Real-Time Sensor Networks: Paradigms, Challenges, and Open Issues

Tarek Abdelzaher Department of Computer Science University of Virginia

Where is Computer Science Research Going?

The beginning:

- $_{\scriptscriptstyle \rm n}$ An NSF initiative: Science of Design
 - "How can we explain, *predict and control emergent properties* of software-intensive systems?"
 - "To what extent can we systematize guidance that leads to systems that **satisfy requirements**?"
 - "How can we develop theories that rely on aggregate reasoning about overall behavior rather than exact reasoning about all the details?"
- n A sensor networks perspective
 - A science of design within constraints of time, space, and laws-of-physics

n Problem: data collection by centralized entities

Challenge 1: Energy Balancing

- Problem: data collection by centralized entities
- _n Implications:
 - Programming paradigms should support autonomous operation
 - n Push computation into the network
 - _n Take the user out of the loop
 - Query based? Event-based? Hierarchical?

- Individual nodes or events are insignificant groups and aggregate state are good abstractions
- Leverage group communication (a mature topic)
 - n Real-time
 - Temporal constraints à spatiotemporal constraints
- New group types/semantics:
 - Groups may be very dynamic, high failure-rate, variable topology, migration/mobility, relaxed semantics
 - Semantics cover interaction with the environment
 - Different interactions give rise to different group types
 - New semantics, group properties and invariants
 - Type-specific group communication protocols
 - Programming interface and primitives
- Example: Environmentally Immersive Programming

- Exports a new address space in which the addressed entities (called *contexts*) are representations of physical entities in the external environment
- n Contexts:
 - Logical representations of entities in the external world
 - Have unique names (context labels) same as IP hosts
 - Instantiated when the corresponding external entities are observed in the environment follow these entities around
 - Tracking objects (tasks) can be attached to contexts to execute in the vicinity of the corresponding real-world entity
- Tasks (attached to contexts) can communicate and invoke each other's methods remotely

Challenges

- n Context maintenance
 - Context definition and instantiation (discovery of external entities)
 - Aggregate state management (abstract state of a dynamically changing group of sensor nodes)
- Unique context representation
 - _n Uniqueness
 - Context migration and handoff (track locales of mobile physical entities in the environment)
- Communication, entity location and remote invocation

Real-Time Analysis of Sensor Networks

- What is the relation between radio range, network density, total number of nodes, number of sinks, packet length, packet scheduling policy, MAC-layer protocol, and end-to-end packet ability to meet deadlines?
- How to choose network parameters that satisfy delay bounds on communication?
- Optimality (of MAC scheduling policies), capacity proofs, convergence proofs, etc.

Capacity Planning for Real-Time Wireless Sensor Networks

- Seminal recent work established wireless network capacity bounds
- Mhat if traffic has deadlines and only bits that make it by the latency constraint are counted towards throughput?
- Problem: express *real-time* network capacity that quantifies the throughput of timely bits only as a function of network parameters and time constraints

Network Real-time Capacity

- Network bandwidth is the bottleneck (communication scheduling problems)
 - n Task processing time à packet transmission time
 - Scheduler queue à network queue
- Intuitively, network schedulability decreases with:
 - $_{\scriptscriptstyle \mathrm{n}}$ Increased packet size (task processing time), C
 - $_{\scriptscriptstyle \mathrm{n}}$ Increased distance between source and destination, L
 - $_{\scriptscriptstyle \mathrm{n}}$ Decreased end-to-end latency constraint, D
- Schedulability decreases with CL/D
- Is there a bound $Capacity_{RT}$, such that all packets, i, reach their destinations by their deadlines if:

$$\sum_{i} \frac{C_{i} L_{i}}{D_{i}} \le Capacity_{RT}$$

The Stage Delay Theorem

Let us define synthetic utilization at a resource as: $\sum C/D_i$ for all eligible tasks through that resource (those that have arrived to the system but whose end-to-end deadline has not expired)

The Stage Delay Theorem: If the synthetic utilization of resource j, does not exceed U_j , then no task is queued on resource j for more than a fraction β_j of its end-to-end deadline*, where:

$$\beta_j = U_j (1 - U_j/2)/(1 - U_j)$$

*This is under deadline monotonic scheduling. Similar results derived for other policies.

Throughput Optimization: Maximizing Real-Time Capacity

- Consider a localized communication pattern where each node communicates with nodes at most N hops away.
- On any path, maximize $\Sigma_i U_i$ subject to

$$\sum_{j=1}^{N} \frac{U_{j}(1 - U_{j}/2)}{1 - U_{j}} \le 1$$

ⁿ From symmetry, $U_i = U$

$$\frac{U(1-U/2)}{1-U} = 1/N$$

ⁿ Hence,
$$U = \left(1 + \frac{1}{N} - \sqrt{1 + (\frac{1}{N})^2}\right)$$

Real-Time Capacity

The total capacity theorem: In a load-balanced network of n nodes, each with a radio of transmission speed W and m neighbors on average, if communication is localized within at most N hops:

$$Capacity_{Opt} = \frac{nW}{m} \left(1 + \frac{1}{N} - \sqrt{1 + \left(\frac{1}{N}\right)^2} \right)$$

_n For large *N*:

$$Capacity_{Opt} \approx \frac{nW}{mN}$$

In a *data collection* sensor network with *K* collection points, maximum path length *N*, and radio transmission speed *W*, what is a sufficient bound on real-time capacity?

Real-time Capacity of Multi-hop Data-Collection in Sensor Networks

In a *data collection* sensor network with *K* collection points, maximum path length *N*, and radio transmission speed *W*, what is a sufficient bound on real-time capacity?

In a **data collection** sensor network with K collection points, maximum path length N, and radio transmission speed W, a sufficient bound on real-time capacity is:

Evaluation: How Pessimistic is Real-time Capacity?

Simulation versus analytic prediction of the onset of deadline misses in a 1600 node network

Convergence of Global Behavior in Sensor Networks

- Sensor network protocols are localized; nodes act independently, locally, in response to local stimuli.
- How to argue about the global effects of such localized protocols when performed by all nodes?
- How to induce and analyze convergence to desired global properties?
- Inspirations from control theory (convergence, stability), Markov decision theory (Markov chains, stochastic models), biology (behavior of social insects, swarm intelligence, bio-differentiation), physics (phase transitions, crystallization), ...

Conclusions

- Embedded computing is of growing importance in computer science as a discipline
- New computing paradigms and abstractions are needed
- Real-time analysis must catch up with sensor network realities
 - _n Fundamentally new problems with space and time constraints
 - n Aggregate results as opposed to microscopic models
- Convergence and aggregate behavior analysis is to be developed
 - n Real-time control of aggregate network properties
- _n The science of sensor network design is yet to emerge