
Finite State Machines (FSM)

 FSM is one of the simplest and most basic AI models.
 Basically, FSM consists of

 States
 State transitions

 An object (a non-player character) is in one of the
states.

 When certain conditions are met, the object changes
to another state.

Slides based on work by Dr. Soon Tee Teoh, Dept. of Computer Science, San Jose State University

FSM Basics

 A FSM consists of the following 4
components:
 States which define behavior and may

produce actions (Moore Machine)
 State transitions which are movement from

one state to another and may produce
actions (Mearly Machine)

 Rules/conditions/labels which must be met to
allow a state transition

 Input events which are either externally or
internally generated, which may possibly
trigger rules/satisfy conditions/match labels
and lead to state transitions

FSM Basics

FSM Basics

Example of States

 For example, Quake2 uses 9 states for the
monsters:
 Standing, walking, running, dodging, attacking,

melee, seeing the enemy, idle and searching
 In other words, at any one time, a monster can be in

one of the above 9 states.
 Each state has its own distinct behavior and actions.

For example, a monster in the running state would
behave differently from a monster in the standing
state.

 The behavior and actions for each state has to be
defined by the programmer.

State Transitions

 A finite state machine must have:
 an initial state which provides a starting point, and
 a current state which remembers the product of the

last state transition.
 An input event act as a trigger
 This causes an evaluation of the rules that govern

the transitions from the current state to other states.
A state change then occurs according to the rules.

 The best way to visualize a FSM is to think of it as a
directed graph of the states.

Example of State Transitions

Idle Attack

Die

Melee

Dodge

Search

See enemy

Close range

Enemy Fires

Lose Sight

Time Out

Start state

Get ShotGet Shot

Get Shot

See enemy

Close range

state

state transition

input event

Another Example:
FSM for Ghost in Pac-Man

Chase
Player

Run from
Player

Move
Randomly

DieRise

Pellet
wears
off

Player
eats
Ghost

Eyes reach
Center Room

Player
eats
Pellet

Time
to exit
Center
Room

Player dies

Player re-spawns

Disadvantages of FSM

 May be too predictable
 Large FSM with many states and transitions can be

difficult to manage and maintain. The graph may
start to look like “spaghetti.”

 State oscillation. States may be too rigid. Conditions
are too crisp.
 For example, there are two states: Flee and Idle.
 The condition for being in the Flee state is to be within

a distance 5.0 from the enemy. The condition for
being in the Idle state is to be greater than 5.0 from
the enemy.

 Say, the object is 4.9 from the enemy. It is in Flee
state, so it runs away. Now it is 5.1, so it is in Idle
state. It randomly moves around, and goes to 4.9 and
gets into the Flee state again etc.

Implementation

class Monster {
 int state; // 0: Idle
 1: Attack
 2: Melee
 3: Dodge
 4: Search
 5: Die
 Monster();
 void Iterate();
 void HandleInput(int eventID);
 void Shoot();
 void Melee();
 void Dodge();
 void Chase();
 void FindEnemy();
};

Monster::Monster() : state(0) { } // initialize to start state

void Monster::Iterate() { // called on every game cycle
 if (state==0) { Move(rand()); // move in random direction
 } else if (state==1) { Chase(); Shoot();
 } else if (state==2) { Melee();
 } else if (state==3) { Dodge();
 } else if (state==4) { FindEnemy();
 } else if (state==5) {
 }
}

void Monster::HandleInput(int eventID) {
 if (eventID==0) { // monster got shot
 state = 5;
 } else if (eventID==1) { // see enemy
 if ((state==0) || (state==4)) {
 state = 1;
 }
 } …
}

Prolog Implementation

% define the machine
initial(closed).
edge(closed,open_door,opened).
edge(opened,close_door,closed).

% define the interpretation of the machine
behavior :-
 initial(State),
 edge(State,Action,NextState),
 writeln(Action),
 transition(NextState).

transition(State) :-
 edge(State,Action,NextState),
 writeln(Action),
 transition(NextState).

Prolog Implementation
% define the machine
initial(search).
edge(search,tofu_found,found).
edge(found,tofu_pickup,picked_up).
edge(picked_up,tofu_retrieve,retrieved).
final(retrieved).

% define the interpretation of the machine
behavior :-
 initial(State),
 edge(State,Action,NextState),
 writeln(Action),
 transition(NextState).

transition(State) :-
 final(State).

transition(State) :-
 edge(State,Action,NextState),
 writeln(Action),
 transition(NextState).

What does the machine
look like?

