Announcements

C++ Bootcamp next week
Watch all videos on edX
PS #1 is out
Gradescope
Office Hours
Textbook

Previously ...

Analysis of Algorithms
running times (empirical analysis)
examples

Today ...

Analysis of Algorithms
running times (mathematical models)
big O notation
examples

Math Review

Summations
Powers
Logarithms
Proof Techniques
Basic Probability and Combinatorics

Time Complexity

Mathematical Model

High-level analysis — no need to implement
running time \(T(n) \) is a function of the input size \(n \)
Independent of HW/SW
Based on counts of elementary operations
additions, multiplications, comparisons, etc.
exact definition not important
must be ‘relevant’ to the problem

Growth Rate

Changes in HW/SW
affect \(T(n) \) by a constant factor
do not alter the growth rate of \(T(n) \)

Interest on execution times with large inputs

growth of \(T(n) \) as \(n \to \infty \)
Order of Growth

- $T(n) = \Theta(1)$
- $T(n) = \Theta(\log n)$
- $T(n) = \Theta(n)$
- $T(n) = \Theta(n \log n)$
- $T(n) = \Theta(n^2)$
- $T(n) = \Theta(2^n)$

Asymptotic Performance

For large values of n, an $O(n^2)$ algorithm always beats an $O(n^3)$ algorithm.

In practice, we shouldn’t completely ignore asymptotically slower algorithms.

Big O Notation

$T(n) = O(f(n))$ if there are positive constants c and n_0 such that $T(n) \leq c \cdot f(n)$ when $n \geq n_0$.

Example 1

$7n - 2$ is $O(n)$

Proof 1: A possible choice is $c = 7$ and $n_0 = 1$.

Example 2

$20n^3 + 10n \log n + 5$ is $O(n^3)$

Proof 2: $c = 35$ and $n_0 = 1$.

Example 3

$3 \log n + \log \log n$ is $O(\log n)$

Proof 3: $c = 4$ and $n_0 = 2$.

Example 4

2^{100} is $O(1)$

Proof 4: $c = 2^{100}$ and $n_0 = 1$.

Tight bound is preferred.

Big Omega

$T(n) = \Omega(f(n))$ if there are positive constants c and n_0 such that $T(n) \geq c \cdot f(n)$ when $n \geq n_0$.

Example 1

$3 \log n + \log \log n$ is $\Omega(\log n)$

Proof 1: $3 \log n + \log \log n \geq 3 \log n$, for $n_0 = 2$.

Example 2

$3 \log n + \log \log n$ is $\Theta(\log n)$

Proof 2: $3 \log n + \log \log n$ is $\Omega(\log n)$ and $O(\log n)$

Big Theta

$T(n) = \Theta(f(n))$ if and only if $T(n) = O(f(n))$ and $T(n) = \Omega(f(n))$.

Example 1

$3 \log n + \log \log n$ is $\Omega(\log n)$

Proof 1: $3 \log n + \log \log n \geq 3 \log n$, for $n_0 = 2$.

Example 2

$3 \log n + \log \log n$ is $\Theta(\log n)$

Proof 2: $3 \log n + \log \log n$ is $\Omega(\log n)$ and $O(\log n)$

Examples

- $10^2 + 3000n + 10$
- $21 \log n$
- $500 \log n + n^4$
- $\sqrt{n} + \log n^{50}$
- $4^n + n^{5000}$
- $3000n^3 + 3n^{3.5}$
- $2^2 + n!$
for (int i = 0; i < n; i++) {
 // O(1) operations
}

for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 // O(1) operations
 }
}

for (int i = 0; i < n; i++) {
 for (int j = 0; j < n*n; j++) {
 // O(1) operations
 }
}

T(n) =

for (int i = 0; i < n; i++) {
 for (int j = 0; j < i; j++) {
 // O(1) operations
 }
}

for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 for (int k = 0; k < n; k++) {
 // O(1) operations
 }
 }
}

for (int i = 0; i < n; i++) {
 for (int j = 0; j < i*i; j++) {
 for (int k = 0; k < j; k++) {
 // O(1) operations
 }
 }
}

Case Study

Maximum Subarray Problem

Given an array of n integers, find the subarray A[j:k] that maximizes the sum

\[s_{j,k} = a_j + a_{j+1} + \cdots + a_k = \sum_{i=j}^{k} a_i \]

Brute Force

\[T(n) = O(n^3) \]

Using Prefix Sums

\[T(n) = O(n^2) \]

Using Maximum Suffix Sums

\[T(n) = O(n) \]