CSC 212
Data Structures and Abstractions
Spring 2016

Lecture 13: Balanced Trees
Balanced Trees

Challenge:

provide guaranteed fast tree operations
Balanced Trees

Challenge:
provide guaranteed fast tree operations

Simplest idea: require left and right subtrees to have the same height
too rigid — hard to implement
AVL Tree

BST with a **balance condition** ensures height $O(\log n)$
AVL Tree

BST with a **balance condition**
ensures height $O(\log n)$

AVL Tree (Adelson-Velskii and Landis)
maintains balance using rotations
Balance Condition

An **AVL tree** is a BST wherein for every node, the **height** of the left and right subtrees can differ by at most 1
Balance Condition

An **AVL tree** is a BST wherein for every node, the **height** of the left and right subtrees can differ by at most 1

height information is kept for each node
Balance Condition

An **AVL tree** is a BST wherein for every node, the **height** of the left and right subtrees can differ by at most 1.

- Height information is kept for each node.
- Height of an empty tree is defined to be -1.

Balance of a Node

\[\text{balance}(x) = \text{height}(x.\text{left}) - \text{height}(x.\text{right}) \]
Balance of a Node

\[\text{balance}(x) = \text{height}(x.\text{left}) - \text{height}(x.\text{right}) \]

An **AVL tree** is a BST wherein for every node \(x \), \(|\text{balance}(x)| \leq 1 \).
balance(x) = 1

balance(x) = 0

balance(x) = -1
AVL Tree?

height of a node

balance of a node
balance of a node

height of a node

AVL Tree?
Minimum #nodes for an AVL with h=9
Analysis

\(N(h) \) — minimum number of nodes in an AVL tree of height \(h \)
Analysis

$N(h)$ — minimum number of nodes in an AVL tree of height h

Base cases: $N(0) = 1$ and $N(1) = 2$
Analysis

$N(h)$ — minimum number of nodes in an AVL tree of height h

Base cases: $N(0) = 1$ and $N(1) = 2$

For $h > 1$: $N(h) = 1 + N(h-1) + N(h-2)$
Analysis

\[N(h) = N(h - 1) + N(h - 2) + 1 \]

\[N(h) \geq \phi^h, \text{ where } \phi \approx 1.62 \text{ (cf. Fibonacci)} \]

\[n \geq N(h), \text{ (}n\text{ nodes in an AVL tree of height } h) \]

\[n \geq \phi^h, \text{ therefore } \log_\phi n \geq h \]

\[h \leq 1.44 \log n = O(\log n) \]
Implications

Search operations same as BST’s search cost $O(\log n)$
Implications

Search operations
 same as BST’s search
 cost $O(\log n)$

Insert and Remove operations
 need to detect and fix imbalances
Implications

Search operations
- same as BST’s search
- cost $O(\log n)$

Insert and Remove operations
- need to detect and fix imbalances

remove 60? insert 73?
Insertion

Use BST’s insertion
Insertion

Use BST’s insertion

Balance may become 2 or -2 for some node(s)
need to check nodes along the path to the root
update heights and calculate balance
Insertion

Use BST’s insertion

Balance may become 2 or -2 for some node(s)
need to check nodes along the path to the root
update heights and calculate balance

How to fix imbalances?
adjust the tree by applying rotations
Four Cases

Let us call the node that must be rebalanced x

Case 1: insertion into left subtree of x’s left child

Case 2: insertion into right subtree of x’s left child

Case 3: insertion into left subtree of x’s right child

Case 4: insertion into right subtree of x’s right child
Case 1: Single Rotation (R)
Case 1: Single Rotation (R)
Case 1: Single Rotation (R)
Case 4: Single Rotation (L)
Case 4: Single Rotation (L)
Case 4: Single Rotation (L)
Case 2: Double Rotation (LR)
Case 3: Double Rotation (RL)
Case 3: Double Rotation (RL)