Announcements

- Python 2 instead of Python 3
- Projects 1 .. 5: Teams of 1 or 2
 - Individual submission
 - Include names as comments in header
- Homework starting this week
 - edX
 - Piazza

CSC 481: Artificial Intelligence

BFS, Uniform Cost

Instructor: Marco Alvarez
University of Rhode Island

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

- Uninformed Search Methods
 - Breadth-First Search
 - Uniform-Cost Search

Breadth-First Search

Strategy: expand shallowest node first
Implementation:
Fringe is a FIFO queue

Breadth-First Search (BFS) Properties

- What nodes does BFS expand?
 - Processes all nodes above shallowest solution
- Let depth of shallowest solution be s
- Search takes time $O(b^s)$
- How much space does the fringe take?
 - Has roughly the last tier, so $O(b^s)$
- Is it complete?
 - s must be finite if a solution exists, so yes!
- Is it optimal?
 - Only if costs are all 1 (more on costs later)

Quiz: DFS vs BFS

- When will BFS outperform DFS?
- When will DFS outperform BFS?

Video of Demo Maze Water DFS/BFS (part 1)
Iterative Deepening

- Idea: get DFS's space advantage with BFS's time / shallow-solution advantages
 - Run a DFS with depth limit 1. If no solution...
 - Run a DFS with depth limit 2. If no solution...
 - Run a DFS with depth limit 3.
- Isn’t that wastefully redundant?
 - Generally most work happens in the lowest level searched, so not so bad!

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions. It does not find the least-cost path. We will now cover a similar algorithm which does find the least-cost path.

Uniform Cost Search

Strategy: expand a cheapest node first:
- Fringe is a priority queue (priority: cumulative cost)

Uniform Cost Search (UCS) Properties

- What nodes does UCS expand?
 - Prunes all nodes with cost less than cheapest solution!
- If that solution costs C^* and arc cost at least ϵ, then the "effective depth" is roughly C^*/ϵ (exponential in effective depth)
- How much space does the fringe take?
 - Has roughly the last tier, so $\Omega(b^{C^*/\epsilon})$
- Is it complete?
 - Assuming best solution has a finite cost and minimum arc cost is positive, yes!
- Is it optimal?
 - Yes! (Proof next lecture via A*)

Uniform Cost Issues

- Remember: UCS explores increasing cost contours
- The good: UCS is complete and optimal!
- The bad:
 - Explores options in every "direction"
 - No information about goal location
- We’ll fix that soon!
The One Queue

- All these search algorithms are the same except for fringe strategies
 - Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
 - Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues
 - Can even code one implementation that takes a variable queuing object

Search and Models

- Search operates over models of the world
 - The agent doesn’t actually try all the plans out in the real world!
 - Planning is all “in simulation”
 - Your search is only as good as your models...

- Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

- Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

- Search and Models

- The One Queue

- Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)