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Real-Time and Embedded Systems
i The Next Frontier

Why embedded computing?

In 2003: Embedded processors are 98% of all
processors manufactured
It’s only the beginning...

Real-Time and Embedded Systems
i The Next Frontier

Trend 1:
» Invisible (embedded) computing, implicit interfaces
(users need only 1 mobile device — rest should be non-intrusive)
» Context-aware computing (new sensors, new effectors)
¢ Ubiquitous — instrument what we use most (attire, personal effects, ...)
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Expanding Interest in Embedded

EmSoft (new workshop)
Embedded
Software

CO m p Utl n g ACM ToSN (new journal)

Transactions on

ACM LCTES (new conference)
Language, Compiler and Tool
Support for Embedded System

‘ IEEE SECON (new corjference)
2003 2004 | 2005
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IPSN (new workshop)
Information Processing
in Sensor Networks

ACM TECS (new journal)
Transactions on
Embedded Systems

t t
I | IPSN (becomes a conference)
‘ EmSoft (becomes a conference)

DCoSS (new conference)
ACM SENSYS (new conference) | Distributed Computing
Conference On Embedded In Sensor Systems

Networked Sensor Systems

Overarching Challenge: A Science
of Design and Performance
Analysis for Embedded Networks

n An NSF initiative: Science of Design

» "How can we explain, predict and control emergent
properties of software-intensive systems?”

n "To what extent can we systematize guidance that leads to
systems that satisfy requirements?”

» "How can we develop theories that rely on aggregate
reasoning about overall behavior rather than exact
reasoning about all the details?”

n A sensor networks perspective

» A science of design within constraints of time, space,
and laws-of-physics
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Application Domain

Precision Agriculture

Features
» Ad hoc deployment
» Massive distribution

n Interaction with a
physical environment

Sensing » Unattended operation
: Appllcatlons Disaster Response |-
Habitat Monitoring
Target Tracking Border Control

Infrastructure Protection

Programming Paradigms for
Sensor Networks

‘Amorphous Computing Biological
Cougar (MIT) Swarm Computing
High-level g (Cornell) UVa
. = TinyDB/TAG
Global View 3! Caialey lina) }(3:];1; (S)él
= Tina
o (Pittsburgh
<| Quer
Environmental 45| Base Event
State § Based
&0 .
) IrisNet
Concurrency A (Intel)
Support
Low-level Based

User-Driven (Reactive) Proactive




Programming Paradigms for
Sensor Networks

High-level 8
. =
Global View g Envirotrac g;gg
= (UVa) .
© State-Centric Programming
, < (PARC) Abstract Regions
Etn\t/lronmental = (Harvard) Event
ate 8 Based
&b
]
Concurrency A
Support
Low-level

User-Driven (Reactive) Proactive

Challenge 1:
Energy Balancing

n Problem: data collection by centralized entities
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Challenge 1:
i Energy Balancing

n Problem: data collection by centralized entities
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n Problem: data collection by centralized entities
n Implications:
» Programming paradigms should support autonomous operation
n Push computation into the network
n Take the user out of the loop
n  Query based.? Event-gased? Hierarchical? ... °
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Challenge 2:
Environmental Abstractions

Challenge 2:
Environmental Abstractions

Logical View :

n Distributed programming paradigms

» Abstract distributed communication
» Provide location transparency
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Challenge 2:
Environmental Abstractions

Sensor Network Programming
Abstractions
» Represent the physical world to

Distributed programming paradigms 1 the programmer
n Abstract distributed interaction

» Abstract distributed communication |
» Provide location transparency ! with the physical environment
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Challenge 2:
Environmental Abstractions

Sensor Network Programming

Abstractions
» Represent the physical world to

the programmer

n

Logical View

n Distributed programming paradigms i
» Abstract distributed communication " . Abstract distributed interaction
with the physical environment

» Provide location transparency
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Challenge 3: Distributed Group
Management Theory

n Individual nodes or events are insignificant — groups and
aggregate state are good abstractions

n Leverage group communication (a mature topic)
n Real-time
n Temporal constraints  spatiotemporal constraints

n New group types/semantics:
n Groups may be very dynamic, high failure-rate, variable topology,
migration/mobility, relaxed semantics

n Semantics cover interaction with the environment
» Different interactions give rise to different group types
» New semantics, group properties and invariants
» Type-specific group communication protocols

n Programming interface and primitives

n Example: Environmentally Immersive Programming

n

n

Environmentally Immersive
Programming

Exports a new address space in which the addressed
entities (called contexts) are representations of
physical entities in the external environment

Contexts:
» Logical representations of entities in the external world
» Have unique names (context labels) — same as IP hosts

» Instantiated when the corresponding external entities are
observed in the environment — follow these entities around

» Tracking objects (tasks) can be attached to contexts to
execute in the vicinity of the corresponding real-world entity

n Tasks (attached to contexts) can communicate and

invoke each other’s methods remotely

16



* Programming Model

External
Entity

i Contexts and Objects

n Contexts: Encapsulate entity state and tracking objects
n Tracking objects: Perform entity-specific computation,
communication and sensing

Attached
Tracking
Objects

Context

/'

Programmer’s
View

17



* Communication

n Objects may export methods for remote invocation

Attached
Tracking

Attached
i Objects

/'

Programmer’s
View

Context Example

begin context tracker
sense: magnetic() + motion();
state: location = avg (position);
end

Context (e)

State () = average position

/'

Programmer’s .
View NI Ll

e e — -

O Leader ID @) @) 0
“Sense,( ) = TRUE




Attaching Objects

begin object reporter
begin context tracker send (state, home);
sense: magnetic() + motion(); |end
s’i.iate: location = avg (position);
en

Context (e)

State () = average position

/'

Programmer’s .
View S e - - = 22

e _——

Leader

“Sense,( ) = TRUE

Attaching Objects

begin object reporter
begin context tracker send (state, home);
sense: magnetic() + motion(); |end

state: location = avg (position);
J Attach

end

Context (e)

State,( ) = average position
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Attaching Objects

begin object reporter

begin context tracker send (state, home);
sense: magnetic() + motion(); |end
state: location = avg (position); begin object mic
end turn-on microphone
Attach send (sound, home);
State () = average position end
e =
Programmer’s
View Entity . .- History
Members ; ® o ) o o “-5
o)
o 8 o © o o
.. Leader , O o o

“Sense,( ) = TRUE

i Challenges

n Context maintenance
» Context definition and instantiation (discovery of external
entities)
» Aggregate state management (abstract state of a
dynamically changing group of sensor nodes)
n Unique context representation
» Uniqueness
» Context migration and handoff (track locales of mobile
physical entities in the environment)
n Communication, entity location and remote
invocation
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Group Management and
Context Formation

n Nodes sensing a given target form a single context
n Context has leader, members, and followers

{ Nodes that cannot sense the target but hear the leader (followers)

Leader’s
" Heartbeat
Range
(awareness
horizon)

' Nodes that can sense the target
and hear the leader (members)

A New Spatiotemporal Problem:
niqgue Representation

n Target cant move fast enough to be sensed by a
node that is outside leader heartbeat range:

n Communication range > 2 Sensing Range + Target
speed x group migration time

Leader heartbeat range \1

21
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Real-Time Analysis of Sensor
Networks

n What is the relation between radio range, network
density, total number of nodes, number of sinks,
packet length, packet scheduling policy, MAC-layer
protocol, and end-to-end packet ability to meet
deadlines?

n How to choose network parameters that satisfy
delay bounds on communication?

n Optimality (of MAC scheduling policies), capacity
proofs, convergence proofs, etc.

Real-Time Objects

begin RTobject reporter
begin context tracker send (state, home,30s);
sense: magnetic() + motion(); |end
state: location = avg (position,3,2J; J Attach
ttac

end

Context (e)

State,( ) = average position
/
Programmer’s
View Entity . .. History
Members // T g @ " T—---
e ® o ©
® @
o 9% o " ] © o o
© o _ ID |
o - Leader v O @) 0

“Sense,( ) = TRUE
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Capacity Planning for Real-Time
Wireless Sensor Networks

n Seminal recent work established wireless network capacity bounds

n  What if traffic has deadlines and only bits that make it by the
latency constraint are counted towards throughput?

n Problem: express real-time network capacity that quantifies the
throughput of timely bits only as a function of network parameters
and time constraints

Sampling

i Network Real-time Capacity

Network bandwidth is the bottleneck (communication
scheduling problems)

n Task processing time  packet transmission time

n Scheduler queue  network queue

n Intuitively, network schedulability decreases with:
» Increased packet size (task processing time), C
n Increased distance between source and destination, L
n Decreased end-to-end latency constraint, D

n Schedulability decreases with CL/D

n Is there a bound Capacity,;, such that all packets, i, reach
their destinations by their deadlines if:

Z%<Ca acity
D /4 RT

i i
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* The Stage Delay Theorem

n Let us define synthetic utilization at a resource as:

2 C/D; for all eligible tasks through that resource (those that

have arrived to the system but whose end-to-end deadline
has not expired)

The Stage Delay Theorem: If
the synthetic utilization of resource
j» does not exceed U, then no task
is queued on resource j for more

than a fraction ,Bj of its end-to-end
deadline*, where:

5= Gyl =2l =0

*This is under deadline monotonic scheduling. Similar results derived for other policies.

i The Single Hop Problem

n Only one node in the vicinity of a receiver can
send at a time

Equivalent
Virtual Queue

Receiver’s
Radio Range

25



Throughput Optimization:
Maximizing Real-Time Capacity

n Consider a localized communication pattern where each
node communicates with nodes at most N hops away.

» On any path, maximize 2; U; subject to
LU -0,/

27y,

n From symmetry, U, = U

U(l—U/Z):I/N

1-U
» Hence, U:(“.%V_W)

i Real-Time Capacity

n The total capacity theorem: In a load-balanced
network of n nodes, each with a radio of transmission
speed W and m neighbors on average, if
communication is localized within at most N hops:

Capacity,,,, = % (1 +%\, =1t (%V)2 )

n For large N:

nWw

Capacity,,,, = N
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Real-time Capacity of Multi-hop
Data-Collection in Sensor Networks

n In a data collection sensor network with K collection
points, maximum path length ~, and radio transmission
speed W, what is a sufficient bound on real-time
capacity?

Real-time Capacity of Multi-hop
Data-Collection in Sensor Networks

n In a data collection sensor network with K collection
points, maximum path length N, and radio transmission
speed W, what is a sufficient bound on real-time
capacity?

Data conservation z Uj (1 _Uj/z)

constraints

<1, U,01/)

\
o o
S e ST,

27



Real-time Capacity of Multi-hop
Data-Collection in Sensor Networks

n In a data collection sensor network with K collection
points, maximum path length ~, and radio transmission
speed W, a sufficient bound on real-time capacity is:

KNW

Capacity pe = 1+0.5InN

Evaluation: How Pessimistic is
i Real-time Capacity?

n Simulation versus analytic prediction of the onset of
deadline misses in a 1600 node network

Capacily of Network vs. Mumber o Sinks
1600 Modes, Meighborhood size - 12

=0 T T
s Slatian .
([ 2oe —

40 e s
H as |- — P
E‘ / B o
2 ® g )_/“'"'_"_-
= o5 — o /”_/
i .///-"“
i

e
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Fundamental Performance
Tradeoffs in Sensor Networks

Information

Sensor network

Fundamental Performance
Tradeoffs in Sensor Networks

Information

Sensor network
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Information

Sensor network
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Constrained Optimization and
Feedback Control in Sensor
Networks

Information

Time
constraint

N
8RR 4%
E

Events  oOptimum
Feedback control solutions for /
performance optimization? I

Load dependent

Convergence of Global Behavior
i in Sensor Networks

n Sensor network protocols are localized; nodes act
independently, locally, in response to local stimuli.

n How to argue about the global effects of such
localized protocols when performed by all nodes?

n How to induce and analyze convergence to desired
global properties?

n Inspirations from control theory (convergence,
stability), Markov decision theory (Markov chains,
stochastic models), biology %Jehavior of social
insects, swarm intelligence, bio-differentiation),
physics (phase transitions, crystallization), ...
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Designing Adaptive Performance-
ssured Sensor Networks

Situational
n Achieving desired temporal behavior line InPut
without fine-grained knowledge 2. Online
» Compute feasibility boundaries
» Control the system not to escape them

Ul Load Control
ﬁontrol 1

I
I
I
I
U3
I
I
I
I

Control

1. Offline analysis

Mission Execution
Scenario

Mission
Performance

Analysis Guarantees

No Microscopic | 4
Models ’
Feasible Regi? :

Synthetic Resource
Utilization U2

No Load Arrival Assumptions

Final Word: Sufficient Simplicity
i An Underlying Design Principle

Envisioned solution
Techniques should be:

simple o[%’e Current solution
PN techniques are:
sufficient , 70, ° g exact

0
eﬁqde’gr@ o Sy, complex

resource

Less error prone (simplicity), "7, ry
e c9““/0,7 optimal

more scalable (simplicity),
and safe (sufficiency)
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i Conclusions

n Embedded computing is of growing importance in computer
science as a discipline
n New computing paradigms and abstractions are needed
n Real-time analysis must catch up with sensor network
realities
» Fundamentally new problems with space and time constraints
n Aggregate results as opposed to microscopic models
n Convergence and aggregate behavior analysis is to be
developed
» Real-time control of aggregate network properties

n The science of sensor network design is yet to emerge

34



