Trees

- List, Stacks, Queues are linear data structures
- Trees allow for hierarchical relationships
 - nodes have parent-child relation

General Trees (definition)

There is a unique path from the root to each node in the tree

A tree is either empty or a root node connected to 0 or more trees (called subtrees)
Trees (jargon)

- Each node is either a leaf or an internal node
 - an internal node has one or more children
 - a leaf node (external node) has no children
- Nodes with the same parent are siblings

Paths

- A path from node v_0 to v_n is a sequence of nodes $v_0, v_1, v_2, \ldots, v_n$, where there is an edge from one node to the next
- The descendants of a node v are all nodes reached by a path from node v to the leaf nodes
- The ancestors of a node v are all nodes found on the path from the root to node v

Depth and Height

- The length of a path is the number of edges in the path
- The depth (level) of a node v is the length of the path from the root node to v
- The height of a node v is the length of the path from v to its deepest descendant
Tree Properties

- **Root**

The depth of the tree is the depth of the deepest node.

The height of the tree is the height of the root.

How to implement general trees?

Node:
- data
- parent
- children array

Traversals
Traversing a tree

A traversal is a method that "visits" every node in a tree once.
Preorder Traversal

1 algorithm preorder(p) {
2 visit(p)
3 for each child c of p {
4 preorder(c)
5 }
6 }

Postorder Traversal

1 algorithm postorder(p) {
2 for each child c of p {
3 postorder(c)
4 }
5 visit(p)
6 }