Problem Analysis

- A design example: Fetch an Object
 - The animat is tasked with retrieving a block of tofu.
- We will use goal oriented decomposition
 - Best matched to our definition of intelligence
 - Goals imply sub-goals
 - Primitive sub-goals can easily implemented by behavioral-functional components

Intelligence is the computational part of the ability to achieve goals in some world.
Problem Analysis

When enough sub-goals are achieved to achieve the goal at the root of the and/or goal tree, the goal tree is said to be satisfied.
Problem Analysis

Formal Test Procedures:

Procedure TestNode:
if the node is trivially satisfied then
 return true;
else if the node is an AND node then
 use the TestAndNode procedure;
else if the node is an OR node then
 use the TestOrNode procedure;

Procedure TestAndNode:
for each child node
 use the TestNode procedure
if a child node returned false then
 return false;
If all child nodes returned true
 return true;

Procedure TestOrNode:
for each child node
 use the TestNode procedure;
if a child node returned true then
 return true;

Note: the test procedure also gives you a way to execute a goal tree - goal reduction
Problem Analysis

- Construct and/or goal trees for the following high-level goals:
 - Walk around a 270° corner
 - Initial condition: you are parallel to a wall
 - Goal: if you find a 270° corner, take it
 - Meet another quagent
 - Initial condition: your quagent just spotted another quagent.
 - Assumption: the other agent continues to do whatever it was doing (walking towards/away from you, standing still, etc).
 - Goal: *Anticipate* what the other agent is going to do and steer to within a click or two.
Problem Analysis

- We have the goals and their implementation...
- Some other basic questions to ask:
 - Does the problem solution require specialized knowledge?
 - If so, how do we represent that knowledge?
Knowledge Representation

A representation is a set of conventions about how to describe a class of things.

A description makes use of the conventions of a representation to describe some particular thing.

Artificial Intelligence, Patrick Winston, Addison-Wesley, 1984
Knowledge Representation

- Good representations make the important things explicit.
 - They expose the *natural constraints*.
 - Some transitions are possible, some are not.
- They are *complete*.
 - We are able say everything that needs to be said.
- They are *concise*.
 - We can say things efficiently.
- They are *transparent*.
 - We can understand what has been said.
- They facilitate *computation*.
 - We can store and retrieve information rapidly.
- They *suppress detail*.
 - We can access information at the appropriate level of abstraction.
Knowledge Representation

- Every problem has a set of *natural constraints*
 - E.g., in pathfinding we are not allowed to move instantly from one part of the space to another neither are we allowed to traverse through opaque space (e.g. walls).
- A solution must satisfy these constraints - *constraint satisfaction*
- Representations that allow for easy reasoning about constraints, *constraint propagation*, are preferred.
Knowledge Representation

Line drawing interpretation
- Line constraints:
 - Concave: +
 - Convex: -
 - Boundary: →
- Once we label one of the lines the constraints imposed by the real world force the interpretation of the other lines - constraint propagation
Knowledge Representation

- A line drawing without constraints is difficult to interpret.
 - Can you see the big cube flipping back and forth between the two perspectives?
 - What constraints should be put on big cube to represent the left bottom cube? The right bottom cube?
Knowledge Representation

- Symbolic constraint propagation offers a plausible explanation for one human information processing phenomenon, it offers also a good way to structure computer solutions.
- Processing constraints and regularities in the world make it possible for entities to be intelligent, be it human or machines.
Knowledge Representation

- Shading is also a real world constraint we use to interpret the world.
- Without shading the picture to the left is difficult to interpret.

Figure 3-19. Without shadows, there are several ways to interpret a cube: it may be suspended or it may be attached to a floor or a wall by one of its hidden faces.
Knowledge Representation

- A representation is a set of conventions about how to describe a class of things
- Representations used in AI:
 - Symbols
 - Attribute-value representation
 - Frames
 - Semantic networks
 - List
Knowledge Representation

- **Symbolic representation**
 - Imperative languages
 - Weak
 - Groups of symbols with values assigned to them
 - Data structures are used to convey some relationships between the symbols - e.g. classes in OOP
 - Symbolic programming languages
 - The symbol itself becomes the carrier of knowledge/meaning, e.g. predication in logic programming.
 - A program is a collection of these symbols and a way to reason about them.
 - This makes Prolog so attractive as an AI language.
Knowledge Representation

- **Object-Attribute-Value**
 - Can often be represented as a table

<table>
<thead>
<tr>
<th>Object</th>
<th>Distance</th>
<th>Presence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left_obstacle</td>
<td>4.0</td>
<td>known</td>
</tr>
<tr>
<td>Right_obstacle</td>
<td>?</td>
<td>unknown</td>
</tr>
</tbody>
</table>
Knowledge Representation

- Frames
 - Records composed of slots and pointers
 - Stores values of objects and relationships between objects
 - When programming in Java/C++ you can use classes to achieve the same goal
 - Used in applications in cognitive modeling

```
Frame-left-obstacle:
    distance: 4.0
    presence: known
    pointer: (frame-fred)(frame-joe)
```
Knowledge Representation

- Semantic Networks
 - Stores the relationships between objects in a graph-like manner
 - Nodes represent concepts
 - Edges describe relationships
 - Interesting relationship to logic programming
 - the edges in a semantic network can be viewed as predicates.
Knowledge Representation

- Another semantic network (Wikipedia)
Knowledge Representation

- Lists
 - Similar objects are gathered together in a list
 - We can envision list operators almost like the operators from set theory: union, intersection, member-of, complement, etc.
 - Also considered a symbolic representation.
 - Powerful and natural representation, we keep lists of things, sort lists, etc.

Mammals = [dog, giraffe, elephant, mouse]
Shopping = [milk, coffee, bread, eggs]

Lisp = List Processor – most famous AI language based on list representation.
Hints: Embodiment

- When turning a corner you will need to take the size of the body into account.
- Embodiment poses natural constraints onto your navigation problem.
Assignments

- Reading Chaps 1-10 (except Chap 4)
- **Quiz** Tuesday 2/16
 - Covers everything up to this point