Maximum Subarray Sum

Given an array of integers: \(A = [a_1, a_2, \ldots, a_n] \)

\[
s_{j,k} = a_j + a_{j+1} + \cdots + a_k = \sum_{i=j}^{k} a_i
\]

Definition. The maximum subarray sum of array \(A \) is the sequence \(A[j : k], 0 \leq j \leq k \leq n \) that maximizes \(s_{j,k} \), the sum of its values.

Remark. By convention, the special array element \(A[0] = 0 \) is defined.

If all elements are negative, then the solution is an empty subarray of zero sum.
Example

| A | 0 | 3 | -4 | 1 | -4 | 3 | 7 | 1 | -2 |

Figure 1.13: An instance of the maximum subarray problem. In this case, the maximum subarray is $A[3:6]$, that is, the maximum sum is $s_{3,6} = 13$.

Solution 1: MaxsubSlow

- Apply Brute Force
 - calculate the partial sums of every possible subarray
 - for every sum, compare it to a running maximum and update it if necessary

Analysis

Algorithm MaxsubSlow(A):

Input: An n-element array A of numbers, indexed from 1 to n.

Output: The maximum subarray sum of array A.

$m \leftarrow 0$ // the maximum found so far

for $j \leftarrow 1$ to n do
 for $k \leftarrow j$ to n do
 $s \leftarrow 0$ // the next partial sum we are computing
 for $i \leftarrow j$ to k do
 $s \leftarrow s + A[i]$
 if $s > m$ then
 $m \leftarrow s$

return m

$O(n^3)$

Algorithm 1.14: Algorithm MaxsubSlow.
Solution 2: MaxsubFaster

- Wasting time calculating all **partial sums**
 - consider using **prefix sums**

- Prefix sums
 - *sum of the first t integers in A is denoted by:*
 \[
 S_t = a_1 + a_2 + \cdots + a_t = \sum_{i=1}^{t} a_i
 \]

- Any subarray summation can be calculated by:
 \[
 S_{j,k} = S_k - S_{j-1}
 \]

Example

<table>
<thead>
<tr>
<th>A</th>
<th>0</th>
<th>3</th>
<th>-4</th>
<th>1</th>
<th>-4</th>
<th>3</th>
<th>7</th>
<th>1</th>
<th>-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>-4</td>
<td>-1</td>
<td>6</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

Analysis

Algorithm MaxsubFaster(A):

Input: An \(n\)-element array \(A\) of numbers, indexed from 1 to \(n\).

Output: The maximum subarray sum of array \(A\).

\[
S_0 \leftarrow 0 \quad // \text{the initial prefix sum}\\
\text{for } i \leftarrow 1 \text{ to } n \text{ do}\\
\quad S_i \leftarrow S_{i-1} + A[i]\\
m \leftarrow 0 \quad // \text{the maximum found so far}\\
\text{for } j \leftarrow 1 \text{ to } n \text{ do}\\
\quad \text{for } k \leftarrow j \text{ to } n \text{ do}\\
\quad \quad s = S_k - S_{j-1}\\
\quad \quad \text{if } s > m \text{ then}\\
\quad \quad \quad m \leftarrow s\\
\text{return } m
\]

\[O(n^2)\]

Algorithm 1.15: Algorithm MaxsubFaster.

Solution 3: MaxsubFastest

- Apply same idea ...
 - consider using **maximum suffix sums**

- Maximum suffix sums
 - \(M_t\) is the summation value for a maximum subarray that ends at \(t\), denoted by:
 \[
 M_t = \max\{0, \max_{j=1, \ldots, t}\{s_{j,t}\}\}
 \]

- Any maximum suffix summation can be calculated by:
 \[
 M_t = \max\{0, M_{t-1} + A[t]\}
 \]
Example

\[A = \begin{bmatrix} 0 & 3 & -4 & 1 & -4 & 3 & 7 & 1 & -2 \end{bmatrix} \]

\[M = \begin{bmatrix} 0 & 3 & 0 & 1 & 0 & 3 & 10 & 11 & 9 \end{bmatrix} \]

Analysis

Algorithm MaxSubFastest(\(A \)):
- Input: An \(n \)-element array \(A \) of numbers, indexed from 1 to \(n \).
- Output: The maximum subarray sum of array \(A \).

\[M_0 \leftarrow 0 \quad \text{// the initial prefix maximum} \]

\[\text{for } t \leftarrow 1 \text{ to } n \text{ do} \]

\[M_t \leftarrow \max\{0, M_{t-1} + A[t]\} \]

\[m \leftarrow 0 \quad \text{// the maximum found so far} \]

\[\text{for } t \leftarrow 1 \text{ to } n \text{ do} \]

\[m \leftarrow \max\{m, M_t\} \]

\[\text{return } m \]

\[O(n) \]

Algorithm 1.16: Algorithm MaxSubFastest.

Computational Cost

<table>
<thead>
<tr>
<th>Size of Input</th>
<th>MaxSubSlow (O(n^3))</th>
<th>MaxSubFaster (O(n^2))</th>
<th>MaxSubFastest (O(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(n = 10)</td>
<td>1,000</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>(n = 100)</td>
<td>1,000,000</td>
<td>10,000</td>
<td>100</td>
</tr>
<tr>
<td>(n = 1000)</td>
<td>1,000,000,000</td>
<td>1,000,000</td>
<td>1,000</td>
</tr>
<tr>
<td>(n = 10000)</td>
<td>1,000,000,000,000</td>
<td>10,000,000</td>
<td>10,000</td>
</tr>
<tr>
<td>(n = 100000)</td>
<td>1,000,000,000,000,000</td>
<td>100,000,000</td>
<td>100,000</td>
</tr>
<tr>
<td>(n = 1000000)</td>
<td>1,000,000,000,000,000,000</td>
<td>1,000,000,000,000</td>
<td>1,000,000,000,000</td>
</tr>
</tbody>
</table>

References

- Algorithm Design and Applications, Goodrich & Tamassia
 - Section 1.3