Previously ...

Recursion
definition
backtracking
examples

Games in AI

Tic-Tac-Toe — PhD project @ Cambridge 1952
Chess — Deep Blue 1997
Jeopardy — Watson 2011
Atari Games from raw pixels (Google) — 2014
Go game — Deepmind (Google) — 2016
search space more than a GooGol larger than Chess!!

Today ...

Recurrences
used to determine running time of recursive algorithms

Go Game

1,000,000,000,000,000,000,000,00
0,000,000,000,000,000,000,000,00
0,000,000,000,000,000,000,000,00
0,000,000,000,000,000,000,000,00
0,000,000,000,000,000,000,000,00
0,000,000,000,000,000,000,000,00
0,000,000,000,000,000,000,000,00
0,000,000,000,000,000,000,000,00
0,000 possible configurations

int binary_search(int A[], int low, int high, int k) {
 // test if array is empty
 if (high < low)
 // return value showing not found
 return NOT_FOUND;
 else {
 // calculate midpoint index
 int mid = (low + high) / 2;
 if (A[mid] == k)
 // key has been found
 return mid;
 else if (A[mid] < k)
 // key is in upper subset
 return binary_search(A, mid+1, high, k);
 else
 // key is in lower subset
 return binary_search(A, low, mid-1, k);
 }
}

Binary Search Recurrence

Base Case: \(T(1) = c_0 \)

Recursive Case: \(T(n) = T(n/2) + c \)

The Iteration Method

Keep expanding the recurrence until you see a pattern, then simplify

Not trivial in all cases but it is helpful to build an intuition
The Iteration Method

\[T(n) = T(n/2) + c \]
\[= T(n/2) + c + c \]
\[= T(n/4) + 2c \]
\[= T(n/8) + 3c \]
\[= T(n/16) + 4c \]
\[\vdots \]
\[= T(n/2^k) + kc \]

The Recursion Tree Method

\[T(1) = c_0 \]
\[T(n) = T(n/2) + c \]
\[\vdots \]
\[= c_0 + c \log_2 n \]
\[= O(\log_2 n) \]

The Iteration Method

We already know \(T(1) \) is equal to a constant \(c_0 \)

If we set \(n/2^k = 1 \) then \(n = 2^k \) and \(k = \log_2 n \)

\[T(n) = T(n/2^k) + kc \]
\[= T(1) + c \log_2 n \]
\[= c_0 + c \log_2 n \]
\[= O(\log_2 n) \]

The Recursion Tree Method

Keep track of how much work each recursive call makes

Total running time is the sum of the work across all layers of the tree

Examples: use the iteration and the recursion tree methods:

- mergesort
 \[T(1) = a \]
 \[T(n) = 2T(n/2) + cn \]

- hanoi towers
 \[T(0) = 0 \]
 \[T(n) = 2T(n-1) + 1 \]