CSC 212: Data Structures and Abstractions
Binary Search Trees I

Marco Alvarez
Department of Computer Science and Statistics
University of Rhode Island
Spring 2018

k-ary Trees

- In a **k-ary tree**, every node has between 0 and k children
- In a **full (proper) k-ary tree**, every node has exactly 0 or k children
- In a **complete** k-ary tree, every level is entirely filled, except possibly the deepest, where all nodes are as far left as possible
- In a **perfect** k-ary tree, every leaf has the same depth and the tree is full

Binary Tree

A k-ary tree where $k = 2$

- parent
- left child
- right child

Quiz (binary trees)

Full? Complete? Perfect?
How to implement binary trees?

Node:
- data
- parent
- left child
- right child

Collections/Dictionaries as arrays

<table>
<thead>
<tr>
<th>What?</th>
<th>Sequential Search (unordered sequence)</th>
<th>Binary Search (ordered sequence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>search</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>insert</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>delete</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>min/max</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>floor/ceiling</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>rank</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>

Binary Search Trees

- A BST is a **binary tree**
- A BST has symmetric order
 - each node x in a BST has a key $\text{key}(x)$
 - for all nodes y in the left subtree of x, $\text{key}(y) < \text{key}(x)$ **
 - for all nodes y in the right subtree of x, $\text{key}(y) > \text{key}(x)$ **

(**) assume that the keys of a BST are pairwise distinct
class BSTNode {
private:
 int data;
 BSTNode *left;
 BSTNode *right;
public:
 BSTNode(int d);
 ~BSTNode();
friend class BSTree;
};

class BSTree {
private:
 unsigned int size;
 BSTNode *root;
 void destroy(BSTNode *p);
public:
 BSTree();
 ~BSTree();
 void insert(int d);
 void remove(int d);
 BSTNode *search(int d);
};

Search

• Start at root node

• If the search key matches the current node’s key then found

• If search key is greater than current node’s key
 • search recursively on right child

• If search key is less than current node’s key
 • key search recursively on left child

• Stop recursion when current node is NULL (not found)
Search: Iterative Algorithm

- Perform a Search operation
- If found, no need to insert (may increase counter)
- If not found, insert node where Search stopped

Search: Recursive Algorithm

- Insert
 - Search
 - Perform a Search operation
 - If found, no need to insert (may increase counter)
 - If not found, insert node where Search stopped