
Formal Methods

There are two key issues when building software systems:

1. Validation – are we building the right product?
2. Verification – are we building the product right?

Validation is done during requirements analysis with the feedback of the customer.
Verification is done during testing of the product. Rigorous testing needs working code
in order to run test cases. But we have also seen that even with testing we will never be
able to prove the absence of bugs.

Therefore, for sensitive systems, particularly where human lives are at stake we need
something else => Formal Methods.

A formal methods approach to software design implies writing a product specification in
some formal notation such as first order logic. This in turn implies that the formal
specification has a mathematical semantics or interpretation which allows us to
rigorously inspect the specification for clarity (unique interpretation of each statement)
and consistency (no contradictory statements). In addition, due to the mathematical
nature of formal specification we can actually prove system properties to hold. For
example we can formally show that a system will behave in a certain way given a
particular class of inputs. This goes well beyond what test cases can do.

If the formal notation we chose is executable, then the formal specification of our system
can be viewed as a prototype system. And we can actually run the formal specification to
see if the system behaves the way the system design intended. This adds another aspect
to formal methods, we can also use them for validation.

Thus, we can use formal specification methods for validation by using them to show
customers the behavior of the specified system. Also, we can use formal methods for
verification because we can prove mathematical properties of the system, in particular,
we can prove that it behaves as desired over a given set of inputs.

Unfortunately, applying formal methods is time consuming and expensive. However,
given the different aspects of formal methods we can apply them in varying degrees of
formality and still derive a benefit.

1. Validation – write the specifications in a formal specification language and then
only informally validate them – no proofs.

2. Validation with some Verification – validate the formal specification and only
prove critical components of the system correct.

3. Validation with full Verification – validate formal specifications and then prove
all aspects of the system correct – VERY EXPENSIVE – this only reserved for
the most critical of systems.

Equational Logic

The formalism we are using is called equational logic. In equational logic axioms are
written as equations and we use equational deduction to reason about these axioms.

Example: A simple equational specification of the computation of a power of two.

begin
 include Integer
 oper square : Integer -> Integer
 var I:Integer
 equ square(I) = I * I
end

In this specification we include the integers so that they are available to us to use for our
own specification. We then proceed to define our ‘square’ operation which takes an
integer as an argument and produces an integer as a result. After declaring a variable ‘I’
of type integer we define some behavior for the operations which given a value simply
multiplies this value with itself and returns that as the result.

We could envision executing this specification by saying something like this:

> execute square(5)

Result: 25

This is precisely what the equational specification language BOBJ does. It allows you to
write equational specifications and then gives you the environment to actually execute
these specifications.

Getting Started with BOBJ

BOBJ is a specification language based on equational logic and algebra. Informally, in
equational logic axioms are expressed as equations with algebras as models and term
rewriting as operational semantics. Due to this efficient operational semantics, BOBJ
specifications are executable; once you have specified your system, you can actually run
the specification and see if it behaves correctly. Furthermore, due to the fact that BOBJ is
rigorously based on mathematical foundations you can use BOBJ to prove things about
your specifications.

Lets revisit the specification from before, but now write it as a BOBJ specification.

obj SQUARE is
 protecting INT .
 op square : Int -> Int .
 var I : Int .
 eq square(I) = I * I .
endo

There are some minor syntactical differences to our intuitive specification from before. If
you assume that this is saved in the file ‘square.bob’, then we can load this file into BOBJ
and run the specification:

$ java –jar bobj.jar
> in square.bob
> reduce square(5) .
 Result: Int: 5
>

Another simple example, specify the computation of the smaller of two values.

obj MIN is
 protecting INT .
 op min : Int Int -> Int .
 var X : Int .
 var Y : Int .
 ceq min(X, Y) = X if X ≤ Y .
 ceq min(X, Y) = Y if X > Y .
endo

To execute this specification:

$ java –jar bobj.jar
> in min.bob
> reduce min(3,5) .
 Result: Int: 3
> reduce min(5,3) .

 Result: Int: 3
>

For more information, see the bobj-quickstart document.

