

• A completely different way to have an agent acquire the appropriate abilities to solve a particular goal is via *machine learning.*

Machine Learning

• What is Machine Learning?

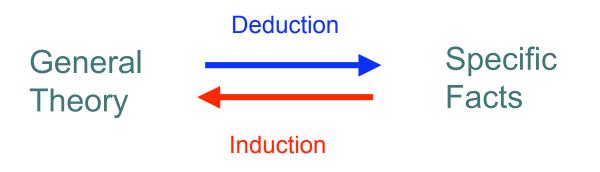
- Programs that get better with experience given a task and some performance measure.
 - Learning to classify news articles
 - Learning to recognize spoken words
 - Learning to play board games
 - Learning to navigate a virtual world
- Usually involves some sort of inductive reasoning step.

Read Chaps. 17 & 26 in Alex' Book

Inductive Reasoning

• Deductive reasoning (rule based reasoning)

- From the general to the specific
- Inductive reasoning
 - From the specific to the general

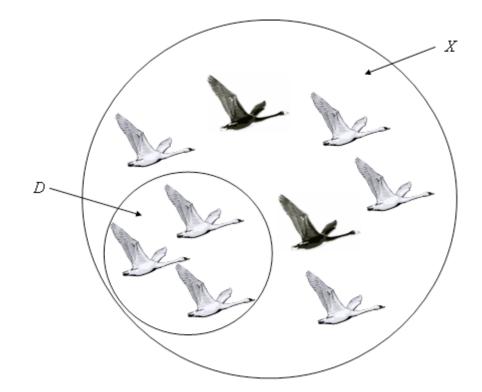


- Facts: every time you see a swan you notice that the swan is white.
- Inductive step: you infer that all swans are white.

Inference is the act or process of drawing a conclusion based solely on what one already knows.

• Deduction is "truth preserving"

- If the rules employed in the deductive reasoning process are sound, then, what holds in the theory will hold for the deduced facts.
- Induction is NOT "truth preserving"
 - It is more of a statistical argument
 - The more swans you see that are white, the more probable it is that all swans are white. But this does not exclude the existence of black swans.



D = observations X = universe of all swans

Different Styles of Machine Learning

o <u>Supervised</u> Learning

- The learning needs explicit examples of the concept to be learned (e.g. white swans...)
- o <u>Unsupervised</u> Learning
 - The learner discovers autonomously any structure in the domain that might represent an interesting concept

Knowledge - Representing what has been learned

- Symbolic Learners (transparent models)
 - If-then-else rules
 - Decision trees
 - Association rules
- <u>Sub-Symbolic</u> Learners (non-transparent models)
 - Neural Networks
 - Clustering (Self-Organizing Maps, k-Means)
 - Support Vector Machines

• Scripting works well if there is a well understood

- relationship between the input (senses) and the actions to be taken
- Learning works well where no such clear relationship exists
 - Perhaps there are too many special cases to consider
 - Perhaps there is a non-linear numerical relationship between the input and the output that is difficult to characterize
- Learning can be adaptive...online learning where the agent constantly evaluates its actions and adjusts its acquired knowledge
 - Very difficult to achieve in scripting

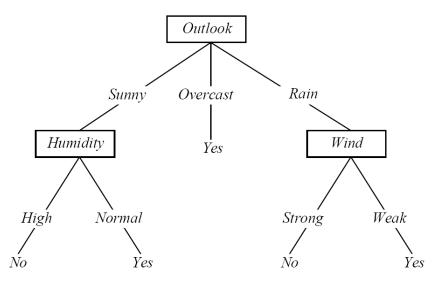
- Learn from labeled observations supervised learning
- Represent the knowledge learned in form of a tree

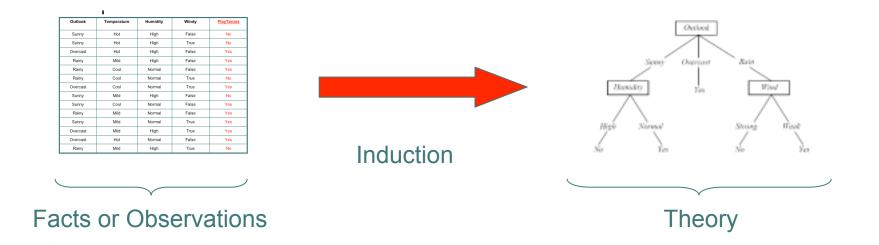
Example: learning when to play tennis.

 Examples/observations are days with their observed characteristics and whether we played tennis or not

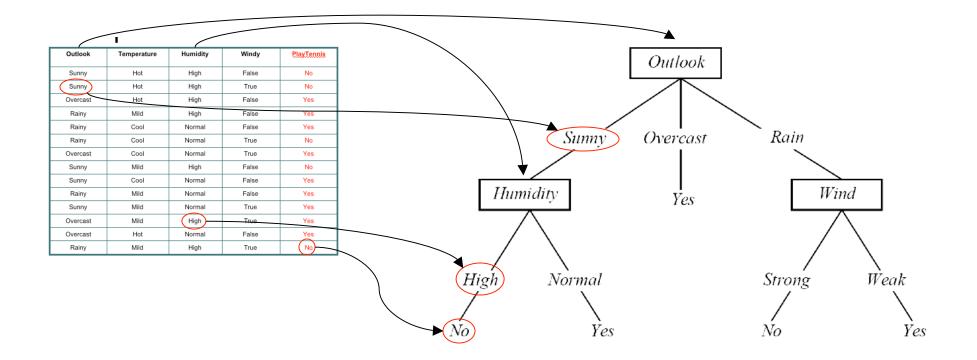
Play Tennis Example

Outlook	Temperature	Humidity	Windy	PlayTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No





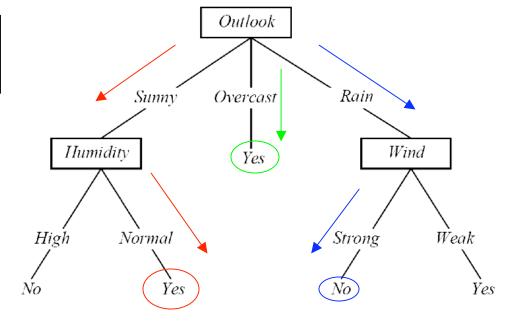
DT = Decision Tree



 \Rightarrow A DT uses the <u>attributes</u> of an observation table as nodes and the <u>attribute values</u> as links.

- \Rightarrow <u>All</u> attribute values of a particular attribute need to be represented as links.
- \Rightarrow The target attribute is special its values show up as <u>leaf nodes</u> in the DT.

Each <u>path</u> from the root of the DT to a leaf can be interpreted as a <u>decision rule</u>.

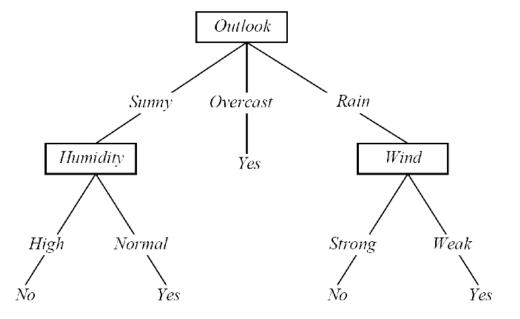


IF Outlook = Sunny AND Humidity = Normal THEN Playtennis = Yes IF Outlook = Overcast THEN Playtennis = Yes

IF Outlook = Rain AND Wind = Strong THEN Playtennis = No

Outlook	Temperature	Humidity	Windy	PlaxTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

÷.



Explanation: the DT summarizes (explains) all the observations in the table perfectly \Rightarrow 100% Accuracy

<u>Prediction</u>: once we have a DT (or model) we can use it to make predictions on observations that are not in the original training table, consider:

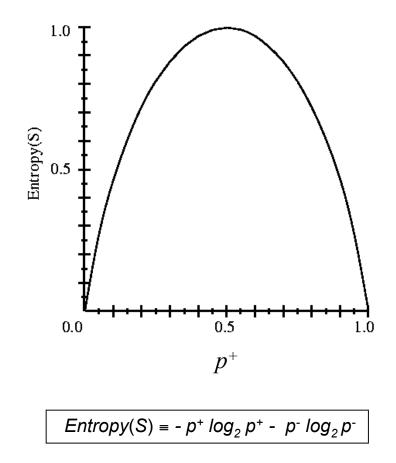
Outlook = Sunny, Temperature = Mild, Humidity = Normal, Windy = False, Playtennis = ?

- How do we choose the attributes and the order in which they appear in a DT?
 - Recursive partitioning of the original data table
 - Heuristic each generated partition has to be "less random" (entropy reduction) than previously generated partitions

S is a sample of training examples p^+ is the proportion of positive examples in S p^- is the proportion of negative examples in S Entropy measures the impurity (randomness) of S

I				
Outlook	Temperature	Humidity	Windy	PlaxTennis
Sunny	Hot	High	Faise	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

S

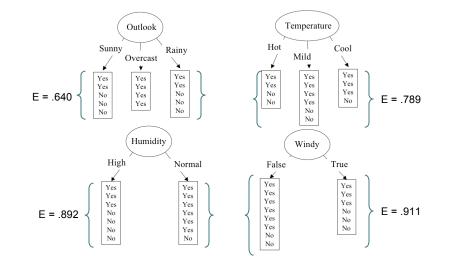


Entropy(S) = Entropy([9+,5-]) = .94

Partitioning the Data Set

Outlook Temperature Humidity Windy PlayTennis		
Sunny Hot High False No	$\overline{)}$	
Sunny Hot High True No	E = .97	
Sunny Mild High False No		
Sunny Cool Normal False Yes		
Sunny Mild Normal True Yes		
Sunny		
Outlook Temperature Humidity Windy PlayTennis		
Outlook Overcast Hot High False Yes		
	E=0	Average Entropy = .64
Overcast Mild High True Yes		Entropy – .64
Overcast Hot Normal False Yes		
Rainy		
Outlook Temperature Humidity Windy PlayTennis		
Rainy Mild High False Yes		
Rainy Cool Normal False Yes	E = .97	
Rainy Cool Normal True No		
RainyMildNormalFalseYes		
Rainy Mild High True No		

I				
Outlook	Temperature	Humidity	Windy	PlaxTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No



Recursive Partitioning

Partition(Examples, TargetAttribute, Attributes)

- Examples are the training examples. TargetAttribute is a binary (+/-) categorical dependent variable and Attributes is the list of independent variables which are available for testing at this point. This function returns a decision tree.
- Create a *Root* node for the tree.
- If all *Examples* are positive then return *Root* as a leaf node with label = +.
- Else if all *Examples* are negative then return *Root* as a leaf node with label = -.
- Else if *Attributes* is empty then return *Root* as a leaf node with label = most common value of TargetAttribute in Examples.
- Otherwise
 - $\circ A :=$ the attribute from *Attributes* that reduces entropy the most on the *Examples*.
 - \circ Root := A
 - F or each $v \in values(A)$
 - Add a new branch below the *Root* node with value A = v
 - L et $Examples_v$ be the subset of Examples where A = v
 - If *Examples_v* is empty then add new leaf node to branch with label
 = most common value of *TargetAttribute* in *Examples*.
 - Else add new subtree to branch Partition(*Examples_v*, *TargetAttribute*, *Attributes* - {A})

• Return Root

Based on material from the book: "Machine Learning", Tom M. Mitchell. McGraw-Hill, 1997.