CSC 212
Data Structures and Abstractions
Spring 2016

Lecture 09: Trees
Previously ...

Linked Lists
 singly linked lists
 doubly linked lists
 circular

Stacks

Queues
Queues: Application

Round-robin scheduler using a queue Q

```
    event = Q.dequeue()
    process event
    Q.enqueue(event)
```
Today ...

Trees
 definition
 properties
 traversals
Trees

List, Stacks, Queues are linear data structures
Trees

List, Stacks, Queues are linear data structures

Trees allow for hierarchical relationships
nodes have parent-child relation
There is a unique path from the root to each node in the tree.
A **tree** is either empty or a **root** node connected to 0 or more **trees** (called **subtrees**).
A tree is either empty or a root node connected to 0 or more trees (called subtrees).
A tree is either empty or a root node connected to 0 or more trees (called subtrees).
A tree is either empty or a root node connected to 0 or more trees (called subtrees).
Trees (jargon)

Each node is either a **leaf** or an **internal node**

- An **internal node** has one or more children
- A **leaf node** (external node) has no children
Trees (jargon)

Each node is either a **leaf** or an **internal node**

- an **internal node** has one or more children
- a **leaf node** (external node) has no children

Nodes with the same parent are **siblings**
Paths

Root
A path from node \(v_0 \) to \(v_n \) is a sequence of nodes \(v_0, v_1, v_2, \ldots, v_n \), where there is an edge from one node to the next.
Paths

A **path** from node v_0 to v_n is a sequence of nodes $v_0, v_1, v_2, \ldots, v_n$, where there is an edge from one node to the next.

The **descendants** of a node v are all nodes reached by a path from node v to the leaf nodes.
A path from node v_0 to v_n is a sequence of nodes $v_0, v_1, v_2, \ldots, v_n$, where there is an edge from one node to the next.

The descendants of a node v are all nodes reached by a path from node v to the leaf nodes.

The ancestors of a node v are all nodes found on the path from the root to node v.

Paths
Depth and Height
The length of a path is the number of edges in the path.
The **length** of a path is the number of edges in the path.

The **depth** (level) of a node v is the length of the path from v to root.
The **length** of a path is the number of edges in the path.

The **depth** (level) of a node v is the length of the path from v to root.

The **height** of a node v is the length of the path from v to its deepest descendant.
Properties

Depth of tree is the depth of deepest node.
Properties

Depth of tree is the depth of the deepest node.

Height of tree is the height of the root.
Linked Structure for Trees

Every node has:

- data
- parent
- children array

From Algorithm Design and Applications, Goodrich & Tamassia
k-ary trees
k-ary trees

In a **k-ary tree**, every node has between 0 and k children.
k-ary trees

In a **k-ary tree**, every node has between 0 and \(k \) children.

In a **full (proper) k-ary** tree, every node has exactly 0 or \(k \) children.
k-ary trees

In a **k-ary tree**, every node has between 0 and k children.

In a **full (proper) k-ary** tree, every node has exactly 0 or k children.

In a **complete k-ary** tree, every level is entirely filled, except possibly the deepest, where all nodes are as far left as possible.
k-ary trees

In a **k-ary tree**, every node has between 0 and k children.

In a **full (proper) k-ary** tree, every node has exactly 0 or k children.

In a **complete k-ary** tree, every level is entirely filled, except possibly the deepest, where all nodes are as far left as possible.

In a **perfect k-ary** tree, every leaf has the same depth and the tree is full.
Traversals
Preorder Traversal

```
algorithm preorder(p) {
    visit(p)
    for each child c of p {
        preorder(c)
    }
}
```
Postorder Traversal

algorithm postorder(p) {
 for each child c of p {
 postorder(c)
 }
 visit(p)
}
Example: What type of traversal?

Compute space used by files in folders and subfolders:

```
$ du -h -d 2
```