Virtual Gateways in the DECOS Integrated Architecture

Roman Obermaisser
Philipp Peti
Hermann Kopetz
Overview

- DECOS Integrated Architecture
- Virtual Networks
- Virtual Gateway Service
- Operation of Virtual Gateways
- Execution of Virtual Gateway Service
- Exemplary Application in Typical Automotive System
- Conclusion
Federated and Integrated Architectures

- Federated architectures provide each application subsystem with its own dedicated computer system
 - Natural separation of application subsystems
 - Complexity control
 - Fault isolation between computer system
 - Service optimization

- Integrated architectures support multiple application subsystems within a single distributed computer system
 - Reduced hardware cost
 - Dependability
 - Flexibility
DECOS Integrated Architecture

- Distributed Application Subsystems (DASs)
 - Nearly independent distributed subsystem
 - Exploit specific platform services
 - Infrastructure tailored to the needs of the DAS (e.g., TT or CAN communication)

Core Services (DAS-Indep.)
- C1 Predictable Message Transport
- C2 Fault-Tolerant Clock Synchronization
- C3 Strong Fault Isolation
- C4 Consistent Diagnosis of Failing Nodes

High-Level Services (DAS-Specific)
- Diagnostic Service
- Gateway Service
- Virtual Network Service
- Encapsulation Service

Time-Triggered Base Architecture

Hiding of implementation details from the application, thereby extending the range of implementation choices
Distributed Application Subsystem

- Consists of jobs
- Interconnected through a dedicated virtual network, which is an overlay network on top of the time-triggered core network
Virtual Gateways

- Virtual gateways support the interconnection of the virtual networks of two DASs
 - Improved quality of service
 - Example: Pre-crash systems
 - Exploit redundant sensors
 - Improve reliability
 - Reduce resource duplication
- Exemplary application: Sensor DAS
Hidden Virtual Gateway Services

Core Services (DAS-Indep.)
- Predictable Message Transport (C1)
- Fault-Tolerant Clock Synchronization (C2)
- Strong Fault Isolation (C3)
- Consistent Diagnosis of Failing Nodes (C4)

Virtual Network Infrastructure tailored to a DAS (e.g., TT)

Virtual Gateway Coupling of Virtual Networks

Safety-Critical Subsystem

Non-Safety-Critical Subsystem

Gateway Service
Virtual Network Service
Encapsulation Service

Time-Triggered Base Architecture

Hiding of implementation details from the application, thereby extending the range of implementation choices.

Core Services for Interfacing the Time-Triggered (TT) Physical Network of the Base Architecture
Role of a Virtual Gateway

- Property Transform.
- Semantic Properties
- Operational Properties
- Encapsulation
- Selective Redirection
- Complexity Control
- Error Containment
Operation of Virtual Gateways

- Each message is regarded as a compound structure
- Part of a message that is subject to selective redirection is denoted *convertible element*
- Received messages are dissected into convertible elements
- Sent messages are constructed out of convertible elements
- Convertible elements are stored in a real-time database

*) message buffer: queue for event information, state variable for state information
Gateway Repository for State and Event Information

- Real-time database
- Central data structure of a virtual gateway
- Temporally accurate convertible elements with state information
- Queuing of convertible elements event information in order to maintain state synchronization

<table>
<thead>
<tr>
<th>Information Semantics</th>
<th>Convertible Element Data</th>
<th>Meta Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convertible Element with State Semantics</td>
<td>![Mail icon]</td>
<td>a_{acc}^1 b_{req}^1 t_{update}^1</td>
</tr>
<tr>
<td>Convertible Element with State Semantics</td>
<td>![Mail icon]</td>
<td>a_{acc}^2 b_{req}^2 t_{update}^2</td>
</tr>
<tr>
<td>Convertible Element with Event Semantics</td>
<td>![Mail icons]</td>
<td>b_{req}^{k+1} request for convertible element instance</td>
</tr>
<tr>
<td>Convertible Element with Event Semantics</td>
<td>![Mail icons]</td>
<td>b_{req}^{k+2} request for convertible element instance</td>
</tr>
</tbody>
</table>
Interaction with Virtual Networks

- Gateway sends and receives messages at two virtual networks.
- Link specification for each virtual network consists of:
 1. Syntactic specification defines structure of message and is used to parse incoming messages / construct outgoing messages.
 2. Temporal specification defines the interaction protocol.
 3. Transfer semantics for conversion between event and state information:
 - State information through accumulation of event information.
 - Event information derived from successive state information values.
Update of Gateway Repository: Sparse Time Base

- In abstract system theory (Mesarovic, 1989), the notion of state is introduced in order to separate the past from the future.
- Sparse time model: partitioning of the continuum of time (durations of action and silence).
- Action lattice.
- Interval of silence:
 - Interval when the distributed state of the system is defined.

![Diagram showing past, future, and state intervals]
Update of Gateway Repository (2)

- Activity Intervals: update of *port state* through the gateway
- Silence Intervals: prevents concurrency with the update of the port state through the virtual networks.

<table>
<thead>
<tr>
<th>Gateway Execution</th>
<th>Silence</th>
<th>Gateway Execution</th>
<th>Silence</th>
<th>Gateway Execution</th>
<th>Silence</th>
<th>Gateway Execution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Activity Intervals: update of *port state* through the communication system (message receptions and message transmission via virtual networks)
- Silence Intervals: globally consistent input is provided via the port state to the gateway

n Ticks

t
Conclusion

- Virtual gateways are a key mechanism for combining advantages of federated and integrated architecture
 - Functionally federated, physically integrated
 - Encapsulation of DAS with dedicated virtual networks
- Virtual gateways for the coupling of virtual networks
 - Exploit redundancy to reduce cost and improve reliability
 - Improve quality of service
- Virtual gateways as an architectural service
 - Generic service that is parameterized by application requirements in order to simplify application development
 - Selective redirection of information between virtual networks through controlled import and export
 - Property transformations
- Update of real-time database on global sparse time base