CS 188: Artificial Intelligence

Constraint Satisfaction Problems III

Instructor: Marco Alvarez
University of Rhode Island

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Today

- Efficient Solution of CSPs
- Local Search
K-Consistency
K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node’s domain has a value which meets that node’s unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.
K-Consistency

Increasing degrees of consistency

- 1-Consistency (Node Consistency): Each single node’s domain has a value which meets that node’s unary constraints

- 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other

- K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.

Higher k more expensive to compute
K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node’s domain has a value which meets that node’s unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.
- Higher k more expensive to compute
- (You need to know the k=2 case: arc consistency)
Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - ...
Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - ...
- Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called path consistency)
Improving Backtracking

Filtering: Can we detect inevitable failure early?

Ordering:
- Which variable should be assigned next? (MRV)
- In what order should its values be tried? (LCV)

Structure: Can we exploit the problem structure?
Ordering: Minimum Remaining Values

- **Variable Ordering: Minimum remaining values (MRV):**
 - Choose the variable with the fewest legal left values in its domain
Ordering: Minimum Remaining Values

- **Variable Ordering: Minimum remaining values (MRV):**
 - Choose the variable with the fewest legal left values in its domain
Variable Ordering: Minimum remaining values (MRV):
- Choose the variable with the fewest legal left values in its domain
Ordering: Minimum Remaining Values

- **Variable Ordering: Minimum remaining values (MRV):**
 - Choose the variable with the fewest legal left values in its domain
Variable Ordering: Minimum remaining values (MRV):
- Choose the variable with the fewest legal left values in its domain

Why min rather than max?
Ordering: Minimum Remaining Values

- **Variable Ordering: Minimum remaining values (MRV):**
 - Choose the variable with the fewest legal left values in its domain

- Why min rather than max?
Variable Ordering: Minimum remaining values (MRV):
- Choose the variable with the fewest legal left values in its domain

Why min rather than max?
Also called “most constrained variable”
“Fail-fast” ordering
Ordering: Least Constraining Value

- **Value Ordering: Least Constraining Value**
 - Given a choice of variable, choose the *least constraining value*
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)
Ordering: Least Constraining Value

- **Value Ordering: Least Constraining Value**
 - Given a choice of variable, choose the *least constraining value*
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)

- Why least rather than most?
Value Ordering: Least Constraining Value

- Given a choice of variable, choose the least constraining value
- I.e., the one that rules out the fewest values in the remaining variables
- Note that it may take some computation to determine this! (E.g., rerunning filtering)

Why least rather than most?
Ordering: Least Constraining Value

- **Value Ordering: Least Constraining Value**
 - Given a choice of variable, choose the *least constraining value*
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)

- Why least rather than most?

- Combining these ordering ideas makes 1000 queens feasible
Improving Backtracking

Filtering: Can we detect inevitable failure early?

Ordering:
- Which variable should be assigned next? (MRV)
- In what order should its values be tried? (LCV)

Structure: Can we exploit the problem structure?
Structure
Problem Structure

- Extreme case: independent subproblems
 - Example: Tasmania and mainland do not interact
Problem Structure

- **Extreme case: independent subproblems**
 - Example: Tasmania and mainland do not interact

- **Independent subproblems are identifiable as connected components of constraint graph**
Problem Structure

- **Extreme case: independent subproblems**
 - Example: Tasmania and mainland do not interact

- **Independent subproblems are identifiable as connected components of constraint graph**

- **Suppose a graph of \(n \) variables can be broken into subproblems of only \(c \) variables:**
 - Worst-case solution cost is \(O((n/c)(d^c)) \), linear in \(n \)
 - E.g., \(n = 80, d = 2, c = 20 \)
 - \(2^{80} = 4 \text{ billion years at } 10 \text{ million nodes/sec} \)
 - \((4)(2^{20}) = 0.4 \text{ seconds at } 10 \text{ million nodes/sec} \)
Tree-Structured CSPs

A -- B -- D
 | | |
 C B D
 | | |
 E D F
Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n d^2)$ time
 - Compare to general CSPs, where worst-case time is $O(d^n)$
Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n d^2)$ time
 - Compare to general CSPs, where worst-case time is $O(d^n)$

- This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning
Algorithm for tree-structured CSPs:

- Order: Choose a root variable, order variables so that parents precede children
Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children
Algorithm for tree-structured CSPs:
- Order: Choose a root variable, order variables so that parents precede children

![Diagram of a tree-structured CSP](image)
Algorithm for tree-structured CSPs:

- Order: Choose a root variable, order variables so that parents precede children
Algorithm for tree-structured CSPs:
- Order: Choose a root variable, order variables so that parents precede children
Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children

![Diagram showing a tree-structured CSP and the order of variables](image)
Tree-Structured CSPs

- **Algorithm for tree-structured CSPs:**
 - Order: Choose a root variable, order variables so that parents precede children
 - Remove backward: For $i = n : 2$, apply RemoveInconsistent(Parent(X_i), X_i)
Algorithm for tree-structured CSPs:

- **Order:** Choose a root variable, order variables so that parents precede children.

- **Remove backward:** For $i = n : 2$, apply $RemoveInconsistent(Parent(X_i), X_i)$.
Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children
 - Remove backward: For $i = n : 2$, apply RemoveInconsistent(Parent(X_i), X_i)
 - Assign forward: For $i = 1 : n$, assign X_i consistently with
Algorithm for tree-structured CSPs:

- Order: Choose a root variable, order variables so that parents precede children
- Remove backward: For $i = n : 2$, apply RemoveInconsistent(\text{Parent}(X_i), X_i)
- Assign forward: For $i = 1 : n$, assign X_i consistently with \text{Parent}(X_i)

Runtime: $O(n d^2)$ (why?)
Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
Claim 1: After backward pass, all root-to-leaf arcs are consistent

Proof: Each X→Y was made consistent at one point and Y’s domain could not have been reduced thereafter (because Y’s children were processed before Y)
Tree-Structured CSPs

- **Claim 1:** After backward pass, all root-to-leaf arcs are consistent
- **Proof:** Each $X \rightarrow Y$ was made consistent at one point and Y’s domain could not have been reduced thereafter (because Y’s children were processed before Y)

- **Claim 2:** If root-to-leaf arcs are consistent, forward assignment will not backtrack
Claim 1: After backward pass, all root-to-leaf arcs are consistent
Proof: Each $X \rightarrow Y$ was made consistent at one point and Y’s domain could not have been reduced thereafter (because Y’s children were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
Proof: Induction on position
Tree-Structured CSPs

- **Claim 1**: After backward pass, all root-to-leaf arcs are consistent
 - **Proof**: Each $X \rightarrow Y$ was made consistent at one point and Y’s domain could not have been reduced thereafter (because Y’s children were processed before Y)

- **Claim 2**: If root-to-leaf arcs are consistent, forward assignment will not backtrack
 - **Proof**: Induction on position

- Why doesn’t this algorithm work with cycles in the constraint graph?
Tree-Structured CSPs

- **Claim 1:** After backward pass, all root-to-leaf arcs are consistent.
 - **Proof:** Each $X \rightarrow Y$ was made consistent at one point and Y’s domain could not have been reduced thereafter (because Y’s children were processed before Y).

- **Claim 2:** If root-to-leaf arcs are consistent, forward assignment will not backtrack.
 - **Proof:** Induction on position.

- Why doesn’t this algorithm work with cycles in the constraint graph?

- **Note:** we’ll see this basic idea again with Bayes’ nets.
Improving Structure
Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
Nearly Tree-Structured CSPs

- **Conditioning**: instantiate a variable, prune its neighbors' domains
- **Cutset conditioning**: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- **Cutset size c** gives runtime $O\left(d^c(n-c) d^2\right)$, very fast for small c
Cutset Conditioning
Cutset Conditioning
Cutset Conditioning

Choose a cutset
Cutset Conditioning

Choose a cutset

Instantiate the cutset (all possible ways)
Cutset Conditioning

Choose a cutset

Instantiate the cutset (all possible ways)
Cutset Conditioning

Choose a cutset

Instantiate the cutset (all possible ways)

Compute residual CSP for each assignment
Cutset Conditioning

- Choose a cutset
- Instantiate the cutset (all possible ways)
- Compute residual CSP for each assignment
Cutset Conditioning

Choose a cutset

Instantiate the cutset (all possible ways)

Compute residual CSP for each assignment

Solve the residual CSPs (tree structured)
Cutset Quiz

- Find the smallest cutset for the graph below.
Iterative Improvement
Local search methods typically work with “complete” states, i.e., all variables assigned.
Iterative Algorithms for CSPs

- Local search methods typically work with “complete” states, i.e., all variables assigned
Iterative Algorithms for CSPs

- Local search methods typically work with “complete” states, i.e., all variables assigned

- To apply to CSPs:
 - Take an assignment with unsatisfied constraints
 - Operators *reassign* variable values
 - No fringe! Live on the edge.
Iterative Algorithms for CSPs

- Local search methods typically work with “complete” states, i.e., all variables assigned

- To apply to CSPs:
 - Take an assignment with unsatisfied constraints
 - Operators \textit{reassign} variable values
 - No fringe! Live on the edge.
Iterative Algorithms for CSPs

- Local search methods typically work with “complete” states, i.e., all variables assigned

- To apply to CSPs:
 - Take an assignment with unsatisfied constraints
 - Operators *reassign* variable values
 - No fringe! Live on the edge.

- Algorithm: While not solved,
 - Variable selection: randomly select any conflicted variable
 - Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - I.e., hill climb with \(h(n) = \text{total number of violated constraints} \)
Example: 4-Queens

- States: 4 queens in 4 columns ($4^4 = 256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: $c(n) =$ number of attacks
Video of Demo Iterative Improvement – n Queens
Video of Demo Iterative Improvement - n Queens
Video of Demo Iterative Improvement - n Queens
Video of Demo Iterative Improvement - Coloring
Video of Demo Iterative Improvement – Coloring
Video of Demo Iterative Improvement - Coloring
Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., \(n = 10,000,000 \))!
Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!

- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[R = \frac{\text{number of constraints}}{\text{number of variables}} \]
Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!

- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[
R = \frac{\text{number of constraints}}{\text{number of variables}}
\]
Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., \(n = 10,000,000 \))!

- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[R = \frac{\text{number of constraints}}{\text{number of variables}} \]
Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!

- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[R = \frac{\text{number of constraints}}{\text{number of variables}} \]
CSPs are a special kind of search problem:
- States are partial assignments
- Goal test defined by constraints

Basic solution: backtracking search

Speed-ups:
- Ordering
- Filtering
- Structure

Iterative min-conflicts is often effective in practice
Local Search
Local Search

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)

- Local search: improve a single option until you can’t make it better (no fringe!)

- New successor function: local changes

- Generally much faster and more memory efficient (but incomplete and suboptimal)
Hill Climbing

- **Simple, general idea:**
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit

- **What’s bad about this approach?**
 - Complete?
 - Optimal?

- **What’s good about it?**
Hill Climbing Diagram

- Objective function
- Global maximum
- Shoulder
- Local maximum
- "Flat" local maximum
- Current state
- State space
Hill Climbing Quiz

Starting from X, where do you end up?
Starting from Y, where do you end up?
Starting from Z, where do you end up?
Genetic algorithms use a natural selection metaphor
- Keep best N hypotheses at each step (selection) based on a fitness function
- Also have pairwise crossover operators, with optional mutation to give variety

Possibly the most misunderstood, misapplied (and even maligned) technique around
Example: N-Queens

- Why does crossover make sense here?
- When wouldn’t it make sense?
- What would mutation be?
- What would a good fitness function be?
Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

```plaintext
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
        schedule, a mapping from time to “temperature”
local variables: current, a node
                next, a node
                T, a “temperature” controlling prob. of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])
for t ← 1 to ∞ do
    T ← schedule[t]
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE[next] - VALUE[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability $e^{Δ E/T}$
```
Simulated Annealing

- **Theoretical guarantee:**
 - Stationary distribution: \(p(x) \propto e^{\frac{E(x)}{kT}} \)
 - If \(T \) decreased slowly enough, will converge to optimal state!
Simulated Annealing

- **Theoretical guarantee:**
 - Stationary distribution: \[p(x) \propto e^{\frac{E(x)}{kT}} \]
 - If T decreased slowly enough, will converge to optimal state!

- Is this an interesting guarantee?
Simulated Annealing

- **Theoretical guarantee:**
 - **Stationary distribution:** \(p(x) \propto e^{\frac{E(x)}{kT}} \)
 - If T decreased slowly enough, will converge to optimal state!

- Is this an interesting guarantee?

- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
 - People think hard about *ridge operators* which let you jump around the space in better ways