
Knowledge Representation

 Attribute-Value pairs, frames, and
semantic networks allow you to
represent knowledge very effectively,
but...

 ...accessing and reasoning with this
knowledge is ad hoc.

 However, our reasoning does not
seem ad hoc...we follow certain
reasoning patterns or rules.

Rule-based Systems

 Rule-based systems try to mimic our reasoning steps with
sets of if-then rules:

if is-fresh(coffee) then pour(coffee)
if not is-fresh(coffee) then make(coffee)

 This kind of reasoning was already studied by the ancient
Greeks and is referred to as the modus ponens,

if A then B
A = true

∴ B = true

 Sometimes rules are also referred to as productions or
production rules.

Rules:
If <condition> then <action>

Read Chap 11, Alex’ Book
Read Prolog Tutorial on
course website

Rule-based Systems

Current State of
the Reasoning
(Computation)

Computation step:
 The interpreter

 selects a rule from the
rulebase

 applies the rule to the
symbols in the working
memory

 updates the working
memory

 Rules can be selected in an arbitrary order
 only depending on the state of the computation.

Rule-based Systems

 A convenient framework for rule-
based reasoning is first-order logic

 Rather than arbitrary data structures
first-order logic depends on
 Quantified Variables
 Predicates
 Logical Connectives
 If-then Rules

First-Order Logic

 Quantified Variables
 Universally quantified variables

∀X – for all objects X

 Existentially quantified variables

∃Y – there exists an object Y

First-Order Logic

 Predicates
 Predicates are functions that map their arguments into true/false
 The signature of a predicate p(X) is

p: Objects → { true, false }

with X ∈ Objects.
 Example: human(X)

• human: Objects → { true, false }
• human(tree) = false
• human(paul) = true

 Example: mother(X,Y)
• mother: Objects × Objects → { true, false }
• mother(betty,paul) = true
• Mother(giraffe,peter) = false

First-Order Logic

 We can combine predicates and
quantified variables to make
statements on sets of objects
 ∃X[mother(X,paul)]

• there exists an object X such that X is the
mother of Paul

 ∀Y[human(Y)]
• for all objects Y such that Y is human

First-Order Logic

 Logical Connectives: and, or, not
 ∃F∀C[parent(F,C) and male(F)]

• There exists an object F for all object C
such that F is a parent of C and F is male.

 ∀X[day(X) and (comfortable(X) or
rainy(X))]

• For all objects X such that X is a day and
X is either comfortable or rainy.

First-Order Logic

 If-then rules: A → B
 ∀X∀Y[parent(X,Y) and female(X) → mother(X)]

• For all objects X and for all objects Y such that if X is
a parent of Y and X is female then X is a mother.

 ∀Q[human(Q) → mortal(Q)]
• For all objects Q such that if Q is human then Q is

mortal.

First-Order Logic
∀∅ [female(pam)]
∀∅ [female(liz)]
∀∅ [female(ann)]
∀∅ [female(pat)]

∀∅ [male(tom)]
∀∅ [male(bob)]
∀∅ [male(jim)]

∀∅ [parent(pam,bob)]
∀∅ [parent(tom,bob)]
∀∅ [parent(tom,liz)]
∀∅ [parent(bob,ann)]
∀∅ [parent(bob,pat)]
∀∅ [parent(pat,jim)]

∀X∀Y [parent(X,Y) and female(X) → mother(X)]
∀X∀Y [parent(X,Y) and male(X) → father(X)]
∀X∀Y ∀YZ [parent(X,Y) and parent(X,Z) and not same-person(Y,Z) → siblings(Y,Z)]

How about sister?
How about grandparent?

NOTE: if we only consider the persons
mentioned here, then we are making use
of the closed world assumption.

Assertions

Prolog Prolog = Programming in Logic

Observations:
 Think of :- as the ← arrow.
 Universal quantification is implied
 Only universally quantified rules are allowed
 Variables have to start with a capital letter
 Objects have to be all lower case letters

 Executable First-Order Logic

∀∅ [female(pam)]

 becomes

female(pam).

Facts:

∀X∀Y [parent(X,Y) and female(X) → mother(X)]

 becomes

mother(X) :- parent(X,Y) , female(X)

And Connective

Rules:

Prolog – Rules & Facts
female(pam).
female(liz).
female(ann).
female(pat).
male(tom).
male(bob).
male(jim).

parent(pam,bob).
parent(tom,bob).
parent(tom,liz).
parent(bob,ann).
parent(bob,pat).
parent(pat,jim).

mother(X) :- parent(X,Y) , female(X).
father(X) :- parent(X,Y) , male(X).
siblings(Y,Z) :- parent(X,Y) , parent(X,Z) , not(sameperson(Y,Z)).

facts

rules

What about the ‘sameperson’ predicate?

We can execute this program
by asking questions:

?- female(pam).
?- female(X). ∃X[female(X)]?
?- mother(pam).
?- father(Y).

Can we prove that ‘female(pam)’ is true?
Can we prove that there exists an object X
 that make ‘female(X)’ true?
etc

Prolog – Rules & Facts

isa(cardinal, bird).
isa(bluejay, bird).
isa(boy, human).
isa(girl, human).
isa(computer, artifact).
isa(airplane, artifact).
isa(bird, animal).
isa(human, animal).

has(bird, feathers).
has(bird, wings).
has(human, intelligence).
has(computer, intelligence).
has(airplane, wings).

can_do(Thing, fly) :- has(Thing, wings).
can_do(Thing, think) :- has(Thing, intelligence).
can_do(Thing, live) :- isa(Thing, animal).

facts

rules

We can ask questions:

?- isa(cardinal,bird).
?- isa(bluejay,human).
?- can_do(human,think).

or:

?- isa(cardinal,X).
?- can_do(X,think).

