Constraint Satisfaction Problems

- **N variables**
- **domain D**
- **constraints**

- **states**
- **goal test**
- **successor function**

Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs
 - **Idea 1:** One variable at a time
 - Variable assignments are commutative, so fix ordering
 - i.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - **Idea 2:** Check constraints as you go
 - i.e., consider only values which do not conflict previous assignments
 - Might have to do some computation to check the constraints
 - "Incremental goal test"
 - Depth-first search with these two improvements is called backtracking search (not the best name)
 - Can solve n-queens for n = 25

Backtracking Example

- Backtracking = DFS + variable-ordering + fail-on-violation

Filtering

- General-purpose ideas give huge gains in speed
- **Ordering:**
 - Which variable should be assigned next?
 - In what order should its values be tried?
- **Filtering:** Can we detect inevitable failure early?
- **Structure:** Can we exploit the problem structure?
Filtering: Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn’t provide early detection for all failures:

 - NT and SA cannot both be blue!
 - Why didn’t we detect this yet?
 - Constraint propagation: reason from constraint to constraint

Consistency of A Single Arc

- An arc $X \rightarrow Y$ is consistent if for every x in the tail there is some y in the head which could be assigned without violating a constraint:

Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent:
 - Important: If X loses a value, neighbors of X need to be rechecked!
 - Arc consistency detects failure earlier than forward checking
 - Can be run as a preprocessor or after each assignment
 - What’s the downside of enforcing arc consistency?

Enforcing Arc Consistency in a CSP

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)
 - Arc consistency still runs inside a backtracking search!

Limitations of Arc Consistency

- Runtime $O(n^3)$, can be reduced to $O(n^2)$
- but detecting all possible future problems is NP-hard - why?

Video of Demo Coloring – Backtracking with Forward Checking – Complex Graph

Video of Demo Coloring – Backtracking with Arc Consistency – Complex Graph

Video of Demo Coloring – Backtracking with Forward Checking

Video of Demo Coloring – Backtracking with Arc Consistency