
Artificial Neural Networks
(ANNs)

Biologically inspired computational model:

(1) Simple computational units (neurons).
(2) Highly interconnected - connectionist view
(3) Vast parallel computation, consider:

• Human brain has ~1011 neurons
• Slow computational units, switching time ~10-3 sec

(compared to the computer >10-10 sec)
• Yet, you can recognize a face in ~10-1 sec
• This implies only about 100 sequential, computational

neuron steps - this seems too low for something as
complicated as recognizing a face

⇒ Parallel processing

ANNs are naturally parallel - each neuron is a self-contained 
computational unit that depends only on its inputs.



The Perceptron

 A simple, single layered neural
“network” - only has a single neuron.

 However, even this simple neural
network is already powerful enough to
perform classification tasks.
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The Architecture
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Computation
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Ignoring the activation function sgn and setting m = 1, we obtain,
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" y = b + w
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A perceptron computes the value,

But this is the equation of a line with slope w and offset b.

Observation: For the general case the perceptron computes a hyperplane in order
to accomplish its classification task,
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In order for the hyperplane to become a classifier we need to find b and w => learning!
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Learning Algorithm

Note: learning is very different here compared to decision trees…here we have
many passes over the data until the perceptron converges on a solution.



Demo

http://lcn.epfl.ch/tutorial/english/apb/html/index.html

R perceptron demo



Observations

 The learned information is represented as
weights and the bias ⇒ sub-symbolic
learning

 In order to apply this learned information we
need a neural network structure

 The learned information is not directly
accessible to us ⇒ non-transparent model


