
Interprocess Communication

 Why is it so tricky to program
Quagents?
 The body is represented by one

process
 The controller by another process
 Both processes communicate with

each other by passing messages
 The really tricky part is that these

messages are asynchronous!

IPC ≡ Interprocess Communication

Interprocess Communication

Quake2 World

Quagent

Controller

Interprocess
Communication
Channel
(QuagentSocket)

Process

Interprocess Communication

Synchronous
Communication

P1 P2

MessagesProcess
executing Process

waiting

Asynchronous
Communication

P1 P2

Messages
Process
executing

No Waiting!Hand Shaking

Interprocess Communication

 Asynchronous communication is more natural in our
setting

 Consider the alternatives:
 the brain stops working while body is walking
 the body stops walking while the brain is working

 neither of these alternatives is very desirable
 violates one of our central dogmas: be as realistic as

possible
 we want both processes to be as unconstrained as

possible so that each can perform their respective
function as efficiently as possible

Interprocess Communication

Example: ... q.walk(256); ...

...

Events events = null;

bool stopped = true;

...

q.walk(256);
stopped = getStopped(q.events());

while(!stopped) {

 // do stuff

 events = q.events();
 stopped = getStopped(events);
}

...

NOTE:
getStopped will return true if it finds the ‘TELL STOPPED’ event,
otherwise it will return false.

Controller Quagent

walk

OK

TELL STOPPED

Walking

Standing

Do stuff
Event
Polling

IPC
class Asynch extends Quagent {

 static final int DIST = 20;

 public static void main(String[] args) throws Exception {
new Asynch();

 }

 Asynch () throws Exception {
super(); // run the constructer of the super class

// action loop
try {

while(true) {
this.walk(5000);
this.rays(1);
handleEvents(this.events());
Thread.currentThread().sleep(100);

}
} catch (QDiedException e) { // the quagent died -- catch that exception

System.out.println("bot died!");
}

this.close();
 }

IPC
public void handleEvents(Events events) throws Exception {

for (int ix = 0; ix < events.size(); ix++)
{

String e = events.eventAt(ix);

if (e.indexOf("rays") >= 0)
{

// NOTE: only works for single ray commands
// this is what the event looks like:
// OK (ask rays 1) 1 worldspawn 379.969 54.342 0
// NOTE: parens are not included in tokens
String[] tokens = e.split("[()\\s]+");

double x = Double.parseDouble(tokens[6]);
double y = Double.parseDouble(tokens[7]);
double distance = Math.sqrt(x*x + y*y);

System.out.println("Distance: " + distance);

// if the distance is less than DIST ticks then turn 180 degrees
if (distance < DIST)

this.turn(180);
}

}
 }
}

Understanding the Problem
Domain

 Problem Decomposition
 Structural – split problems according

to the function of each component
 Behavioral – split problems according

to the set of activities required by the
agent

 Goal – split problems according to the
goals envisioned for the agent

Abstraction
Level

Low

High

Understanding the Problem
Domain

Structural Decomposition

Movement

Weapon

Perception

Fleeing

Hunting

Shooting

Behavioral
Decomposition

Movement Component

Goal
decomposition

≡
Goals are possibly
overlapping collections
of behaviors.

Challenge Question
 Redesign your Warm-Up Lap algorithm to

be as general as possible
 Hint: use your knowledge of asynch IPC &

problem decomposition
 Goal: from the spawn point move to a wall

and walk one full lap along the wall.
 Challenges:

 Rooms will be with angles of 90° and 270°
with different sizes and shapes (i.e., not
square)

 Spawn points will be at different places in the
rooms.

Spawn
Point

Target
Point

Path
Room
Walls

