Announcements

C++ Bootcamp next week
 Watch all videos on edX

PS #1 is out
 Gradescope
 Office Hours

Textbook
Previously ...

Analysis of Algorithms

running times (empirical analysis)

examples
Today …

Analysis of Algorithms
running times (mathematical models)
big O notation
examples
Math Review

Summations

Powers

Logarithms

Proof Techniques

Basic Probability and Combinatorics
Math Review

Summations

Powers

Logarithms

Proof Techniques

Basic Probability and Combinatorics
Time Complexity
Analyzing Running Time

Empirical Analysis
- Run algorithm
- Measure actual time

Mathematical Model
- Analyze Algorithm
- Develop Model
Mathematical Model

High-level analysis — no need to implement running time $T(n)$ is a function of the input size n
Mathematical Model

High-level analysis — no need to implement running time $T(n)$ is a function of the input size n Independent of HW/SW
Mathematical Model

High-level analysis — no need to implement running time $T(n)$ is a function of the input size n

Independent of HW/SW

Based on counts of elementary operations
additions, multiplications, comparisons, etc.

exact definition not important
must be ‘relevant’ to the problem
Growth Rate

Changes in HW/SW affect $T(n)$ by a constant factor do not alter the growth rate of $T(n)$.
Growth Rate

Changes in HW/SW
affect $T(n)$ by a constant factor
do not alter the growth rate of $T(n)$

Interest on execution times with large inputs
Growth Rate

Changes in HW/SW
affect $T(n)$ by a constant factor
do not alter the growth rate of $T(n)$

Interest on execution times with large inputs

growth of $T(n)$ as $n \rightarrow \infty$
Order of Growth

\[
T(n) = \Theta(1)
\]
\[
T(n) = \Theta(\log n)
\]
\[
T(n) = \Theta(n)
\]
\[
T(n) = \Theta(n \log n)
\]
\[
T(n) = \Theta(n^2)
\]
\[
T(n) = \Theta(n^3)
\]
\[
T(n) = \Theta(2^n)
\]
Asymptotic Performance

For large values of n, an $O(n^2)$ algorithm always beats an $O(n^3)$ algorithm.
Asymptotic Performance

For large values of n, an $O(n^2)$ algorithm always beats an $O(n^3)$ algorithm.

In practice, we shouldn’t completely ignore asymptotically slower algorithms.
Big O Notation
\(T(n) = O(f(n)) \) if there are positive constants \(c \) and \(n_0 \) such that
\[T(n) \leq c \cdot f(n) \]
when \(n \geq n_0 \)
$T(n) = O(f(n))$ if there are positive constants c and n_0 such that $T(n) \leq c \cdot f(n)$ when $n \geq n_0$
$T(n) = O(f(n))$ if there are positive constants c and n_0 such that $T(n) \leq c \cdot f(n)$ when $n \geq n_0$
$T(n) = O(f(n))$ if there are positive constants c and n_0 such that $T(n) \leq c \cdot f(n)$ when $n \geq n_0$
Example 1 $7n - 2$ is $O(n)$

Proof 1 A possible choice is $c = 7$ and $n_0 = 1$.

Example 2 $20n^3 + 10n \log n + 5$ is $O(n^3)$

Proof 2 $c = 35$ and $n_0 = 1$.

Example 3 $3 \log n + \log \log n$ is $O(\log n)$

Proof 3 $c = 4$ and $n_0 = 2$.

Example 4 2^{100} is $O(1)$

Proof 4 $c = 2^{100}$ and $n_0 = 1$.
Example 1 \(7n - 2 \text{ is } O(n)\)

Proof 1 A possible choice is \(c = 7\) and \(n_0 = 1\).

Example 2 \(20n^3 + 10n \log n + 5 \text{ is } O(n^3)\)

Proof 2 \(c = 35\) and \(n_0 = 1\).

Example 3 \(3 \log n + \log \log n \text{ is } O(\log n)\)

Proof 3 \(c = 4\) and \(n_0 = 2\).

Example 4 \(2^{100} \text{ is } O(1)\)

Proof 4 \(c = 2^{100}\) and \(n_0 = 1\).

7n-2 is also \(O(n^2), O(n^3), O(2^n), \ldots\), but tighter bound is preferred.
Example 1 \[7n - 2 \text{ is } O(n)\]

Proof 1 A possible choice is \(c = 7\) and \(n_0 = 1\).

Example 2 \[20n^3 + 10n \log n + 5 \text{ is } O(n^3)\]

Proof 2 \(c = 35\) and \(n_0 = 1\).

Example 3 \[3 \log n + \log \log n \text{ is } O(\log n)\]

Proof 3 \(c = 4\) and \(n_0 = 2\).

Example 4 \[2^{100} \text{ is } O(1)\]

Proof 4 \(c = 2^{100}\) and \(n_0 = 1\).

7n-2 is also \(O(n^2)\), \(O(n^3)\), \(O(2^n)\), …, but tighter bound is preferred

“ignore constants and drop lower order terms”
Big Omega

\[T(n) = \Omega(f(n)) \text{ if there are positive constants } c \text{ and } n_0 \text{ such that } T(n) \geq c \cdot f(n) \text{ when } n \geq n_0 \]
$T(n) = \Omega(f(n))$ if there are positive constants c and n_0 such that $T(n) \geq c \cdot f(n)$ when $n \geq n_0$
Big Omega

\[T(n) = \Omega(f(n)) \] if there are positive constants \(c \) and \(n_0 \) such that
\[T(n) \geq c \cdot f(n) \text{ when } n \geq n_0 \]
Big Omega

$T(n) = \Omega(f(n))$ if there are positive constants c and n_0 such that $T(n) \geq c \cdot f(n)$ when $n \geq n_0$
Big Theta

\[T(n) = \Theta(f(n)) \text{ if and only if } T(n) = O(f(n)) \text{ and } T(n) = \Omega(f(n)) \]
Big Theta

\[T(n) = \Theta(f(n)) \text{ if and only if } T(n) = O(f(n)) \text{ and } T(n) = \Omega(f(n)) \]
Big Theta

\[T(n) = \Theta(f(n)) \text{ if and only if } T(n) = O(f(n)) \text{ and } T(n) = \Omega(f(n)) \]
Big Theta

\[T(n) = \Theta(f(n)) \text{ if and only if } T(n) = O(f(n)) \text{ and } T(n) = \Omega(f(n)) \]
Big Theta

\[T(n) = \Theta(f(n)) \text{ if and only if } \begin{align*}
T(n) &= \mathcal{O}(f(n)) \text{ and } T(n) = \Omega(f(n))
\end{align*} \]
Example 1 \[3 \log n + \log \log n \text{ is } \Omega(\log n)\]

Proof 1 \[3 \log n + \log \log n \geq 3 \log n, \text{ for } n_0 = 2\]

Example 2 \[3 \log n + \log \log n \text{ is } \Theta(\log n)\]

Proof 2 \[3 \log n + \log \log n \text{ is } \Omega(\log n) \text{ and } O(\log n)\]
Examples

$10^2 + 3000n + 10$

$21 \log n$

$500 \log n + n^4$

$\sqrt{n} + \log n^{50}$

$4^n + n^{5000}$

$3000n^3 + 3n^{3.5}$

$2^5 + n!$

Big O?

Big Omega?

Big Theta?
for (int i = 0 ; i < n ; i ++) {
 // O(1) operations
}

for (int i = 0 ; i < n ; i ++) {
 for (int j = 0 ; j < n ; j ++) {
 // O(1) operations
 }
}

for (int i = 0 ; i < n ; i ++) {
 for (int j = 0 ; j < n*n ; j ++) {
 // O(1) operations
 }
}

T(n)=

for (int i = 0 ; i < n ; i ++) {
 for (int j = 0 ; j < i ; j ++) {
 // O(1) operations
 }
}

for (int i = 0 ; i < n ; i ++) {
 for (int j = 0 ; j < n ; j ++) {
 for (int k = 0 ; k < n ; k ++) {
 // O(1) operations
 }
 }
}

for (int i = 0 ; i < n ; i ++) {
 for (int j = 0 ; j < i*i ; j ++) {
 for (int k = 0 ; k < j ; k ++) {
 // O(1) operations
 }
 }
}
Case Study
Maximum Subarray Problem

Given an array of \(n \) integers, find the subarray \(A[j:k] \) that maximizes the sum

\[
s_{j,k} = a_j + a_{j+1} + \cdots + a_k = \sum_{i=j}^{k} a_i.
\]
Brute Force

Algorithm MaxsubSlow\((A)\):

Input: An \(n\)-element array \(A\) of numbers, indexed from 1 to \(n\).

Output: The maximum subarray sum of array \(A\).

\(m \leftarrow 0 \) // the maximum found so far

for \(j \leftarrow 1\) to \(n\) do

 for \(k \leftarrow j\) to \(n\) do
 \(s \leftarrow 0\) // the next partial sum we are computing

 for \(i \leftarrow j\) to \(k\) do
 \(s \leftarrow s + A[i]\)

 if \(s > m\) then
 \(m \leftarrow s\)

return \(m\)
Brute Force

Algorithm MaxsubSlow(A):

\textbf{Input:} An n-element array A of numbers, indexed from 1 to n.
\textbf{Output:} The maximum subarray sum of array A.

$m \leftarrow 0$ \hspace{1em} // the maximum found so far

\textbf{for} $j \leftarrow 1$ \textbf{to} n \textbf{do}

\hspace{1em} \textbf{for} $k \leftarrow j$ \textbf{to} n \textbf{do}

\hspace{2em} $s \leftarrow 0$ \hspace{1em} // the next partial sum we are computing

\hspace{2em} \textbf{for} $i \leftarrow j$ \textbf{to} k \textbf{do}

\hspace{3em} $s \leftarrow s + A[i]$

\hspace{2em} \textbf{if} $s > m$ \textbf{then}

\hspace{3em} $m \leftarrow s$

\textbf{return} m

$O(n^3)$

From Algorithm Design and Applications, Goodrich & Tamassia
Using Prefix Sums

Algorithm MaxsubFaster(A):

Input: An n-element array A of numbers, indexed from 1 to n.
Output: The maximum subarray sum of array A.

\[S_0 \leftarrow 0 \quad \text{// the initial prefix sum} \]

for \(i \leftarrow 1 \) to \(n \) do

\[S_i \leftarrow S_{i-1} + A[i] \]

\(m \leftarrow 0 \quad \text{// the maximum found so far} \]

for \(j \leftarrow 1 \) to \(n \) do

for \(k \leftarrow j \) to \(n \) do

\[s = S_k - S_{j-1} \]

if \(s > m \) then

\[m \leftarrow s \]

return \(m \)
Using Prefix Sums

Algorithm MaxsubFaster(A):

Input: An \(n \)-element array \(A \) of numbers, indexed from 1 to \(n \).

Output: The maximum subarray sum of array \(A \).

\[
S_0 \leftarrow 0 \quad \text{// the initial prefix sum}
\]

for \(i \leftarrow 1 \) to \(n \) do

\[
S_i \leftarrow S_{i-1} + A[i]
\]

\(m \leftarrow 0 \quad \text{// the maximum found so far} \)

for \(j \leftarrow 1 \) to \(n \) do

for \(k \leftarrow j \) to \(n \) do

\[
s = S_k - S_{j-1}
\]

if \(s > m \) then

\[
m \leftarrow s
\]

return \(m \)

Any summation \(S_{j,k} \) can be computed in constant time.
Using Prefix Sums

Algorithm MaxsubFaster(A):

Input: An n-element array A of numbers, indexed from 1 to n.

Output: The maximum subarray sum of array A.

$S_0 \leftarrow 0$ // the initial prefix sum

for $i \leftarrow 1$ to n do
 $S_i \leftarrow S_{i-1} + A[i]$

$m \leftarrow 0$ // the maximum found so far

for $j \leftarrow 1$ to n do
 for $k \leftarrow j$ to n do
 $s = S_k - S_{j-1}$
 if $s > m$ then
 $m \leftarrow s$

return m

Any summation $s_{j,k}$ can be computed in constant time

$$s_{j,k} = S_k - S_{j-1}$$
Using Prefix Sums

Algorithm MaxsubFaster(A):

Input: An \(n \)-element array \(A \) of numbers, indexed from 1 to \(n \).
Output: The maximum subarray sum of array \(A \).

\[S_0 \leftarrow 0 \quad \text{// the initial prefix sum} \]

for \(i \leftarrow 1 \) to \(n \) do

\[S_i \leftarrow S_{i-1} + A[i] \]

\[m \leftarrow 0 \quad \text{// the maximum found so far} \]

for \(j \leftarrow 1 \) to \(n \) do

\[s = S_k - S_{j-1} \]

if \(s > m \) then

\[m \leftarrow s \]

return \(m \)

Any summation \(s_{j,k} \) can be computed in constant time

\[s_{j,k} = S_k - S_{j-1} \]

\[O(1+2+\ldots+n) \]

\[O(n^2) \]
Using Maximum Suffix Sums

Algorithm MaxsubFastest(A):

- **Input:** An n-element array A of numbers, indexed from 1 to n.
- **Output:** The maximum subarray sum of array A.

$M_0 \leftarrow 0$ // the initial prefix maximum

for $t \leftarrow 1$ to n do

\[M_t \leftarrow \max\{0, M_{t-1} + A[t]\} \]

$m \leftarrow 0$ // the maximum found so far

for $t \leftarrow 1$ to n do

\[m \leftarrow \max\{m, M_t\} \]

return m
Using Maximum Suffix Sums

Mt is the summation value of a maximum subarray that ends at t

Algorithm MaxsubFastest(A):

Input: An n-element array A of numbers, indexed from 1 to n.
Output: The maximum subarray sum of array A.

M₀ ← 0 // the initial prefix maximum
for t ← 1 to n do
 Mₜ ← max{0, Mₜ₋₁ + A[t]}
m ← 0 // the maximum found so far
for t ← 1 to n do
 m ← max{m, Mₜ}
return m

From Algorithm Design and Applications, Goodrich & Tamassia
Using Maximum Suffix Sums

Algorithm MaxsubFastest(A):

\textbf{Input:} An \(n \)-element array \(A \) of numbers, indexed from 1 to \(n \).

\textbf{Output:} The maximum subarray sum of array \(A \).

\(M_0 \leftarrow 0 \) // the initial prefix maximum

\textbf{for} \(t \leftarrow 1 \) \textbf{to} \(n \) \textbf{do}

\hspace{1em} \(M_t \leftarrow \max\{0, M_{t-1} + A[t]\} \)

\(m \leftarrow 0 \) // the maximum found so far

\textbf{for} \(t \leftarrow 1 \) \textbf{to} \(n \) \textbf{do}

\hspace{1em} \(m \leftarrow \max\{m, M_t\} \)

\textbf{return} \(m \)

\(M_t \) is the summation value of a maximum subarray that ends at \(t \)

\(M_t = \max\{0, \max_{j=1,\ldots,t} \{ s_{j,t} \} \} \)

From Algorithm Design and Applications, Goodrich & Tamassia
Using Maximum Suffix Sums

Algorithm MaxsubFastest(A):

Input: An n-element array A of numbers, indexed from 1 to n.

Output: The maximum subarray sum of array A.

1. $M_0 \leftarrow 0$ // the initial prefix maximum
2. for $t \leftarrow 1$ to n do
 1. $M_t \leftarrow \max\{0, M_{t-1} + A[t]\}$
 2. $m \leftarrow 0$ // the maximum found so far
3. for $t \leftarrow 1$ to n do
 1. $m \leftarrow \max\{m, M_t\}$
4. return m

M_t is the summation value of a maximum subarray that ends at t

$$M_t = \max\{0, \max_{j=1,\ldots,t}\{s_{j,t}\}\}$$

$$M_t = \max\{0, M_{t-1} + A[t]\}$$

From Algorithm Design and Applications, Goodrich & Tamassia
Using Maximum Suffix Sums

Algorithm MaxsubFastest(A):

- **Input:** An n-element array A of numbers, indexed from 1 to n.
- **Output:** The maximum subarray sum of array A.

1. $M_0 \leftarrow 0$ // the initial prefix maximum
2. for $t \leftarrow 1$ to n do
 - $M_t \leftarrow \max\{0, M_{t-1} + A[t]\}$
 - $m \leftarrow 0$ // the maximum found so far
3. for $t \leftarrow 1$ to n do
 - $m \leftarrow \max\{m, M_t\}$
4. return m

M_t is the summation value of a maximum subarray that ends at t

$$M_t = \max\{0, \max_{j=1,\ldots,t} \{s_{j,t}\}\}$$

$$M_t = \max\{0, M_{t-1} + A[t]\}$$

$O(n)$