Previously ...

Linked Lists
- singly linked lists
- doubly linked lists
- circular

Stacks

Queues

Queues: Application

Round-robin scheduler using a queue Q
```
event = Q.dequeue()
process event
Q.enqueue(event)
```

Today ...

Trees

List, Stacks, Queues are linear data structures

Trees allow for hierarchical relationships
- nodes have parent-child relation

Trees (jargon)

A tree is either empty or a root node connected to 0 or more trees (called subtrees)

Each node is either a leaf or an internal node
- an internal node has one or more children
- a leaf node (external node) has no children

Nodes with the same parent are siblings

Paths

A path from node v_i to v_k is a sequence of nodes $v_i, v_{i+1}, v_{i+2}, ..., v_k$, where there is an edge from one node to the next

The descendants of a node v are all nodes reached by a path from node v to the leaf nodes

The ancestors of a node v are all nodes found on the path from the root to node v
Depth and Height

The length of a path is the number of edges in the path.
The depth (level) of a node \(v \) is the length of the path from \(v \) to root.
The height of a node \(v \) is the length of the path from \(v \) to its deepest descendant.

Properties

Depth of tree is the depth of deepest node.
Height of tree is the height of the root.

Linked Structure for Trees

Every node has:
- data
- parent
- children array

Traversals

Preorder Traversal

```
algorithmpreorder(p) {
    visit(p)
    for each child c of p {
        preorder(c)
    }
}
```

Example: What type of traversal?

Compute space used by files in folders and subfolders:

```
$ du -h -d 2
```