Total Order

• Every pair of items must be comparable according to a total order, that satisfies:

 * Antisymmetry: if \(k_1 \leq k_2 \) and \(k_2 \leq k_1 \) then \(k_1 = k_2 \)
 * Transitivity: if \(k_1 \leq k_2 \) and \(k_2 \leq k_3 \) then \(k_1 \leq k_3 \)
 * Totality: \(k_1 \leq k_2 \) or \(k_2 \leq k_1 \)

Sorting

• Given \(n \) elements that can be compared according to a total order relation
 * we want to rearrange them in increasing/decreasing order
 * input: sequence \(A = [k_1, k_2, \ldots, k_n] \) of items
 * output: permutation \(B \) of \(A \) s.t. \(B[1] \leq B[2] \leq \ldots \leq B[n] \)

• Central problem in computer science

Selection Sort

• Array is divided into sorted and unsorted parts
 * algorithm scans array from left to right

• Invariants
 * elements in sorted are fixed and in ascending order
 * no element in unsorted is smaller than any element in sorted

![Sorted vs Unsorted](https://via.placeholder.com/150)
2.1 Selection Sort Demo

```c
void selectionsort(ul_int *A, ul_int n) {
    ul_int i, j, min, temp;
    // grows the left part (sorted)
    for (i = 0; i < n; i++) {
        min = i;
        // find min in unsorted part
        for (j = i+1; j < n; j++) {
            if (A[j] < A[min]) {
                min = j;
            }
        }
        // swap A[i] and A[min]
        temp = A[i];
        A[i] = A[min];
        A[min] = temp;
    }
}
```

Number of comparisons?
Number of exchanges?

Different types of analysis

- **Worst-case:** maximum time of algorithm on any input
- **Average-case:** expected time of algorithm over all inputs
- **Best-case:** minimum time of algorithm on some (optimal) input

Analysis — Selection Sort

- Running time is quadratic
 - insensitive to the input (quadratic in all cases)
 - linear number of exchanges (minimal data movement)
- Worst-case?
- Best-case?
- Average-case?
Insertion Sort

- Array is divided into sorted and unsorted parts
 - algorithm scans array from left to right

- Invariants
 - elements in sorted are in ascending order
 - elements in unsorted have not been seen

```
| 2 | 2 | 4 | 5 | 9 | 1 | 10 | 3 | 7 |
```

sorted unsorted

```
1 void insertionsort(ul_int *A, ul_int n) {
2     ul_int temp, i, j;
3     // grows the left part (sorted)
4     for (i = 0; i < n; i ++) {
5         // inserts A[j] in sorted part
6         for (j = i; j > 0; j --) {
7             if (A[j] < A[j-1]) {
8                 temp = A[j];
10                A[j-1] = temp;
11             }
12             else 
13                 break;
14         }
15     }
16 }
```

Number of comparisons?

Number of exchanges?

Analysis — Insertion Sort

- Running time depends on the input
 - Worst-case?
 - input reverse sorted
 - Best-case?
 - input already sorted
 - Average-case?
 - expect every element to move O(n/2) times
Partially sorted arrays

- An inversion is a pair of keys that are out of order

```
1 3 4 5 2 6 10 15 7
```

“array is partially sorted if the number of pairs that are out-of-order is $O(n)$”

For partially-sorted arrays, insertion sort runs in linear time. $\Theta(n)$

Summary

<table>
<thead>
<tr>
<th></th>
<th>Best-Case</th>
<th>Average-Case</th>
<th>Worst-Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^2)$</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^2)$</td>
</tr>
</tbody>
</table>