
Game Engine Architecture

Game-State Simulator

Controller
Controller

Controller
Renderer

Actions

Updates

Queries

QueriesQueries

 Game-State – the game-state represents
the current state of the world. It knows
about all the objects in the world and
provides access to them so that they can
be queried by all the other components for
information about their current state.

 Simulator – the simulator encodes the rules
of how the game-state changes based on
the “game physics.” Together with a set of
animations the simulator is responsible for
generating a character’s moves in
response to the actions chosen by the
associated controller.

 Renderer – together with the game’s
geometry and texture maps, the renderer is
responsible for rendering a depiction of the
game-state; usually with images and
sound.

 Controller – each character in the game
has at least one controller (“brain”)
associated with it. The controller is
responsible for selecting actions. For
player characters the controller interprets
joystick interactions. For NPCs the
controller consists of the AI and low-level
control.

Source: AI for Computer Games,
John D. Funge, AK Peters, 2004.

Controller (Brain) Architectures

Non-Deterministic Controllers Deterministic Controllers

Internal
State (Memory)

OutputsInputs

Non-Deterministic
Controller

OutputsInputs

Deterministic
Controller

…

Pros & Cons

 Non-Deterministic Controllers:
 Can easily accommodate very complex

behaviors/actions.
 Can be computationally very complex.
 Different reaction (outputs) to the same situations

(inputs) – non-deterministic behavior.
 difficult to debug.

 Deterministic Controllers:
 Can only implement reflexive behavior, behavior that

only depends on the current set of inputs (no
memory/history/internal state).

 Computationally usually very simple (lookup table).
 Same reaction (outputs) to the same situations

(inputs) – deterministic behavior
 easy to debug.

Planning vs. Reactive
Behavior
 Planning usually involves thinking ahead.

 Often this manifests itself as searching; as in
searching for the best path or searching for
the best chess move, etc.

 In order to accomplish this the controller
needs an internal state:

• Goal-Subgoal lists, keeping track when goals are
fullfilled or need to be adjusted.

 Reactive Behavior is well...reactive
 Simply maps the inputs into the outputs.
 Is often rule or table based.

Planning vs. Reactive
Behavior
 Planning can be very complex
 It turns out that full planning needs to be

done in very few cases, reactive behavior
can be substituted in many cases without
loss of intelligent behavior

 Reactive behavior maps particularly well
onto animats:
 Collect information from the senses
 Interpret this information
 Perform an action

What have we learned so far?

 Intelligence is the computational part of attaining
goals.

 AI is the science and engineering of constructing
intelligent machines.

 Agents are different from programs (autonomous,
long lived, communicate, etc).

 Animats are agents with a “body” implying limited
capabilities and senses.

What have we learned so far?

 From an AI perspective, the key part in a game
engine is the controller
 Non-deterministic (stateful, planning)
 Deterministic (stateless, reactive behavior)

 From a software development perspective we tend
to prefer deterministic controllers
 Easy to implement
 Easy to debug
 Mimics reflexive behavior found in real creatures in

nature

Assignments

 Read: 3,5-8 (Alex’ Book)
 Programming Assignment 1 due

Wednesday 2/3 @ 10pm

