Control of Temporal Constraints Based on Dioid Algebra for Timed Event Graphs

S. Amari, J.J. Loiseau
IRCCyN, UMR CNRS 6597
Ecole Centrale de Nantes
loiseau@irccyn.ec-nantes.fr
and I. Demongodin
LISA, FRE CNRS 2656
Université d'Angers
isabel.demongodin@univ-angers.fr

WPDRTS, April 4-5 2005, Denver Colorado

Outline

- Introduction
- Timed event graphs
- Min-Plus linear models of timed event graphs, their properties.
- Strict temporal constraints in Min-Plus
- Control design
- Example
- Conclusions

Introduction

The main features of this work are the following.

- The problem is to respect strict temporal constraints.
- We use a simple linear model over the Min-Plus semiring.
- The design of a control ensuring the constraint validation is proposed.
- It is actually an on-line admission control.
- The work originated from a real industrial manufacturing workshop.

Timed event Graphs

A P-timed event graph

- Petri Net $=$ Places $\in \mathcal{P}+$ Transitions $\in \mathcal{T}+\operatorname{Arcs} \in \mathcal{P} \times \mathcal{T} \cup \mathcal{T} \times \mathcal{P}$, + Initial tokens, + marking evolution rules.
- Event Graph = Each place has exactly one downstream and one upstream transition.
- Timed Event Graph = A delay, denoted $\tau_{i j}$, is associated to the place from t_{j} to t_{i}, if any. It is a minimal sojourn time for the tokens.

Min-Plus linear model : Principle

- To each transition is associated a counter
$=u_{i}(t)$ for a source transition, $\theta_{i}(t)$ for the other transitions.

For instance, the timed event graph

Min-Plus linear model

In general, we obtain a behavioral model of the form

$$
\theta(t)=\bigoplus_{\tau=0}^{\tau^{\max }}\left(A_{\tau} \cdot \theta(t-\tau) \oplus B_{\tau} \cdot u(t-\tau)\right),
$$

where $\tau^{\text {max }}$ is the maximal delay occuring in the graph. The model can be rewrited as

$$
\theta(t)=\bigoplus_{\tau>0}\left(A_{0}^{\star} \cdot A_{\tau} \cdot \theta(t-\tau) \oplus A_{0}^{\star} \cdot B_{\tau} \cdot u(t-\tau)\right),
$$

where $A_{0}^{\star}:=\bigoplus_{k \in \mathbb{N}} A_{0}^{k}$ is the Kleene star of A_{0}.
See : F. Baccelli, G. Cohen, G.-J. Olsder and J.-P. Quadrat, Synchronization and linearity, Wiley, 1992.

Min-Plus linear model (cont.)

Some hypotheses are done.
$\left(\mathrm{H}_{1}\right) \quad$ All the delays equal 0 or 1 . This leads to a state-space representation: $x(t)=A x(t-1) \oplus B u(t)$

$$
\theta(t)=C x(t) ;
$$

$\left(\mathrm{H}_{2}\right) \quad$ The input $u(t)$ is a control. One can postpone the firing of the source transitions, then it is an admission control.
$\left(\mathrm{H}_{3}\right) \quad$ There is only one input, for the sake of simplicity.
The main consequence is that the system is causal, deterministic, linear, and in state-space form. Hence

$$
x(t)=A^{\tau} \cdot x(t-\tau) \oplus\left[\bigoplus_{k=0}^{\tau-1} A^{k} \cdot B \cdot u(t-k)\right],
$$

holds true, for every integer $\tau \geq 1$.

Example

Consider again the previous example,

a P-timed event graph.

For this graph, the basic Min-Plus linear equation reads

$$
\begin{aligned}
\theta(t)= & A_{0} \theta(t) \oplus A_{1} \theta(t-1) \\
& \oplus A_{2} \theta(t-2) \oplus A_{4} \theta(t-4) \oplus B u(t),
\end{aligned}
$$

Example (cont.)

with

$$
\begin{aligned}
& A_{0}=\left(\begin{array}{lll}
\epsilon & 2 & 2 \\
\epsilon & \epsilon & \epsilon \\
\epsilon & \epsilon & \epsilon
\end{array}\right), A_{1}=\left(\begin{array}{lll}
\epsilon & \epsilon & \epsilon \\
\epsilon & \epsilon & 1 \\
\epsilon & \epsilon & \epsilon
\end{array}\right), \\
& A_{2}=\left(\begin{array}{lll}
\epsilon & \epsilon & \epsilon \\
e & \epsilon & \epsilon \\
\epsilon & \epsilon & \epsilon
\end{array}\right), A_{4}=\left(\begin{array}{lll}
\epsilon & \epsilon & \epsilon \\
\epsilon & \epsilon & \epsilon \\
\epsilon & e & \epsilon
\end{array}\right)
\end{aligned}
$$

and

$$
B=\left(\begin{array}{c}
e \\
\epsilon \\
\epsilon
\end{array}\right)
$$

Example (cont.)

Multiplying by A_{0}^{\star} the other matrices, one obtains the following explicit equation

$$
\begin{aligned}
\theta(t)= & \left(\begin{array}{lll}
\epsilon & \epsilon & 3 \\
\epsilon & \epsilon & 1 \\
\epsilon & \epsilon & \epsilon
\end{array}\right) \theta(t-1) \oplus\left(\begin{array}{lll}
2 & \epsilon & \epsilon \\
e & \epsilon & \epsilon \\
\epsilon & \epsilon & \epsilon
\end{array}\right) \theta(t-2) \\
& \oplus\left(\begin{array}{lll}
\epsilon & 2 & \epsilon \\
\epsilon & \epsilon & \epsilon \\
\epsilon & e & \epsilon
\end{array}\right) \theta(t-4) \oplus\left(\begin{array}{c}
e \\
\epsilon \\
\epsilon
\end{array}\right) u(t) .
\end{aligned}
$$

Example (cont.)

Extending the initial graph to get a graph with delays normalized to 0 or 1 , one obtains the following graph

ircen
and the resulting state equation is

$$
x(t)=\left(\begin{array}{ccccccc}
\epsilon & \epsilon & 3 & 2 & \epsilon & \epsilon & 2 \\
\epsilon & \epsilon & 1 & e & \epsilon & \epsilon & \epsilon \\
\epsilon & \epsilon & \epsilon & \epsilon & \epsilon & \epsilon & e \\
e & \epsilon & \epsilon & \epsilon & \epsilon & \epsilon & \epsilon \\
\epsilon & e & \epsilon & \epsilon & \epsilon & \epsilon & \epsilon \\
\epsilon & \epsilon & \epsilon & \epsilon & e & \epsilon & \epsilon \\
\epsilon & \epsilon & \epsilon & \epsilon & \epsilon & e & \epsilon
\end{array}\right) x(t-1) \oplus\left(\begin{array}{c}
e \\
\epsilon \\
\epsilon \\
\epsilon \\
\epsilon \\
\epsilon \\
\epsilon
\end{array}\right) u(t)
$$

Taking into account strict temporal constraints

Let $p_{i j}$ be subject to a temporal constraint.

The constraint is expressed through the following inequality:

$$
m_{i j}+x_{j}\left(t-\tau_{i j}\right) \geq x_{i}(t) \geq m_{i j}+x_{j}\left(t-\tau_{i j}^{\max }\right),
$$

where $m_{i j}$ is the initial marking of the place $p_{i j}$. Since the left inequality is already taken into account by the linear model, the right one, say

$$
x_{i}(t) \geq m_{i j} x_{j}\left(t-\tau_{i j}^{\max }\right),
$$

where the product is over $\overline{\mathbb{R}}_{\text {min }}$, actually represents the constraint.

Causal feedback

We want to calculate $F \in \overline{\mathbb{R}}_{\text {min }}^{m \times N}$ such that

$$
u(t)=F \cdot x(t-1),
$$

for $t>1$, where the product is in the sense of the Min-Plus algebra, ensures the respect of the constraint

$$
x_{i}(t) \geq m_{i j} x_{j}\left(t-\tau_{i j}^{\max }\right) .
$$

$\left(\mathrm{H}_{4}\right) \quad$ There exists a path α from t_{u} to t_{j}. The corresponding delay is denoted τ_{α}.

Control synthesis

Combining

$$
x_{j}(t) \leq A_{j u}^{\tau_{\alpha}} u\left(t-\tau_{\alpha}\right)
$$

and

$$
x_{i}(t)=\bigoplus_{r=1}^{N} A_{i r}^{\phi} x_{r}(t-\phi) \oplus\left[\bigoplus_{k=0}^{\phi-1}\left(A^{k} B\right)_{i} u(t-k)\right]
$$

one obtains the main result.
Theorem 1 The constraint $x_{i}(t) \geq m_{i j} x_{j}\left(t-\tau_{i j}^{\max }\right)$ is satisfied taking

$$
u(t) \leq \bigoplus_{r=1}^{N}\left(A_{i r}^{\phi}-A_{j u}^{\tau_{\alpha}}-m_{i j} x_{r}(t-1)\right)
$$

where $\phi=\tau_{i j}^{\max }+\tau_{\alpha}+1$, if the two following conditions hold
(i) $A_{i r}^{\phi} \geq A_{j u}^{\tau_{\alpha}}+m_{i j}, \quad$ for $r=1$ to N,
(ii) $\left(A^{k} B\right)_{i} \geq A_{j u}^{\tau_{\alpha}}+m_{i j}, \quad$ for $k=0$ to $\phi-1$.

Control synthesis (cont.)

Corollary If there is neither initial token along the path from t_{u} to t_{j}, nor in $p_{i j}$, then the two conditions hold, and

$$
u(t)=\bigoplus_{r=1}^{N} A_{i r}^{\phi} x_{r}(t-1)
$$

is a control law that validates the temporal constraint

$$
x_{i}(t) \geq m_{i j} x_{j}\left(t-\tau_{i j}^{\max }\right) .
$$

Notice that a degree of freedom exists, since the path is not unique, in general.

Generalization

to the case of several temporal constraints, say

$$
x_{z}^{\prime}(t) \geq m_{z} x_{z}\left(t-\tau_{z}^{\max }\right)
$$

for $z=1$ to Z.
Theorem 2 The control law

$$
u(t)=\bigoplus_{z=1}^{Z} u_{z}(t)
$$

where $u_{z}(t)$ is calculated from Theorem 1 for each constraint, defines a causal control that ensures the respect of the Z different temporal constraints.

A furnace and a robot

The state equation associated with this little manufacturing system is

$$
x(t)=\left(\begin{array}{ccc}
\epsilon & 2 & \epsilon \\
1 & \epsilon & 1 \\
\epsilon & e & \epsilon
\end{array}\right) x(t-1) \oplus\left(\begin{array}{c}
e \\
\epsilon \\
\epsilon
\end{array}\right) u(t),
$$

where the components of $x(t)$ are the counter functions associated to the transitions t_{1}, t_{2}, and t_{3}, and $u(t)$ is the control.

Example (cont.)

Further, the time constraint is expressed in terms of an inequality, say

$$
x_{2}(t) \geq 1 \cdot x_{1}(t-1)
$$

for $t \geq 1$. Then applying Theorem 1, we obtain $\tau_{i j}^{\max }=\tau_{21}^{\max }=1, \tau_{\alpha}=0$, $m_{i j}=m_{21}=1$, and $\phi=\tau_{21}^{\max }+\lambda+1:=2$.

We can then check that
(i) $A_{1 u}^{e}+m_{21}=1$, and $A_{2 r}^{2}=\epsilon, 1, \epsilon$ respectively, for $r=1,2,3$,
(ii) $(A B)_{2}=1$. The two conditions of the theorem hold, and

$$
u(t)=\bigoplus_{r=1}^{3}\left(A_{2, r}^{2}-1\right) x_{r}(t-1):=x_{2}(t-1)
$$

guarantees that the time constraint is respected.

Conclusions

- A novel approach to the validation of temporal constraints is proposed.
- It consists of a online admission control that ensures the respect of the constraint.
- The computations are easy, thanks to the use of the Min-Plus linear model. See http://www.istia.univ-angers.fr/~hardouin/ for a software that permits effective computation on large examples.
- A generalization to the case of several constraints was proposed.
- Other generalizations motivate present studies, to the case of several inputs, or to the case of noncommensurable delays. See the forthcoming PhD report of Said Amari.

