

use this information to filter, correlate and propagate the real-time events.  

Recall that there are two models for the distribution of events: the push model and 

the pull model. The push model allows a supplier of events to initiate the transfer of the 

event data to consumers. The pull model allows a consumer of events to request the event 

data from a supplier. The design and implementation of those models in our prototype for 

Real-Time CORBA with TDMIs requires additional considerations.  
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Figure 5:  Real-Time Event Service 

 

Our design and implementation of TDMIs in Real-Time CORBA supports a 

dynamic scheduling policy (currently Earliest Deadline First [20] with aging [21]). Each 

CORBA call has to be scheduled on its local node by a Real-Time Daemon based on its 

scheduling policy. In order to meet real-time guarantees in our system we can only allow 

method invocations to be made in the form of a TDMI. This imposes strong restrictions 

and makes it almost inappropriate to implement the Real-Time Event Service using the 

standard CORBA paradigm (interfaces, invocations, etc.). 

 
4.3.1 Push model Implementation 

 
In the push model, suppliers put a timestamp and “push” events to all interested push 

consumers via the RT Event Channel(s). The Push suppliers also deposit their events in 

the RT Event Channel(s) in order to keep a record of events that have occurred. The Push 

consumers are notified by the RT Event Channel(s) when a real-time event has been 
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delivered and stored. The underlying communication mechanism in our implementation 

of a push model is based on IP multicasting. The push suppliers “multicast” the real-time 

event data to the specified RT Event Channel(s). The RT Event Channel accepts and 

creates threads to dispatch all incoming real-time events. The Real-Time Event 

Dispatcher gets the priority/importance of the event, calculates and assigns a real-time 

OS priority to the corresponding thread (Figure 5). Next, the thread gets access to the RT 

Event Channel’s Event Buffer to store the event data. In order to provide the “best effort” 

on bounded event response time, our RT Event Channel makes use of Real-Time 

Concurrency Control. This Concurrency Control manages access to the event buffer 

using exclusive locking semantics with bounded priority inversion.  It ensures that 

priority inversion is bounded and provides a best effort on minimizing event response 

time. The filtering of the real-time events will take place if the Event Buffer has stored 

the same event data already. In this case, the timestamp and the source information are 

updated, the event counter is incremented, and the renewed event data is “multicasted” to 

the interested push consumers. If the Event Buffer did not have that event data yet, the 

data will be stored and then “multicasted”. Each real-time event is uniquely mapped to 

the corresponding IP address of a multicast group based on its event_ID number. The 

push consumers will join the desired multicast group and listen for delivering of the real-

time event from the RT Event Channel(s). Upon delivery of the event, the push 

consumers will perform type checking to insure validity of the real-time event. In the 

case of success, the consumers will leave the multicast groups and continue their 

execution. 

 
4.3.2 Pull model Implementation 
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It is still an open question if the pull model can be, and should be, used in a real-time 

system. Recall that this model allows consumers of events to request the event data from 

supplier(s) by making CORBA requests via Event Channel(s). Moreover, as it was 

mentioned above, this approach to implement the pull model does not fit in the design of 

TDMIs in Real-Time CORBA. So, I have chose to implement only pull consumers that 

would request RT Event Channel(s) for the real-time events. 

Our pull model relies on the RT Event Channel for distribution of events. Pull 

consumers query the RT Event Channel(s)’ Event Buffer(s) for a particular real-time 

event via the RT_Event_Channel interface: 

interface RT_Event_Channel { 
 

any try_pull(out boolean has_event) raises (RT_Exception); 
void pull(inout any event_data) raises (RT_Exception); 

 
}; 

 
This interface supports two methods that can be invoked by the pull consumers: 

try_pull and pull (Figure 5). The try_pull method will be called periodically by the 

consumers untill the first real-time event has occurred. The Real-Time Event Dispatcher 

will assign the highest real-time OS priority to the threads that handle these periodic 

requests. Upon success, the event data will be returned along with a flag, which indicates 

that a real-time event has been delivered. The pull method will be invoked by the pull 

consumers that are pulling for a particular real-time event, and the type information (i.e. 

event name, its id, source, priority/importance) of the event will be passed as a parameter 

to the method call. The Real-Time Event Dispatcher will calculate and assign a real-time 

OS priority to the thread based on the priority/importance of the specified real-time event. 

If the real-time event was not found in the Event Buffer, a CORBA exception of type 
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RT_Exception will be raised in the consumer side. In order to provide the “best effort” on 

bounded event response time, our RT Event Channel makes use of the same Real-Time 

Concurrency Control with exclusive locking semantics. 

 

4.4 Example of a TDMI 

 

To illustrate how all of the parts of the prototype implementation work together, we 

present an example of a typical client-server interaction. Recall the example we described 

earlier in which a table containing tracking information is represented as a server on one 

node, and a client on another node wants to read certain data from the table with specified 

timing constraints.  The following is the IDL for the table: 

 
#include "rt_info.idl" 
 
struct Track_Record { 
     // contains track ID, position, etc. 
}; 
interface Track_Table { 
     void         Put(in Track_Record track, in RT_Environment rt_env); 
     Track_Record Get(in long track_id, in RT_Environment rt_env); 
}; 

 

The two methods on the table's interface enable clients to insert (Put()), and retrieve 

(Get()) track data. The code for a client of the table looks as follows: 

 #include Track_Table.hh        // header file generated by IDL compiler 
 #include RT_Manager_Client.h   // header file for RT_Manager_Client class 
 #include Track_Table_i.h       // header file for table implementation 
       : 
(1) RT_Manager_Client rt_mgr; // create instance of RT_Manager_Client 
     Track_Table*  Track_Table_Obj;    // declare pointer to table  
       : 
     int main()                         // main procedure of a CORBA client 
     { 
  // RT init call 

  RT_Manager_Init(); 
       : 
       // bind to the appropriate Track_Table (in this case, the 
       // one managed by the server named Track_Table_Server). 
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(2)    Track_Table_Obj = Track_Table::_bind("Track_Table_Server"); 
       CORBA::Long track_id = 42; 
 
       try { 
          :       // set constraints and scheduling parameters 

    // deadline = NOW + 3 seconds 
(3)      rt_mgr.Set_Time_Constraint_Now(BY,REL,3,0);  
(4)      rt_mgr.Start_RT_Invocation();     
         // start TDMI:  1) calculate Transient Priority   
         //              2) call RT Daemon and register as an active client 
         //              3) map Transient Priority to this node’s priority  
         //                 set and change this thread to the new priority 
         //              4) arm the timer 
(5) Track_Record track = Track_Table_Obj->Get(track_id, rt_mgr.Get_RT_Env());  
(6)      rt_mgr.End_RT_Invocation();      
         // finish TDMI 1) call RT Daemon and deregister as a client 
         //             2) disarm the timer 
         //             3) restore this thread to its original priority 
       } 
(7)    catch(const RT_Exception &rtp) {        // catch RT_Exception 
         cout << ‘‘RT_Exception Raised :’’  << rtp.reason << endl; 
       } 
       : 
     } 
 

The client first creates a RT_Manager_Client object (Label 1 in the above code). It then 

binds to the appropriate server (Label 2).  Next, it calls the RT_Manager_Client 

functions necessary to set timing constraints and scheduling parameters (Label 3). In our 

example, we set a relative deadline of 3 seconds in the Set_Time_Constraint_Now() 

method. The bulk of the work is done inside of the Start_RT_Invocation() (Label 4) 

function and is transparent to the client. Start_RT_Invocation() calls the functions to 

register with the Real-Time Daemon, calculate the Transient Priority for the client, set the 

client to a new priority and arms the timer according to the client’s deadline. 

After the above sequence is complete, the client makes the CORBA call to the 

table.  The RT_Environment that is sent with the call contains the timing information 

computed by the RT_Manager_Client.  At this point, the request is scheduled on the 

server’s node as described below. If the client has not missed its deadline during the 

CORBA call, then End_RT_Invocation() disarms the clock and performs some clean 

up.  If the timer expires (i.e., the deadline is missed), a CORBA exception of type 
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RT_Exception is raised in the client. The client catches this exception and performs any 

necessary recovery operations. The server side implementation for the method Get() 

would look like: 

Track_Record  
TrackTable::Get(CORBA::Long track_id, const RT_Environment& rt_env)  
{ 
     Track_Record track; 
     try { 
(1)    RT_Manager_Server rt_mgr(rt_env); 
(2)    rt_mgr.START_RT(); 
    : 

// Code for retrieval of TrackRecord with the specified ID  
    : 
(3)    rt_mgr.END_RT(); 
     } 
(4)  catch(const RT_Exception &rtp) { rt_mgr.STOP(); } 
     return track; 
} 

The server’s thread creates a RT_Manager_Server object (Label 1) passing the 

client’s RT_Environment as an argument to the constructor. The bulk of the work is done 

inside of the START_RT() (Label 2) method and is transparent to the server. This method 

determines the network delay, calls the functions to register with the Real-Time Daemon, 

calculate the Transient Priority for the server’s thread, set the thread to a new priority and 

arm the timer according to the new deadline. After the above sequence is complete, the 

server performs the operations. If the server has not missed its deadline during the 

service, then END_RT()(Label 3) disarms the clock, performs some clean up, and the 

results are sent back to the client. If the timer expires (i.e., the deadline is missed), a 

CORBA exception of type RT_Exception is raised in the server. The server thread catches 

this exception (Label 4), and performs any necessary cleanup and recovery operations. 

 

Real-Time Events. In the above example, the deadline for the client request was based 

on an absolute time that is relative to the global current time. However, deadlines can 

also be event-driven. For example, assume that in the above example the deadline for the 
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request was NewContact + 3 secs, where NewContact is a named event that occurs when 

a new contact is entered into the table. In this case, the client first has to create a 

RT_Event object, specify a real-time event name, ID number, priority/importance of the 

event, and event source (a server name). Also, the client may choose to act as either a pull 

or a push consumer.  

The revised code for an event-driven client, in which the client is a push 

consumer, is given below: 

 
try { 

       :  
 // create RT_Event object with event name & ID 5 

       RT_Event  rt_event("NewContact",5);   
 

rt_event.Set_Priority(10); 
  rt_event.Set_Importance(1000); 
       rt_event.Set_Server_Name("Track_Table_Server"); 
       rt_event.Set_Push_Consumer();        // act as a push consumer 
       : 
       // set constraints and scheduling parameters 
       : 
       // deadline = the absolute time when the named Event  

 // "NewContact" happened + 3 secs 
(3)    rt_mgr.Set_Time_Constraint_Event(BY, rt_event, 3, 0);  
 
(4)    rt_mgr.Start_RT_Invocation();        // start TDMI 
       
     Track_Record track = Track_Table_Obj->Get(track_id, rt_mgr.Get_RT_Env());  
       
       rt_mgr.End_RT_Invocation();          // finish TDMI  
     } 
     : 

 

The Set_Time_Constraint_Event() function call (Label 3 in above code) causes the 

client to wait, with infinite deadline, for a notification that the real-time event has 

occurred (push model). In case of a pull model, the Set_Time_Constraint_Event() 

function would create a thread, with a priority calculated from the priority of the expected 

real-time event, that would pull for the specified real-time event. If no such real-time 

event can be found, a CORBA exception of type RT_Exception will be thrown to the 

client. In the case of success the deadline for the client’s request will be determined by the 
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absolute time when that event occurred plus 3 seconds. This timing constraint is stored in 

the RT_Environment, and the rest of the work is done inside of the 

Start_RT_Invocation()(Label 4) function as  previously described. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5 

 

Evaluation 

 

After the implementation was completed, several tests were done to show that the TDMI 

performs correctly and with the expected results. Then a suite of random TDMIs with 
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absolute, relative, and event-driven deadlines were executed to evaluate the performance 

of the TDMI’s model as well as the Global Time and Real-Time Event Services. Also, a 

set of tests were executed to find the raw performance numbers of the system. For the 

testing, a grid example, which comes with ORBIX as a demo, was used. In this example, 

grid server manages one resource (a table) that has an interface with two methods 

(read/write). Grid clients can invoke those methods updating some values in the table. 

 

5.1 Testbed Construction 

 

A set of tests were generated from the following parameters: importance and a 

base priority; priority/importance of the real-time events; deadline of TDMI (short, 

medium, long, and event-based); start time of clients, and the method that a client 

invokes (read/write). For showing the correctness of TDMIs, each set of parameters were 

tested under varying loads (low, medium, and high) which were represented by the range 

of start times of clients. Each test was performed on our RTCORBA on Solaris, with 

expression and enforcement of timing constraints.  

The analysis of the performance was based on the raw data determined for each 

test. Corresponding graphs with the raw data can be found in the Appendix (Page 58). In 

this thesis, the results of each test were averaged and analyzed over 25 trials producing in 

error of at most 1% in most cases. 

All testing was performed on two Sun Sparc workstations (IPX and Sparc Station 

5) on an isolated LAN with a fixed number of CORBA clients and servers on each 
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computer. Network delay was measured under different loads using the standard UNIX 

utility program called  ping, and was found to be approximately 1.2 millisecond (ms). 

 

5.2 Testing the Model of TDMIs 

 

The implementation of TDMIs was tested by periodically starting up a client on one node 

(on a Sparc IPX station) that would send a request to a server on another node (on a Sparc 

Station 5). The purpose of this testing was to determine correctness and the overhead 

produced by the design and implementation of TDMIs. Recall that in the prototype 

implementation of TDMIs, an extra parameter (structure RT_Environment) must be 

added to all method invocations to be executed in real-time. Thus, an extra data copying, 

moving, dereferencing and transmission must be done by the Stubs/Skeletons/ORB, 

which is about extra 3 ms of a latency per method invocation. 

 

Correctness. The correctness of the implementation was tested by running a set of clients 

with short (0-5 sec.), medium (5-10 sec.), and long (10-14 sec.) deadlines (relative and 

absolute). The clients and server’s threads were forced to miss their deadlines at different 

moments of their execution - at the very beginning, in the middle, and at the end of 

TDMIs. As mentioned earlier, CORBA exceptions of type RT_Exception were raised and 

processed successfully by the clients and the server’s threads, showing that the deadlines 

were actually missed in all cases. 
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Client side. The client side implementation was tested, as previously described, on a Sun 

Sparc IPX station. As expected, most of the overhead and latency was produced by the 

following two methods:   

• Start_RT_Invocation() - RT_Manager_Client method that registers a client with a 

Real-Time Daemon, calculates and assigns the Transient Priority, arms a timer with a 

signal handling function. The latency introduced by this method is about 25.2 ms.  

• End_RT_Invocation() - RT_Manager_Client method that deregisters a client with a 

Real-Time Daemon, changes the Transient Priority to its base priority, and disarms 

the timer. The latency introduced by this method is about 10.7 ms. 

 

Server side. The server side implementation was tested, as previously described, on a 

Sun Sparc Station 5. Again, as expected, most of the overhead and latency was produced 

by the following two methods:     

• START_RT() - RT_Manager_Server method that registers a server’s thread with a 

Real-Time Daemon, calculates and assigns the Transient Priority, arms a timer with a 

signal handling function. The latency introduced by this method is about 11.4 ms. 

• END_RT() - RT_Manager_Server method that deregisters a server’s thread with a 

Real-Time Daemon, changes the Transient Priority to its base priority, and disarms 

the timer. The latency introduced by this method is about 6.1 ms. 

Analyzing the source code and its functionality, it was determined that each of these 

latencies is due to CORBA calls to the Real-Time Daemons on the local nodes. 

Unfortunately, the current implementation of ORBIX can not handle those requests 

(inter-process communications) in a more efficient way. In fact, ORBIX uses its 
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robustness and produces the overhead of a distributed computing environment to process 

method invocations within the same node. 

 

5.3 Testing the Global Time Service and Clock Synchronization 

 

As previously described, the Global Time Service was implemented with the assumption 

that all clocks on the system are synchronized within a known skew. Thus, it was very 

important to determine the performance of the clock synchronization utility. During the 

testing of our prototype implementation, the Sun Sparc Station 5 was configured to be a 

synchronization source (a time keeping server), and the Sun IPX station was configured 

to be a broadcast client. The xntpd3.5 utility provides special programs that allowed me 

to get some statistics and performance information on clock synchronization. Using those 

programs, it was determined that the xntpd3.5 utility was stable under different system 

loads, and was able to keep clocks offset within 3.2 ms with synchronization distance 

(broadcast delay) of 1.2 ms. Taking into consideration that clocks resolution on these two 

Sparc stations is about 10 ms, the imprecision of the utility can be tolerated. 

 Since all the clocks in the system are synchronized within a bounded skew, clients 

and servers can refer to their local clocks to determine the current global time. The 

overhead of this operation is only one operating system call that returns a data structure 

with the current time in it. 

 

5.4 Testing the Real-Time Event Service 
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The implementation of the Real-Time Event Service was tested by periodically starting 

up the suppliers on one node that would send real-time events to the consumers on 

another node via the Real-Time Event Channels. The purpose of this testing was to 

determine correctness and the overhead produced by design and implementation of the 

Real-Time Event Service. 

 

Correctness. The correctness of the implementation was tested by running a set of 

suppliers and push/pull consumers. The suppliers were simultaneously generating real-

time events with different priorities and importance on two Sun Sparc stations. The Real-

Time Event Channels, one on each node, accepted all the events, stored them in the Event 

Buffer, and forwarded them to the consumers in priority order as expected. Upon 

delivery, the push/pull consumers stored the absolute time when the events were 

received, and that information was used to demonstrate the correctness.  

Pull consumers were invoking the Real-Time Event Channels, trying to pull for 

the specified real-time events. In case of a success, corresponding event data was 

returned to the consumers. In all other cases, as mentioned earlier, CORBA exceptions of 

type RT_Exception were raised and processed successfully by the consumers, indicating 

that the specified events have not been delivered yet. 

 

Overhead and Latency. The Real-Time Event Channel’s implementation was tested on 

a Sun Sparc Station 5 by periodically generating and sending a real-time event to the 

push consumer through the Event Channel. The purpose of this test was to determine the 

dispatch latency, which would be an essential part of the total event response time. Thus, 
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the time between accepting the real-time event from a supplier and forwarding it to a 

consumer must be measured and analyzed first.  

Recall that the Real-Time Event Channel receives events from suppliers by 

listening and reading from a configurable IP Multicast socket. Next, the Event Channel 

creates a bounded thread (LWP) that will deposit data into the Event Buffer and forward 

the event to consumers. Thus, from 7 to 9 systems calls must be done by the Event 

Channel to dispatch a real-time event. Experimental tests show that it takes about 7.8 ms 

(on average) for the Real-Time Event Channel to process a real-time event. 

To determine the event response time, push supplier and consumers 

implementations were used. The supplier was run on the Sun Sparc Station 5 and 

periodically generated a real-time event. Two consumers - one on the same node, the 

other on the Sun Sparc IPX - waited for delivery of that event via the Real-Time Event 

Channels, which were also running on both Sparc stations. The experimental tests show 

that for the consumer running on the Sun Sparc Station 5, the event response time (time 

between a supplier generating a real-time event and a consumer receiving that event) was 

about 90.6 ms. For the consumer running on the Sun IPX, the event response time was 

about 96.6 ms.  

Analyzing these results and taking into consideration some imprecision (e.g. 

network delay, clocks offset, context switching, etc.) along with dispatch latency, we can 

see that 85-90% of the overhead and delays are due to the network communications via 

IP Multicasting. The implementation of IP Multicasting is based on the extended Unix 

sockets’ facilities and special routers, which are responsible for resolving IP addresses of 
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corresponding multicast groups. As the result, there is a possibility to have some tangible 

delays that may or may not be tolerated in real-time systems. 

The event response time and dispatch latency for a pull consumer were tested by 

periodically invoking the Real-Time Event Channel on the same node. Since the 

implementation of a pull consumer is based on the standard CORBA method invocations, 

the event response time, in general, depends on their efficiency. Executing a set of tests 

and evaluating the results, the dispatch latency for a pull consumer was determined to be 

about 40.1 ms. The event response time was determined to be about 117.6 ms excluding 

the bind() call to the Real-Time Event Channel, and about 161 ms including the bind() 

call. Recall that the ORB is responsible for finding the Real-Time Event Channel that 

will handle the request and binding the consumer to it. This involves returning an object 

reference for the Real-Time Event Channel. 

It was determined that 70-75% of the latency is due to the fact that ORBIX 

inefficiently handles local CORBA calls that were initiated by the pull consumers. 

Moreover, ORBIX introduces a noticeable latency for handling method invocations that 

have data structures in their list of parameters. The dispatch latency is due to the 

overhead associated with getting access to the Event Buffer and searching through it for a 

specified real-time event. 

Finally, the implementation of a pull consumer uses a special CORBA IDL type, 

CORBA::any, for passing the event data between a pull consumer and a Real-Time Event 

Channel. In a CORBA environment, this data type is used to pass a value of an arbitrary 

type as a parameter or a return value. Although ORBIX has implemented a number of 

ways of constructing and interpreting this data type the efficiency of those methods is 
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unknown. It is obvious that an extra data copying, moving, dereferencing and 

transmission must be done by the Stubs/Skeletons/ORB, which adds some delay and 

might significantly decrease the performance of the Real-Time Event Service. 

 

 

 

 

 

 

 

 

 

 

Chapter 6 

 

Conclusion 

 

6.1 Contributions 

 

This thesis has presented a set of extensions for expressing timing constraints in a 

CORBA environment.  The basis for the work was the CORBA/RT white paper that 

specifies desired capabilities for extending CORBA for real-time.  While these desired 

capabilities cover a wide range of the CORBA standard, the results of this thesis focus on 
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some of the features that are necessary for expression and enforcement of timing 

constraints. CORBA clients can now express their timing requirements, such as 

deadlines, importance and quality of service, on requests that they make to servers.  

Once these requirements are specified, the new and/or extended object services 

provide their enforcement. The Global Time Service ensures that all clocks in the system 

are synchronized, and provides the consistent notion of a “global current time”. The Real-

Time Event Service enforces the distribution of real-time events in priority order with 

real-time enforcement of event response time, and provides timestamp information 

associated with those events. 

It is important to note that this design does not change the current CORBA 

specifications, but rather extends them.  The design described in this thesis extends 

CORBA standard by providing new features, such as the model of Timed Distributed 

Method Invocations, a RT_Environment structure to enable TDMIs, adding/extending 

services, such as the Global Time Service and the Real-Time Event Service. 

The test results show that the TDMIs, Global Time and Real-Time Event Services 

perform correctly in the real-time system. The raw performance, overhead and latency of 

each of the implementations were measured and analyzed. The resulting performance 

numbers show that designed and implemented components can be used in a system with 

soft real-time requirements, and should be considered for the performance analysis of that 

system.  

 

6.2 Comparison with Related Work  
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Tackling the substantial requirements posed by using CORBA in a real-time environment 

is a monumental undertaking, but necessary if standard, open, distributed computing 

environments are to be used in real-time applications.  Work that has been done on 

porting CORBA products to real-time operating systems, and on using high-performance 

CORBA, is necessary for supporting some aspects of real-time, but neglects expression 

and enforcement of distributed end-to-end real-time constraints and scheduling 

parameters. The results presented in this thesis are important first steps towards achieving 

this goal. 

Our design and implementation of TDMIs in CORBA does not have any direct 

analogies yet. The clients can now express timing constraints, importance and quality of 

service parameters on requests that they make to servers in the form of TDMIs. The 

Global Time Service was designed and implemented to support TDMIs in a distributed 

fashion, relying on a clock synchronization mechanism which ensures a consistent notion 

of a current global time. Thus, CORBA clients and servers can determine the current 

global time with minimal overhead by referring to their local system clocks. The Real-

Time Event Service was designed and implemented to propagate, filter, and correlate 

real-time events in priority order. This Service also supports TDMIs with event driven 

deadlines, providing timestamp information for the real-time events. The design and 

implementation of TDMIs in our Real-Time CORBA uses a dynamic scheduling policy 

(EDF) with aging. Each CORBA call is scheduled on its local node by a Real-Time 

Daemon based on its scheduling policy. In order to meet real-time guarantees in our 

system we can allow method invocations to be made only in the form of a TDMI. This 
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forced us to implement our Real-Time Event Service without using the full set of 

CORBA Event Service interfaces. 

This thesis has presented an important first step in providing support for real-time 

requirements in distributed computing environments such as CORBA. However, many 

other steps are still needed to produce a viable CORBA/RT specification and 

implementations. 

 

6.3 Limitations and Future Work  

 

The design and implementation of TDMIs, Global Time and Real-Time Event Services 

depend  heavily on the underlying operating system, CORBA implementation, and 

network. For instance, our implementation actively uses the routines for assigning the 

real-time OS priorities; relies on OS’s scheduling of the real-time tasks; relies on the 

network communications for sending and receiving CORBA requests and real-time 

events; uses signals, timers, and the other system resources. Thus, the efficiency and 

reliability of those facilities are required. 

There is still significant work to be done to meet the many desired real-time 

capabilities in the CORBA/RT white paper. This includes hard guarantees of service 

times across the environment, guarantees of minimal inter-arrival time for server 

requests, and interface-level support for multi-threading.  

It is worth pointing out that while this design is based on extending CORBA, 

many of the concepts can be applied to real-time distributed systems in general.  For 
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instance, the Timed Distributed Method Invocation can be seen as an abstraction in which 

a client specifies the required timing behavior for a server and during transport. 
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Appendix 

 

This appendix contains graphs based on the raw performance data that was accumulated during testing. Some of 

the graphs have peaks that can be explained as follows: 

♦ Graph 1 and Graph 2. The first peak is due to the delay that Orbix introduces when it processes the first 

CORBA call from a client/server to a Real-Time Daemon. The actual object reference to a Real-Time Daemon 

is generated and interpreted at that point. 

♦ Graph 3. There are some peaks that are due to the delays in the operating system and availability of system 

resources. For instance, the Real-Time Event Dispatcher creates threads to dispatch incoming real-time events 

in priority order. Thus, the operating system response time for the corresponding system calls may be different, 

and depends on its load. 

♦ Graph 4. There are some peaks that are due to network delays and availability of system resources. For 

instance, during the performance tests, two Sun Sparc stations were sharing some file directories via NFS that 

might produce additional network traffic. 
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Graph 1. Client side: TDMI performance 
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Graph 2. Server side: TDMI performance 
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Graph 3. Real-Time Event Channel: Event Dispatch Latency 
 



 60

 
 

80

85

90

95

100

105

110

1 4 7 10 13 16 19 22 25

Consumer #1

Consumer #2

 
 

Graph 4. Push Consumers: Event Response Time 
(Consumer #1 on Sun Sparc Station 5, Consumer #2 on Sun Sparc IPX) 
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Graph 5. Pull Consumer: Event Response Time and Dispatch Latency 
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