
Searching & Planning

 Searching is about exploring alternatives.
 Uninformed search

• Does not use heuristics to speed up the search
• Potentially wastes a lot of time looking at

completely unviable solutions
• “brute force” search

 Informed search
• Does use a heuristic to speed up the search (e.g.

manhattan distance in A*)
• Only explores viable solutions

 Most AI search procedures are informed search procedures;
 the search spaces are usually too big to consider brute force search.

Searching & Planning

Search

Some Path

Optimal Path

Games

Depth-First
Hill Climbing
Breadth-First
Beam
Best-First

British Museum
Branch & Bound
Dynamic Programming
A*

Minimax
Alpha-Beta Pruning
Heuristic Pruning
Heuristic Continuation

Source: Artificial Intelligence, P. Winston, Addison-Wesley, 1984

A*: Another Perspective

 Form a queue of partial paths. Let the initial queue consist of the zero-
length, zero-step path from the starting position to nowhere.

 Until the queue is empty or the goal is reached, determine if the first path in
the queue reaches the goal.
 If the first path reaches the goal, do nothing.
 If the first path does not reach the goal:

• Remove the first path from the queue.
• Form new paths from the removed path by extending one step.

 Add the new paths to the queue.
 Sort the queue by the sum of cost accumulated so far and a lower-bound

(manhattan distance bound) of the cost remaining, with least cost paths
in front.

 If two or more paths reach a common node, delete all those paths
except for one that reaches the common nodes with the minimum cost.

 If the goal node has been reached, announce success; otherwise announce
failure.

Hill-Climb Search

 Enter the starting position on queue
 Until the queue is empty or the goal has been reached, determine if

the first element is the goal.
 If the first element is the goal, do nothing
 If the first element is not the goal node, remove the first element

from the queue, sort the first element’s children, if any, by the
estimated remaining distance, and add the sorted set of children
to the front of the queue (least cost in front).

 If the goal has been reached, announce success, otherwise announce
failure.

Adversarial Search

 All the search procedures considered so far assume that the
goal is static.

 However, this is not a realistic assumption in games.
 In games the opponent reacts to the player’s moves in such

a way as to maximize his/hers own gain.
 We need search procedures that take this into account.

 In adversarial search we want to take the possible reactions of
the opponent into account:
 Assume that opponent is rational, that is, the opponent

wants to maximize their own gain.
 This means when searching for alternatives we want to

select alternatives that maximize our own gain but minimize
that of the opponent → minimax search

Minimax

Minimax

