

Virtual Gateways in the DECOS Integrated Architecture

Roman Obermaisser Philipp Peti Hermann Kopetz

Overview

- DECOS Integrated Architecture
- Virtual Networks
- Virtual Gateway Service
- Operation of Virtual Gateways
- Execution of Virtual Gateway Service
- Exemplary Application in Typical Automotive System
- Conclusion

Federated and Integrated Architectures

- Federated architectures provide each application subsystem with its own dedicated computer system
 - Natural separation of application subsystems
 - Complexity control
 - Fault isolation between computer system
 - Service optimization
- Integrated architectures support multiple application subsystems within a single distributed computer system
 - Reduced hardware cost
 - Dependability
 - Flexibility

DECOS Integrated Architecture

- Distributed Application Subsystems (DASs)
 - Nearly independent distributed subsystem
 - Exploit specific platform services
 - Infrastructure tailored to the needs of the DAS (e.g., TT or CAN communication)

Distributed Application Subsystem

- Consists of jobs
- Interconnected through a dedicated virtual network, which is an overlay network on top of the time-triggered core network

Virtual Gateways

- Virtual gateways support the interconnection of the virtual networks of two DASs
 - Improved quality of service
 - Example: Pre-crash systems
 - Exploit redundant sensors
 - Improve reliability
 - Reduce resource duplication
 - Exemplary application: Sensor DAS

Hidden Virtual Gateway Services

Role of a Virtual Gateway

Operation of Virtual Gateways

- Each message is regarded as a compound structure
- Part of a message that is subject to selective redirection is denoted *convertible element*
- Received messages are dissected into convertible elements
- Sent messages are constructed out of convertible elements
- Convertible elements are stored in a real-time database

*) message buffer: queue for event information, state variable for state information

Gateway Repository for State and Event Information

- Real-time database
- Central data structure of a virtual gateway
- Temporally accurate convertible elements with state information
- Queuing of convertible elements event information in order to maintain state synchronization

Information	Convertible Element Data	Meta Information	
Semantics		Variable	Description
Convertible Element with State Semantics		$d^l_{acc} \ b^l_{req} \ t^l_{update}$	temporal accuracy interval update request point in time of last update
Convertible Element with State Semantics		$d^2_{acc} \ b^2_{req} \ t^2_{update}$	temporal accuracy interval update request point in time of last update
:			
Convertible Element with Event Semantics		b_{req}^{k+l}	request for convertible element instance
Convertible Element with Event Semantics		b_{req}^{k+2}	request for convertible element instance
•			

Interaction with Virtual Networks

- Gateway sends and receives messages at two virtual networks
- Link specification for each virtual network consists of:
 - Syntactic specification defines structure of message and is used to parse incoming messages / construct outgoing messages
 - 2. Temporal specification defines the interaction protocol
 - 3. Transfer semantics for conversion between event and state information
 - state information through accumulation of event information
 - event information derived from successive state information values

Update of Gateway Repository: Sparse Time Base

- In abstract system theory (Mesarovic, 1989), the notion of state is introduced in order to separate the past from the future
- Sparse time model: partitioning of the continuum of time (durations of action and silence)
- Action lattice

- Interval of silence
 - Interval when the distributed state of the system is defined

Update of Gateway Repository (2)

Automotive Example

Conclusion

- Virtual gateways are a key mechanism for combining advantages of federated and integrated architecture
 - Functionally federated, physically integrated
 - Encapsulation of DAS with dedicated virtual networks
- Virtual gateways for the coupling of virtual networks
 - Exploit redundancy to reduce cost and improve reliability
 - Improve quality of service
- Virtual gateways as an architectural service
 - Generic service that is parameterized by application requirements in order to simplify application development
 - Selective redirection of information between virtual networks through controlled import and export
 - Property transformations
- Update of real-time database on global sparse time base

