CSC 212: Data Structures and Abstractions
15: Binary Search Trees I

Marco Alvarez
Department of Computer Science and Statistics
University of Rhode Island
Fall 2017

k-ary Trees
- In a **k-ary tree**, every node has between 0 and k children
- In a **full (proper)** k-ary tree, every node has exactly 0 or k children
- In a **complete** k-ary tree, every level is entirely filled, except possibly the deepest, where all nodes are as far left as possible
- In a **perfect** k-ary tree, every leaf has the same depth and the tree is full

Binary Tree

A k-ary tree where k = 2

Quiz (binary trees)

Full? Complete? Perfect?
How to implement binary trees?

Node:
- data
- parent
- left child
- right child

Collections/Dictionaries as arrays

<table>
<thead>
<tr>
<th></th>
<th>Sequential Search (unordered sequence)</th>
<th>Binary Search (ordered sequence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>search</td>
<td>(O(n))</td>
<td>(O(\log n))</td>
</tr>
<tr>
<td>insert</td>
<td>(O(n))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>delete</td>
<td>(O(n))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>min/max</td>
<td>(O(n))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>floor/ceiling</td>
<td>(O(n))</td>
<td>(O(\log n))</td>
</tr>
<tr>
<td>rank</td>
<td>(O(n))</td>
<td>(O(\log n))</td>
</tr>
</tbody>
</table>

Binary Search Tree

- A BST is a binary tree
- A BST has symmetric order
 - each node \(x\) in a BST has a key \(\text{key}(x)\)
 - for all nodes \(y\) in the left subtree of \(x\), \(\text{key}(y) < \text{key}(x)\) **
 - for all nodes \(y\) in the right subtree of \(x\), \(\text{key}(y) > \text{key}(x)\) **

(**) assume that the keys of a BST are pairwise distinct
BSTNode

```cpp
class BSTNode {
private:
  int data;
  BSTNode *left;
  BSTNode *right;
public:
  BSTNode(int d);
  ~BSTNode();
friend class BSTree;
};
```

BSTree

```cpp
class BSTree {
private:
  unsigned int size;
  BSTNode *root;
  void destroy(BSTNode *p);
public:
  BSTree();
  ~BSTree();
  void insert(int d);
  void remove(int d);
  BSTNode *search(int d);
};
```

Search

- Start at root node
- If the search key matches the current node’s key then **found**
- If search key is greater than current node’s key
 - search **recursively** on right child
- If search key is less than current node’s key
 - key search **recursively** on left child
- Stop recursion when current node is NULL (**not found**)

![BST Diagram]

- < 50
- 30
- 20
- 40
- 15
- 18
- 60
- 80
- 70
- 50
- > 50
- 75
Search: Iterative Algorithm

- Perform a Search operation
- If found, no need to insert (may increase counter)
- If not found, insert node where Search stopped

Search: Recursive Algorithm

Insert

- Perform a Search operation
- If found, no need to insert (may increase counter)
- If not found, insert node where Search stopped
Insert: Iterative Algorithm

Insert: Recursive Algorithm