Maximum Subarray Sum

Given an array of integers: \(A = [a_1, a_2, \ldots, a_n] \)

\[s_{j,k} = a_j + a_{j+1} + \cdots + a_k = \sum_{i=j}^{k} a_i \]

Definition. The maximum subarray sum of array \(A \) is the sequence \(A[j:k] \), \(0 \leq j \leq k \leq n \) that maximizes \(s_{j,k} \), the sum of its values.

Remark. By convention, the special array element \(A[0] = 0 \) is defined.

If all elements are negative, then the solution is an empty subarray of zero sum.

Example

Solution 1: MaxsubSlow

- Apply Brute Force
 - calculate the partial sums of every possible subarray
 - for every sum, compare it to a running maximum and update it if necessary
Example

| A | 0 | 3 | -4 | 1 | -4 | 3 | 7 | 1 | -2 |

Analysis

Algorithm MaxsubSlow(\(A\)):

Input: An \(n\)-element array \(A\) of numbers, indexed from 1 to \(n\).

Output: The maximum subarray sum of array \(A\).

\(m \leftarrow 0\) // the maximum found so far

for \(j \leftarrow 1\) to \(n\) do

for \(k \leftarrow j\) to \(n\) do

\(s \leftarrow 0\) // the next partial sum we are computing

for \(i \leftarrow j\) to \(k\) do

\(s \leftarrow s + A[i]\)

if \(s > m\) then

\(m \leftarrow s\)

end if

end for

end for

return \(m\)

Algorithm 1.14: Algorithm MaxsubSlow.

\(O(n^3)\)

Solution 2: MaxsubFaster

- Wasting time calculating all partial sums
 - consider using prefix sums

- Prefix sums
 - sum of the first \(t\) integers in \(A\) is denoted by:

\[
S_t = a_1 + a_2 + \cdots + a_t = \sum_{i=1}^{t} a_i
\]

- Any subarray summation can be calculated by:

\[
S_{j,k} = S_k - S_{j-1}
\]
Analysis

Algorithm MaxsubFaster(A):
 Input: An n-element array A of numbers, indexed from 1 to n.
 Output: The maximum subarray sum of array A.
 $S_0 \leftarrow 0$ // the initial prefix sum
 for $i \leftarrow 1$ to n do
 $S_i \leftarrow S_{i-1} + A[i]$
 $m \leftarrow 0$ // the maximum found so far
 for $j \leftarrow 1$ to n do
 for $k \leftarrow j$ to n do
 $s = S_k - S_{j-1}$
 if $s > m$ then
 $m \leftarrow s$
 return m

Algorithm 1.15: Algorithm MaxsubFaster.

Solution 3: MaxsubFastest

› Apply same idea …
 › consider using maximum suffix sums

› Maximum suffix sums
 › M_t is the summation value for a maximum subarray that ends at t, denoted by:
 \[
 M_t = \max\{0, \max_{j=1, \ldots, t} \{s_{j,t}\}\}
 \]
 › Any maximum suffix summation can be calculated by:
 \[
 M_t = \max\{0, M_{t-1} + A[t]\}
 \]

Analysis

Algorithm MaxsubFastest(A):
 Input: An n-element array A of numbers, indexed from 1 to
 Output: The maximum subarray sum of array A.
 $M_0 \leftarrow 0$ // the initial prefix maximum
 for $t \leftarrow 1$ to n do
 $M_t \leftarrow \max\{0, M_{t-1} + A[t]\}$
 $m \leftarrow 0$ // the maximum found so far
 for $t \leftarrow 1$ to n do
 $m \leftarrow \max\{m, M_t\}$
 return m

Algorithm 1.16: Algorithm MaxsubFastest.
Computational Cost

<table>
<thead>
<tr>
<th>Size of Input</th>
<th>MaxSubSlow $O(n^3)$</th>
<th>MaxSubFaster $O(n^2)$</th>
<th>MaxSubFastest $O(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>n = 10</td>
<td>1,000</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>n = 100</td>
<td>1,000,000</td>
<td>10,000</td>
<td>100</td>
</tr>
<tr>
<td>n = 1000</td>
<td>1,000,000,000</td>
<td>10,000,000</td>
<td>100,000</td>
</tr>
<tr>
<td>n = 10000</td>
<td>1,000,000,000,000</td>
<td>10,000,000,000,000</td>
<td>100,000,000,000</td>
</tr>
<tr>
<td>n = 100000</td>
<td>1,000,000,000,000,000</td>
<td>10,000,000,000,000,000</td>
<td>100,000,000,000,000,000</td>
</tr>
<tr>
<td>n = 1000000</td>
<td>1,000,000,000,000,000,000</td>
<td>10,000,000,000,000,000,000</td>
<td>100,000,000,000,000,000,000</td>
</tr>
<tr>
<td>n = 10000000</td>
<td>1,000,000,000,000,000,000,000</td>
<td>10,000,000,000,000,000,000,000</td>
<td>100,000,000,000,000,000,000,000,000</td>
</tr>
</tbody>
</table>

References

- Algorithm Design and Applications, Goodrich & Tamassia
 - Section 1.3