Event Programming in
1 Prolog

o Events in our quagent Prolog API are
just list of strings

%% print an event list
print_events([]) :- nl.
print_events([H|T]) :-
writeln(H),
print_events(T).

Compared to:

:- use_module(library(porter_stem)).

%% print an event list

print_events([]) :- nl.

print_events([H|T]) :-
tokenize_atom(H,TokenList), % tokenize the string H
writeln(TokenList),
print_events(T).

Event Programming In
Yurked PrOIOg

%% libraries and modules
:- consult('quagent.pro’).
:- use_module(library(porter_stem)).

%% dispath event predicate

dispatch_event(Q,E) :-
member('STOPPED',E),
g_turn(Q,-30).

dispatch_event(Q,E) :-
member('rays',E),
nth1(9,E,X), % unify the 9th element of E with X, start counting at 1
nth1(10,E,Y), % unify the 10th element of E with Y
Dist is sqrt(abs(X)**2 + abs(Y)**2),
write('ray> "),write(' distance "),write(Dist),nl,
Dist =< 500,
g_turn(Q,-30).

dispatch_event(_,). % return true if we are not interested in the event
%% handle events predicate
handle_events(_,[]).

handle_events(Q,[H|T]) :-
tokenize_atom(H, TokenList), % tokenize the string H
dispatch_event(Q,TokenList),
handle_events(Q,T).

Event Programming in
Prolog

Given the token list of the rays event:

[OK, (, ask, rays, 2,), 1, worldspawn, 0, -209.469, 0, 2, worldspawn, -9.15527¢-005, 286.469, 0]

We want to extract the list of objects with their corresponding data.

% parse the rays command event token list, ignoring
% the first 6 tokens
g_parse_rays([_, , _,_,_,_|TokenList], ObjList) :-

g_parse_tokenlist(TokenList,ObjList).

% parse the object token list and construct a list
% of object together with their corresponding data
g_parse_tokenlist([],[])-
g_parse_tokenlist([l,0,X,Y,Z|Next], [Object|Tail]) :-
Object = [1,0,X,Y,Z],
g_parse_tokenlist(Next, Tail).

Given the rays command event above, what does the constructed ObijList look like?

¢

Asynchronous Quagent
Programming in Prolog

Controller Quagent
I - Standing
walk
>
4 .
OK - Walking
Do stuff
<
TELL STOPPED

Asynchronous Prolog

Idea: let’s write a program that walks a quagent in a 100x100 square.
We want to make sure that it reaches each of the corners.

run

g _connect (Q),

g walk(Q,100),

wait until stopped(Q),
g _turn(Q,-90),

g walk(Q,100),

wait until stopped(Q),
g _turn(Q,-90),

g walk(Q,100),

wait until stopped(Q),
g _turn(Q,-90),

g walk(Q,100),

wait until stopped(Q),
g _turn(Q,-90)

q close(Q) .

% keep polling the events
% base case
walt until stopped(Q) :-
B $ could be doing something smart here
q events (Q,E),
parse stopped event (E).
% recursive step
walt until stopped(Q) :-
- % could be doing something smart here
walt until stopped(Q) .

% parse event list for stopped event
% base cases
parse stopped event([]) :- fail.
parse stopped event ([H|]) :-
tokenize atom(H, TokenList),
member ('STOPPED', TokenList) .
% recursive step
parse stopped event ([[T]) :-
parse stopped event (T).

Q)UAM: il

Asynchronous Prolog

Idea: let’s write a program that walks a quagent in a 100x100 square.
We want to make sure that it reaches each of the corners but now we
use a FSM to control the movements.

turn turn turn
move move move move done!
o - - 0@
start one two three stop

This is a Moore machine: actions on the states, conditions on the transitions.

Asynchronous Prolog

%% % define the machine
% 1nitial and final states
initial(start).

final(stop).

% define the actions at the states

action(start,Q) :- writeln('start state'), q walk(Q,100).
action(one,Q) :- writeln('state one'),q_turn(Q,-90),q walk(Q,100).
action(two,Q) :- writeln('state two'),q_turn(Q,-90),q walk(Q,100).

action(three,Q) :- writeln('state three'),q turn(Q,-90),q walk(Q,100).

0 00
action(stop,) :- writeln('stop state: all done'). %%% main loop which uses the finite state machine

state_machine(State,Q) :-
final(State),

% define the edges i
action(State,Q).

edge(start,wait_stopped,one).
edge(one,wait_stopped,two).
edge(two,wait_stopped,three).
edge(three,wait_stopped,stop).

state_machine(State,Q) :-
action(State,Q),
edge(State,Label, NextState),
condition(Label,Q),

% define the condition for the transitions ’
state_machine(NextState,Q).

condition(wait_stopped,Q) :- wait_until stopped(Q).

%% % run the program
run :-

q_connect(Q),
state_machine(start,Q),

q_close(Q).

Full implementation available on the course website.

Preview of Coming
v | Attractions

o Form Teams of 2-4

o Team Assignments
Prolog assignment ‘Tofu Deathmatch’
Pick an article to present in ‘Game Programming
Wisdom 4’ — each team will have to present one article
-- each team should pick 3 articles and then we figure
out which team presents what.
You should also start thinking about Projects

example projects:
http://www.cs.rochester.edu/~brown/242/assts/assts.html

Deathmatch competition - Thursday 3/18

Tofu Positions

(,,’) UAKIDH

For the ‘Tofu Deathmatch’ assignment, add the following lines to your
‘quagent.config’ file (same folder as your empty and obstacle rooms):

tofu 288 288 128
tofu 384 64 128

tofu 256 128 128
tofu 192 448 128

