

A Maintenance-Oriented Fault Model for the DECOS Integrated Diagnostic Architecture

P. Peti, R. Obermaisser, A. Ademaj, H. Kopetz TU Vienna

Overview

- Introduction
- Hardware/software faults
- DECOS integrated architecture
- Maintenance-oriented fault model
- Maintenance actions
- Conclusion

Introduction

- Effective diagnostic systems stay behind recent increase of electronic systems
- Today the service technician has to rely upon imprecise information
- This results frequently in the replacement of working components
- Emerging X-by-wire solutions will have a lasting effect on the mechanics work
- Statistics: the number one breakdown cause for cars are electronic problems (negative media coverage)

Trouble-Not-Identified Phenomenon

- Trouble-not-Identified phenomenon
 - Increasing number of component failures cannot be traced back to a fault
 - Replacement of correct components
 - Defective component remains unchanged
- Affecting both automotive and avionics domain
- Increased warranty costs
- Image of OEM

Hardware: Shift in Technology

- Low permanent failure rate (significant improvements)
- Increasing rate of transient failures due to
 - Shrinking geometries
 - Process variations
 - Manufacturing residuals
- Need to focus on transients!

Software: Increase in Complexity

- Increase in inherent application complexity
- Software faults are causing numerous callbacks
- Avoid additional platform-induced complexity
 - Architectures with error containment
 - High-level services that facilitate independent application development
- Diagnosis typically part of application

DECOS Integrated Architecture

The DECOS Component Model

- Component is a selfcontained composite hardware/software subsystem and hosts
 - Subsystems of different criticality
 - Jobs (= software modules) of the Distributed Application Subsystems

Maintenance-Oriented Fault Model: Hardware Faults

- Component as unit of replacement for hardware faults
 - Internal (e.g., crack in PCB, faulty processor)
 - Borderline (e.g.,Connector failures)
 - External (e.g., EMI)

Maintenance-Oriented Fault Model: Software Faults

- Job as unit of replacement (update) for software faults:
 - Inherent
 - Borderline
 - External

Assumptions

- The permanent failure rate of FRU with respect to hardware faults is considered to be in the order of 100 FIT, i.e. about 1000 years
- The **transient failure rate** of a FRU with respect to hardware faults is assumed to be in the order of 100.000 FIT, i.e. about 1 year
- Correlated FRU failures, i.e. a fault affecting more than one FRU at the same time, are assumed to be experienced within a bounded interval of time. Example: according to the ISO 7637 standard the duration of an EMI burst is in the order of 10 ms.
- **Software Faults Distribution**. We assume that safety-critical jobs are certified to the necessary degree and thus free of software design faults. In case of non safety-critical jobs, we assume that a minority of the deployed software FRUs is causing the majority of software related failures during operation [Fenton 2000].

Replacement Strategy

Conclusion

- Maintenance-oriented fault model
- We stop "fault-error-failure" chain at Field Replaceable Unit (FRU) level
- Conceptual foundation of the DECOS online diagnostic architecture
- Suitable for both integrated and federated architectures
- Definition of a corresponding maintenance action for each fault class

